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A unified approach for solving convection-diffusion problems using the Generalized Integral Transform
Technique (GITT) was advanced and coined as the UNIT (UNified Integral Transforms) algorithm, as implied
by the acronym. The unified manner through which problems are tackled in the UNIT framework allows users
that are less familiar with the GITT to employ the technique for solving a variety of partial-differential
problems. This paper consolidates this approach in solving general transient one-dimensional problems.
Different integration alternatives for calculating coefficients arising from integral transformation are
discussed. Besides presenting the proposed algorithm, aspects related to computational implementation
are also explored. Finally, benchmark results of different types of problems are calculated with a UNIT-based
implementation and compared with previously obtained results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Generalized Integral Transform Technique (GITT) [1–9] has
been demonstrated to be a powerful tool for solving a variety of
convection-diffusion problems. This technique is based on using
orthogonal eigenfunctions expansions for expressing the unknown
dependent variables; however, different from the Classical Integral
Transform Technique [10], the transformation of the original problem
needs not lead to a decoupled system, making the method applicable
to a large number of problems.

The resulting transformed system is usually composed of a set of
ODEs, which can be readily solved by well-established numerical
routines that enable user-prescribed accuracy control. This, together
with the analytical nature of this technique, allows for better global
error control while compared to traditional domain discretization
methods. The main drawback usually associated with the GITT is that
a notable amount of analytical work can be required; nevertheless,
this problem can be circumvented by the usage of symbolical
computation [7,9,11].

Some of the most recent applications of the Generalized Integral
Transform Technique include, convective heat transfer in flowswithin
wavy walls [12], hyperbolic heat conduction problems [13], conju-

gated conduction-convection problems [14], transient diffusion in
heterogeneous media [15], heat and mass transfer in adsorption [16],
atmospheric pollutant dispersion [17] and dispersion in rivers and
channels [18], heat transfer in MHD [19], applications to irregular
geometries [20], solution of the Navier–Stokes equations [21] and the
boundary layer equations [22], stability analysis in natural convection
[23], among others.

A characteristic aspect of all previous integral transform studies is
that the solution strategy used in each work is tailored to the specific
application. Although this can be very effective for individual analyses,
when applying an existing solution strategy to a different problem,
several adaptations could be necessary. This becomes particularly
difficult for users not so well-versed with the Generalized Integral
Transform Technique. Under this scenario, this contribution proposes
a unified algorithm for solving virtually any convection-diffusion
problem via Integral Transforms. This approach, named UNIT (UNified
Integral Transforms), has the potential to enable a substantially
greater number of users to apply the GITT for solving a variety of
problems. Preliminary developments regarding the ideas behind this
algorithm lead to two recent studies [24,25]. A first application of a
preliminary UNIT algorithm was also used in the solution of the bio-
heat equation [26]. After these studies, the current work offers a
consolidation of the unified integral transform approach, introducing
the complete version of the one-dimensional UNIT algorithm in a
formal mathematical fashion. In addition, simulation results of
different test-problems are presented, providing a verification of the
algorithm against previous literature results.
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2. General one-dimensional transient problem

In order to demonstrate the UNIT algorithm, a general one-
dimensional initial-value problem is considered. The problem comprises
a system of K coupled partial-differential equations and K unknown
potentials Tk(x,t), written in the following form (for k=1,…,K):

wk xð Þ ∂Tk∂t = Gk x; t;Tð Þ; in x0 ≤ x≤ x1; for t N 0; ð1aÞ

Tk x;0ð Þ = fk xð Þ; in x0 ≤ x≤ x1; ð1bÞ

αk xð ÞTk x; tð Þ− −1ð Þnβk xð Þkk xð Þ ∂Tk∂x = ϕk x; t;Tð Þ; at x = xn; ð1cÞ

for m=0,1, where T is a vector containing the unknown potentials:

T = T1;…; Tk;…; TKð Þ: ð2Þ

The Gk functions carry all information regarding phenomena
associated with combinations of spatial derivatives, and can depend
on all unknown potentials in any arbitrary non-linear form. The
purpose of writing the problem in the above form is that the user can
provide any functional form for each of the Gk functions. The functions
Gk, as well as fk, αk, βk, kk and ϕk are the UNIT input parameters, and are
known functions that can assume different forms according to the
type of problem being solved.

The integral transform method involves the choice of eigenvalue
problems that offer the basis for the eigenfunction expansions to be
proposed. Therefore, an alternative form of the equation source terms
can be written by explicitly showing the chosen diffusion and linear
dissipation operators that are present in the auxiliary eigenvalue

problem. Consequently, the modified source terms are defined for the
inclusion of the chosen eigenvalue problem operators:

gk x; t; Tð Þ = Gk x; t;Tð Þ− ∂
∂x kk

∂Tk
∂x

� �
+ dk xð ÞTk: ð3Þ

With the previous definition, the governing PDEs in the initial-
value problem are rewritten as:

wk xð Þ ∂Tk∂t =
∂
∂x kk

∂Tk
∂x

� �
−dk xð ÞTk + gk x; t; Tð Þ: ð4Þ

Then, in order to remove unwanted convergence retardation
effects associated with non-homogeneous terms, a set of filters can be
introduced, based on the following solution representation:

Tk x; tð Þ = Θk x; tð Þ + Fk x; tð Þ: ð5Þ

With the proposed general filtering, a filtered partial-differential
system is obtained:

wk xð Þ ∂Θk

∂t =
∂
∂x kk

∂Θk

∂x

� �
−dkΘk + g�k x; t; Tð Þ; in x0 ≤ x≤ x1; ð6aÞ

αk xð ÞΘk x; tð Þ− −1ð Þnβk xð Þkk xð Þ ∂Θk

∂x = ϕ�
k x; t; Tð Þ; at x = xn; ð6bÞ

Θk x;0ð Þ = f �k xð Þ; in x0 ≤ x≤ x1; ð6cÞ

for n=0,1, where the modified terms are given by:

g�k x; t;Tð Þ = gk x; t;Tð Þ + ∂
∂x kk

∂Fk
∂x

� �
−dk xð ÞFk−wk xð Þ ∂Fk∂t ; ð7Þ

ϕ�
k x; t; Tð Þ = ϕk x; t; Tð Þ−αk xð ÞFk x; tð Þ− −1ð Þnβk xð Þkk xð Þ ∂Fk∂x ; ð8Þ

f �k xð Þ = fk xð Þ−Fk x;0ð Þ: ð9Þ

Using Eqs. (3) and (7), one arrives at the following expression for the
source terms gk* as functions of the user-prescribed functional forms Gk:

g�k x; t;Θð Þ = Gk x; t;Θ + Fð Þ− ∂
∂x kk

∂Θk

∂x

� �
+ dk xð ÞΘk−wk xð Þ ∂Fk∂t ;ð10Þ

whereΘ is the vector with the filtered potentials and F is a vector with
the filtering functions:

Θ = Θ1;…;Θk;…;ΘKð Þ; ð11Þ

F = F1;…; Fk;…; FKð Þ: ð12Þ

3. Eigenvalue problem and transformation pair

The transformation of system (6a)–(6c) is accomplished using a
general Sturm–Liouville eigenvalue problem for obtaining bases of
orthogonal eigenfunctions:

d
dx

kk xð ÞdΨk

dx

� �
+ μ2

kwk xð Þ−dk xð Þ
� �

Ψk = 0; in x0 ≤ x≤ x1; ð13aÞ

αk xð ÞΨk xð Þ− −1ð Þnβk xð Þkk xð ÞdΨk

dx
= 0; at x = xn; ð13bÞ

Nomenclature

C concentration
Cj,n coefficients in semi-analytical integration
D dispersion coefficient
F filter function
f initial condition function
f transformed initial condition function
G prescribed source term
g modified source terms
J number of sub-regions in semi-analytical integration
K total number of governing equations in PDE system
m parameter in semi-analytical integration
q approximation order in semi-analytical integration
T dependent variables

Greek Symbols
μ eigenvalues
Ψ eigenfunctions
Θ filtered dependent variables

Subscripts
k index for different equations and unknowns
n boundary condition parameter

Superscripts
()* filtered quantity
(¯) transformed quantity
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for n=0,1, in which the eigenfunctions are normalized through the
following integrals:

∫
x1

x0
wk xð ÞΨ̃k;i xð ÞΨ̃k; j xð Þdx = δi;j; for k = 1;…K; ð14aÞ

where i and j are integers, δi, j is the Kronecker delta function, and the
normalized eigenfunctions are written as:

Ψ̃k;i xð Þ = Ψk;i xð Þ
N1=2
k;i

; ð14bÞ

and the normalization integral is given by:

Nk;i = ∫
x1

x0
wk xð ÞΨ2

k;i xð Þdx: ð14cÞ

Based on the orthonormality relations (14c), an integral transform
pair is defined for each of the dependent variables:

Θk;i tð Þ = ∫
x1

x0
wk xð ÞΘk x; tð ÞΨ̃k;i xð Þdx; ð15aÞ

Θk x; tð Þ = ∑
∞

i=1
Θk;i tð ÞΨ̃k;i xð Þ; ð15bÞ

in which the eigenfunctions Ψk, i(x)=Ψk(x,μk, i) are obtained from
solving Eqs. (13a)–(13b).

4. Integral transformation

Using the integral transform operators, defined in Eq. (15a), the
filtered problem is transformed, leading to the following system of
ODEs:

dΘk;i

dt
= −μ2

k;iΘk;i tð Þ + b�k;i t;Θð Þ + g�k;i t;Θð Þ; ð16aÞ

Θk;i 0ð Þ = f �k;i; ð16bÞ

for k=1,…,K. The quantities b�k;i, g
�
k;i and f �k;i are given by:

b�k;i t;Θð Þ = − ϕ�
k x; t;Θð Þ −1ð Þn Ψ̃k;i xð Þ + kk xð ÞΨ̃′

k;i xð Þ
αk xð Þ + βk xð Þ

" #x1
x0

; ð17Þ

g�k;i t;Θð Þ = ∫
x1

x0
g�k x; t;Θð ÞΨ̃k;i xð Þ dx; ð18Þ

f �k;i = ∫
x1

x0
wk xð Þf �k xð ÞΨ̃i;k xð Þ dx; ð19Þ

where the functions g�k;i, are calculated from the original Gk functions
through the relation:

g�k;i t;Θð Þ = ∫
x1

x0
Gk x; t;Θ + Fð Þ + wk xð Þ ∑

∞

j=1
μ2
k; jΘk; j

Ψ̃k; j xð Þ−∂Fk
∂t

 ! !
Ψ̃k;i xð Þdx;

ð20Þ

in which F is given by Eq. (12) and the components ofΘ depend on the
transformed potentials through the inversion relations (15b), such
that:

Θ = ∑
∞

i=1
Θ1;i tð ÞΨ̃1;i xð Þ;…; ∑

∞

i=1
Θk;i tð ÞΨ̃k;i xð Þ;…; ∑

∞

i=1
ΘK ;i tð ÞΨ̃K;i xð Þ

� �
:

ð21Þ

If the functional dependence of the input source term Gk requires
the evaluation of spatial derivatives, this is accomplished through the
following relation:

∂nΘk

∂xn = ∑
∞

i=1
Θk;i tð Þd

n Ψ̃k;i

∂xn : ð22Þ

In order to solve system (16a)–(16b), the summations are truncated
to a finite number of terms N (termed the truncation order), and
numerically solved by an ODE solver with user-prescribed precision
control. For the results calculated in this work theMathematica function
NDSolve was employed for this purpose. Once system (16a)–(16b) is
solved, the original potentials can be recovered using thefilter functions
and inversion formula, leading to the relation:

Tk x; tð Þ = Fk x; tð Þ + ∑
∞

j=1
Θk;j tð ÞΨ̃k;j xð Þ: ð23Þ

5. Semi-analytical integration

The calculation of the functions g�k;i and f
�
k;i require the computa-

tion of integrals involving the eigenfunctions. On a few occasions,
some of these could be evaluated analytically; however, often this is
not the case and numerical integration is usually required. The use of a
general-purpose numerical integration scheme can present some
drawbacks, especially for larger eigenvalues due to the highly
oscillatory nature of the eigenfunctions. Therefore, in order to offer
an alternative, a semi-analytical integration approximation scheme is
proposed. Noting that the evaluation of g�k;i and f

�
k;i is accomplished by

calculating integrals in the form

∫
x1

x0
h x; tð ÞΨi dx; ð24Þ

where h can be any continuous function, the following approximation
is proposed:

∫
x1

x0
h x; tð ÞΨi dx≈ ∑

J

j=1
∫

x̂j

x̂j−1

ĥj x; tð ÞΨi dx; ð25Þ

where J is the number of sub-regions and x0 and x1 are related through
x̂j by:

x0 = x̂0; x1 = x̂J ; ð26Þ

In the above relations, each of the ĥj functions is a polynomial
approximation of h within an interval x̂j ≤ x≤ x̂j + 1, that is:

ĥj x; tð Þ = ∑
q

m=0
Cj;m tð Þxm; ð27Þ

where the Cj,m(t) coefficients are calculated according to the type of
approximation used, and q is the order of the approximation.
Naturally, this integration alternative considers that the integrals of
xmΨ̃ xð Þ can be analytically evaluated. This semi-analytical integration
scheme is thus aimed at providing an analytical evaluation of the
oscillatory behavior of the eigenfunctions within each sub-interval,
thereby avoiding excessive refinement required by the automatic
numerical integration routines.

6. Results and discussion

After introducing the UNIT algorithm, the associated computational
code implemented using mixed symbolical-numerical computation
provided by theMathematica system [11] is now demonstrated. Results
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for selected test-cases were obtained and compared with previous data
from the literature.

6.1. Non-linear Burgers equation

The first example involves the solution of the non-linear Burgers
equation with Dirichlet boundary conditions, as given by [4]:

∂T
∂t + u0 + bTð Þ ∂T∂x = ν

∂2T
∂x2

; in 0≤ x≤ 1; ð28aÞ

T 0; tð Þ = 1 and T 1; tð Þ = 0; for t N 0; ð28bÞ

T x;0ð Þ = 1; for 0≤ x≤ 1: ð28cÞ

This problem corresponds to defining the UNIT solution parameters
as:

K = 1; x0 = 0; x1 = 1; ð29aÞ

Gk = ν
∂2Tk
∂x2

− u0 + bTkð Þ ∂Tk∂x ; ð29bÞ

αk 0ð Þ = 1; βk 0ð Þ = 0; ϕ 0; t; Tð Þ = 1; ð29cÞ

αk 1ð Þ = 1; βk 1ð Þ = 0; ϕk 1; t; Tð Þ = 0; ð29dÞ

fk xð Þ = 1; kk xð Þ = 1; wk xð Þ = 1; dk xð Þ = 0: ð29eÞ

A user-defined filter is used for this problem, being the solution of
the steady-state linear version of the problem:

Fk x; tð Þ = e−ex

e−1
: ð30Þ

This problem is solved for typical values of the governing parameters
(u0=1.0; b=0.5 and 5.0; ν=1.0), at t=0.1 and t=0.5, where the
increase in the parameter b is offered to enhance the non-linear effect in
the formulation. Tables1–4 illustrate thebehavior of theUNIT solution, for
N=30 terms in the eigenfunction expansion, and a gradually increasing
number of sub-regions for the semi-analytical integration approximation
(J=60, 120, and 240). Also, three levels of function approximation for the
calculation of integrals were considered: 0th, 1st and 2nd order
polynomial forms. A comparison of the results for different values of J
and different approximation levels are employed for demonstrating the
adequacy of the unified algorithm introduced in the present work. The
results calculatedwith no integration approximation (fully analytical) are
displayed for evaluating the precision of the semi-analytical approxima-

tions, and the results already reported in [4], corresponding to the GITT
solution also with N=30 (with fully analytical integration), are included
for verification purposes. A column with error estimates provided by the
UNIT code is also presented, retaining the last three terms in the
eigenfunction expansions. As can be seen, the UNIT resultswith analytical
integration reconfirm the previously reported data.

When comparing the results from the approximate integration
schemewith those obtained with exact analytical formulas, one notices
that, for zeroth-order approximations, significant discrepancies can
occur. Differences are generally seen in the second or third significant
figure for J=60divisions, and as thenumber of sub-regions is increased,
a slow improvement is seen. In spite of the poor precision seen in
zeroth-order approximations,whenhigher orders are used, a significant
enhancement is achieved. First-order approximations, in general, yield
four accurate digits for J=60, andat leastfivedigits for J=240divisions.
Furthermore,when second-order approximations are used, six accurate
digits can be obtained with only J=60 divisions.

6.2. Non-linear diffusion

The next test-problem is that of non-linear diffusion frequently
encountered in heat conduction with temperature-dependent ther-
mal conductivity [3]. A problem formulation with Neumann and
Dirichlet boundary conditions is selected:

∂T
∂t =

∂
∂x k0 + bTð Þ ∂T∂x
� �

; in 0≤ x≤ 1; ð31aÞ

Table 1
Solution of non-linear Burgers equation with analytical and semi-analytical coefficient
integration for b=0.5, u0=1, t=0.1 and N=30.

x Order J=60 J=120 J=240 Analytical |�| Ref. [4]

0.1 0th 0.983518 0.984064 0.984340 0.984619 4.850×10−6 0.98462
1st 0.984626 0.984620 0.984619
2nd 0.984619 0.984619 0.984619

0.3 0th 0.928904 0.930651 0.931536 0.932430 8.325×10−7 0.93243
1st 0.932450 0.932435 0.932431
2nd 0.932430 0.932430 0.932430

0.5 0th 0.812347 0.815009 0.816358 0.817720 3.775×10−7 0.81772
1st 0.817744 0.817726 0.817721
2nd 0.817720 0.817720 0.817720

0.7 0th 0.588812 0.591401 0.592712 0.594034 3.980×10−6 0.59403
1st 0.594050 0.594038 0.594035
2nd 0.594035 0.594034 0.594034

0.9 0th 0.228736 0.229856 0.230421 0.230991 3.561×10−5 0.23099
1st 0.230993 0.230991 0.230991
2nd 0.230991 0.230991 0.230991

Table 2
Solution of non-linear Burgers equation with analytical and semi-analytical coefficient
integration for b=0.5, u0=1, t=0.5 and N=30.

x Order J=60 J=120 J=240 Analytical |�| Ref. [4]

0.1 0th 0.950191 0.950257 0.950291 0.950325 7.141×10−7 0.95032
1st 0.950324 0.950324 0.950325
2nd 0.950325 0.950325 0.950325

0.3 0th 0.825596 0.825764 0.825849 0.825935 9.457×10−7 0.82593
1st 0.825933 0.825934 0.825935
2nd 0.825935 0.825935 0.825935

0.5 0th 0.659742 0.659939 0.660038 0.660137 2.464×10−7 0.66014
1st 0.660134 0.660137 0.660137
2nd 0.660137 0.660137 0.660137

0.7 0th 0.442458 0.442593 0.442660 0.442728 1.886×10−6 0.44273
1st 0.442724 0.442727 0.442728
2nd 0.442728 0.442728 0.442728

0.9 0th 0.164231 0.164260 0.164274 0.164287 6.696×10−6 0.16429
1st 0.164285 0.164287 0.164287
2nd 0.164287 0.164287 0.164287

Table 3
Solution of non-linear Burgers equation with analytical and semi-analytical coefficient
integration for b=5, u0=1, t=0.1 and N=30.

x Order J=60 J=120 J=240 Analytical |�| Ref. [4]

0.1 0th 0.998064 0.998288 0.998398 0.998506 8.520×10−6 0.99851
1st 0.998511 0.998507 0.998506
2nd 0.998506 0.998506 0.998506

0.3 0th 0.986524 0.987751 0.988362 0.988972 3.935×10−6 0.98897
1st 0.989000 0.988979 0.988974
2nd 0.988972 0.988972 0.988972

0.5 0th 0.940970 0.944309 0.946001 0.947708 1.191×10−6 0.94771
1st 0.947760 0.947721 0.947711
2nd 0.947709 0.947708 0.947708

0.7 0th 0.782269 0.787697 0.790467 0.793276 9.435×10−6 0.79328
1st 0.793277 0.793276 0.793276
2nd 0.793277 0.793276 0.793276

0.9 0th 0.349018 0.351644 0.352955 0.354263 5.931×10−5 0.32646
1st 0.354163 0.354238 0.354256
2nd 0.354263 0.354263 0.354263
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∂T
∂x jx=0

= 0 and T 1; tð Þ = 0; for t N 0; ð31bÞ

T x;0ð Þ = 1; in 0≤x≤1: ð31cÞ

This corresponds to defining the UNIT solution parameters as:

K = 1; x0 = 0; x1 = 1; ð32aÞ

Gk =
∂
∂x k0 + bTkð Þ ∂Tk∂x

� �
; ð32bÞ

αk 0ð Þ = 0; βk 0ð Þ = 1; ϕk 0; t; Tð Þ = 0; ð32cÞ

αk 1ð Þ = 1; βk 1ð Þ = 0; ϕk 1; t; Tð Þ = 0; ð32dÞ

fk xð Þ = 1 kk xð Þ = 1; wk xð Þ = 1; dk xð Þ = 0: ð32eÞ

This problem is solved using the same UNIT code implementation
used for the previous problem, the only modification being the
previously indicated solution parameters. Tables 5 and 6 display the
calculated solution for b=5 and k0=1 in different instants (t=0.1
and t=0.5), using fully analytical integration as well as the semi-
analytical approximations. No filter was used for this case. Zeroth,
first, and second-order approximations were used and different
numbers of sub-regions J. As observed for the solution of Burgers
equation, as naturally expected, the higher order approximations
outperform the lower order ones, and, as the number of sub-regions is

increased the results gradually converge to the analytical integration
ones [3]. Nevertheless, when compared to the presented solution of
Burgers equation, one sees that only the second-order approximation
with 240 sub-regions matches the fully analytical integration with all
six digits. For larger times (t=0.5), a performance improvement is
seen, with the second-order approximation matching all six digits
obtained with the fully analytical integration for120 sub-regions. For
these larger instants, the first-order approximations present as much
as 5 digits in agreement with the analytical integration results.

6.3. Radionuclides decay chain

The next example deals with the verification of object oriented
numerical codes for systems of convection-diffusion equations in
specific applications. In order to simulate the transport of radio-
nuclides decay chains in soils, one must solve the coupled system of
transport equations for each species in the chain for the hydrologic
and geochemical conditions of the specific site being considered.
Several powerful and well-tested simulation tools are publicly or
commercially available for this purpose [27,28]. To solve the
radionuclide transport problem, one-dimensional transient advec-
tion-diffusion equations are assumed for each of the k=1,…,K
species in the radionuclide decay chain. The governing transport
equations for the individual species are given by:

Rk
∂Ck

∂t + v
∂Ck

∂x = Dk
∂2Ck

∂x2
−μkRkCk x; tð Þ + μk−1Rk−1Ck−1 x; tð Þ; in 0≤ x≤ L

ð33aÞ

where Ck is concentration of each species, t is the time, x is distance, L
is the length of the transport domain, v is the pore-water velocity, Dk

are the dispersion coefficients, Rk are the retardation factors, μk are the
decay rates (μ0=0 for the first radionuclide), and the subscript k
refers to the kth radionuclide in the decay chain. The associated initial
and boundary conditions are:

Ck x;0ð Þ = 0; in 0≤ x≤ L; ð33bÞ

−γkDk
∂Ck

∂x + vCk = vFk tð Þ; for t N 0; ð33cÞ

−Dk
∂Ck

∂x j
x=L

= 0; for t N 0; ð33dÞ

where Fk(t) is the concentration of the kth radionuclide at the inlet.
The boundary conditions at x=0 can be of third (γk≠0) or first type

Table 4
Solution of non-linear Burgers equation with analytical and semi-analytical coefficient
integration for b=5, u0=1, t=0.5 and N=30.

x Order J=60 J=120 J=240 Analytical |�| Ref. [4]

0.1 0th 0.996055 0.996313 0.996440 0.996567 7.215×10−6 0.99657
1st 0.996572 0.996568 0.996567
2nd 0.996567 0.996567 0.996567

0.3 0th 0.976517 0.977762 0.978387 0.979013 3.459×10−6 0.97901
1st 0.979036 0.979019 0.979015
2nd 0.979014 0.979013 0.979013

0.5 0th 0.916242 0.919223 0.920737 0.922267 1.061×10−6 0.92227
1st 0.922299 0.922275 0.922269
2nd 0.922267 0.922267 0.922267

0.7 0th 0.742512 0.746756 0.748915 0.751099 8.59×10−6 0.075110
1st 0.751070 0.751092 0.751097
2nd 0.751099 0.751099 0.751099

0.9 0th 0.323039 0.324768 0.325620 0.326462 5.517×10−5 0.32646
1st 0.326367 0.326439 0.326456
2nd 0.326462 0.326462 0.326462

Table 5
Solution of non-linear diffusion problem with analytical and semi-analytical coefficient
integration for b=5, k0=1, t=0.1 and N=30.

x Order J=60 J=120 J=240 Analytical |�| Ref. [3]

0.1 0th 0.578446 0.580004 0.580766 0.581349 3.29618×10−5 0.58135
1st 0.581724 0.581445 0.581373
2nd 0.581639 0.581355 0.581349

0.3 0th 0.544484 0.546195 0.547050 0.547755 3.52761×10−5 0.54775
1st 0.548132 0.547851 0.547779
2nd 0.548036 0.547760 0.547755

0.5 0th 0.473515 0.475509 0.476524 0.477428 6.62344×10−5 0.47743
1st 0.477809 0.477525 0.477452
2nd 0.477691 0.477433 0.477428

0.7 0th 0.356648 0.359007 0.360233 0.361397 9.11878×10−5 0.36140
1st 0.361784 0.361496 0.361422
2nd 0.361628 0.361402 0.361397

0.9 0th 0.165206 0.167667 0.168996 0.170351 1.40232×10−3 0.17035
1st 0.170726 0.170447 0.170375
2nd 0.170527 0.170355 0.170351

Table 6
Solution of non-linear diffusion problem with analytical and semi-analytical coefficient
integration for b=5, k0=1, t=0.5 and N=30.

x Order J=60 J=120 J=240 Analytical |ε| Ref. [3]

0.1 0th 0.121602 0.122682 0.123230 0.123761 2.92098×10−6 0.12376
1st 0.123843 0.123782 0.123766
2nd 0.123799 0.123762 0.123761

0.3 0th 0.112224 0.113268 0.113797 0.114312 3.25075×10−6 0.11431
1st 0.114389 0.114331 0.114316
2nd 0.114348 0.114312 0.114312

0.5 0th 0.093269 0.094215 0.094696 0.095165 6.05455×10−6 0.09516
1st 0.095232 0.095182 0.095169
2nd 0.095196 0.095166 0.095165

0.7 0th 0.064272 0.065015 0.065394 0.065765 9.7277×10−6 0.06576
1st 0.065814 0.065777 0.065768
2nd 0.065787 0.065765 0.065765

0.9 0th 0.024409 0.024748 0.024921 0.025093 1.50625×10−4 0.02509
1st 0.025114 0.025098 0.025094
2nd 0.025102 0.025093 0.025093
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(γk=0), while at the exit boundary conditions are in general of
second type.

The user-defined data for this problem are given by:

Gk = Dk
∂2Ck

∂x2
−v

∂Ck

∂x −μkRkCk x; tð Þ + μk−1Rk−1Ck−1 x; tð Þ
 !

=Rk; ð34aÞ

αk 0ð Þ = v; βk 0ð Þ = 0; ϕk 0; t; Tð Þ = vFk tð Þ; ð34bÞ

αk 0ð Þ = 0; βk 0ð Þ = 1; ϕk 0; t; Tð Þ = 0; ð34cÞ

fk xð Þ = 0; kk xð Þ = 1; wk xð Þ = 1; dk xð Þ = 0; : ð34dÞ

The UNIT algorithm was tested against two previously developed
codes for radionuclides decay chains: theCHAINcode of [27] and the LBL
(Lawrence Berkeley Laboratory) computer code of [28]. Solutions
employed in these codes were derived using the Laplace transform
technique as applied to semi-infinite media. The LBL code deals with
purely advective transport (no dispersion) of radionuclides in saturated
semi-infinite media to allow for explicit analytical inversion of the
Laplace transforms. We consider here the three element LBL chain
example formed by U234, Th230, and Ra226. The following parameter
values were used: D = 50m2/year, v=1m/year, R1=120, R2=1500,
R3=300, μ1=2.806×10−6 year−1, μ2=8.664×10−6 year−1, and
μ3=4.332×10−4 year−1. The normalized concentrations at boundary
x=0 are given by F1=1, F2=1, and F3=10. Numerical results were
obtained for the same time values (10 and 1000 years) as used by [28],
whilewe used a domain length L=120m to avoid any effects of the exit
boundary.

Table 7 illustrates the convergence behavior of the eigenfunction
expansion for U234 at t=1000 years. The selected truncation orders
were N=25, 50 and 75, while different numbers of sub-domains in
the first-order semi-analytical integration were critically analyzed
( J=75, 150, and 225). Convergence is overall very satisfactory,
yielding around five converged significant digits in the results in
comparison to the analytical integration GITT results reported in [29],
with N=150 terms in the expansions. One may observe the relatively
small gain in precision achieved in the last set of results while
increasing the truncation order to N=75 and the semi-analytical sub-
domains number to J=225. The GITT is then seen to be precise in
predicting concentrations that are orders-of-magnitude smaller than
those at the origin.

Finally, in order to illustrate the effect of using different
approximation orders in the semi-analytical integration scheme,
simulation results are performed for zeroth, first and second orders, as
well as for different number of sub-regions, as depicted in Table 8.
These results were obtained for t=1000 years and N=40 terms. As
can be seen, the convergence is generally better for positions near
x=0; however, there seems to be no effect of the position on the
solution convergence with the number of sub-regions ( J) nor with the

order of approximation. By further examining the data, one notices
that only the 2nd order approximationmatches the solutionwith fully
analytical integration; as a matter of fact, on some instances this
occurs for as little as J=80 divisions, thereby showing the superiority
of this approximation over the other orders.

7. Conclusions

This paper presented a unified algorithm for solving partial-
differential systemsusing theGeneralized Integral TransformTechnique
(GITT). The UNified Integral Transforms (or simply UNIT) approach, as
implied by the coined acronym,was thus developed for handling awide
class of partial-differential problems in a unified way. This was
accomplished by first grouping all spatial operators into a single source
term. The main advantage of such approach is that a great part of the
integral transformation process is carried out in one single operation.
Second, this integral transformation is handled through a semi-
analytical integration scheme,whichpreserves the analytical evaluation
of the oscillatory eigenfunctions integrals, and provides a flexible and
cost-effective alternative to automatic numerical integration routines.
Finally, the mixed symbolic-numerical implementation takes the
advantage of the analytical nature of the methodology.
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