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The drag coefficient of a sphere: An approximation using Shanks transform
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An accurate model for the drag coefficient (CD) of a falling sphere is presented in terms of a non-linear rational
fractional transformof the series of Goldstein (Proc. Roy. Soc. London A, 123, 225-235, 1929) toOseen's equation.
The coefficients of the six polynomial terms are improved through a direct fit to the experimental data of
Roos and Willmarth (AIAA J., 9:285-290, 1971). The model predicts CD up to Reynolds number 100,000
with a standard deviation of 0.04. Results are compared with eight different formulations of other authors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The case of a free falling (or rising) sphere with constant velocity in
an unbounded environment is relevant to numerous practical problems.
Many applications in chemical and metallurgical processes, in sediment
transport and deposition in channels and pipes require the specification
of the drag coefficient and the settling velocity of spherical bubbles,
drops or particles.

Unfortunately, the Navier–Stokes (N.–S.) equations do not exhibit
exact solutions for flows around bodies of finite size, for any range of
particle Reynolds number (Rp). At some extreme values of Rp, approxi-
mate analytical methods can be used to derive equations that yield use-
ful approximate solutions. For a spherical particle, these are frequently
limited to Rpb30 (Liao [1]).

In view of the above remarks, expressions for the drag coefficient of
a sphere (CD) with a large interval of application need to be obtained
from empirical or numerical data through regression techniques. The
various approximations quoted in literature vary somewhat in form
(Cheng [2]), but normally are expressed in terms of single power series
expansions on Rp. Piecewise or asymptotically matched small segments
(Almedeij [3]) are also frequently used. Here, an approach is proposed
to determine an empirical expression for the drag coefficient of a sphere
based on Shanks transform [4]. This is a non-linear transform that is
very effective to accelerate the convergence of slowly converging series.

Shanks very early recognized the advantages of working with rational
fractions of higher order provided more than three terms of a power
series are known. For a falling sphere, his proposed 6-term expression
for the drag coefficient based on the first five terms of Goldstein's series
(see Eq. (6) below) agrees well with experiments up to Rp=10. An in-
crease on the number of terms retained by a Shanks transformation
does not improve predictions. For example, a 16-term expression
diverges strongly for Rp>10.

In the presentwork, the generalized transformation of Shanks initially
applied to the 6-term extended solution proposed by Goldstein [5] is
fitted directly to the data of Roos andWillmarth [6]. The resulting rational
fractional formula is valid up to the critical range of Rp, with a standard
deviation of 0.04 based on the difference between the computed and
the reference values.

The expression that results from the data of Roos and Willmarth
[6] is valid in the interval 5.33bRpb118,300. For Rp below this value,
the expression of Shanks [4] should be used. Alternatively, however,
we have considered some extra experimental points extracted from
Brown and Lawler [7] to improve results for low Rp. This other expression
offers slightly higher values of CD for very high Rp numbers.

A comparison between the present results and the different formula-
tions reviewed in Cheng [2] is also presented.

2. The solutions of Stokes and of Oseen

This section briefly reviews the solutions of Stokes [8] and Oseen
[9,10], that have served as a standing block to the solutions of Goldstein
[5] and Shanks [4] (see also Van Dyke [11]).

For very small Rp, Stokes [8] neglected the inertia terms in the N.–S.
equations to find, for a steady streaming motion, the drag expression,
D=6πμUa, where a is the radius of the sphere, U is the free stream
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velocity and μ is the viscosity of the fluid. The corresponding equation
for the drag coefficient is:

CD ¼ D
1=2ð ÞρU2πa2

¼ 24
Rp

; ð1Þ

with Rp (=Ud/v) based on diameter (d=2a) and kinematic viscosity
(v=μ/ρ).

The equations of Stokes have a serious defect since they result in
streamlines that are symmetrical before and after the sphere and
hence shownowake. This effect results from the elimination of vorticity
convection through disregard of the inertia terms.

To find a more general expression for the drag of a sphere, Oseen
[9,10] proposed that a linearized form of the inertia terms should be
kept in the distant field of flow. The Oseen correction to the Stokes
drag coefficient leads to:

CD ¼ 24
Rp

1þ 3
16

Rp

� �
: ð2Þ

Behind a sphere, atRp=1, theflowpattern given byOseen's solution
shows a clearly defined wake, but no evidence of an incipient vortex.
This is not in observancewith experiments and, in fact, for larger values
of Rp, solutions based on perturbation techniquesmust not be expected
to coincide with solutions yielded by the N.–S. equations (Illingworth
[12]).

Nevertheless, the improvement in predictions resulting from the so-
lution of Oseen motivated a series of workers to pursue higher-order
corrections to Eq. (2). As stated by Weisenborn and Bosch [13], such
studies further increase in importance upon the realization that drag es-
timates based on the Oseen approximation are in some cases related to
the results based on the N.–S. equations.

Quoting Stewartson [14], Weisenborn and Bosch [13] mention
that for large Rp, one-third of the Oseen drag on a sphere tends to
the experimental values. The 3:1 ratio between Oseen estimates and
experiments is observed for Rp between 50 and 100,000. Weisenborn
and Bosch [13] also mention that at infinite Rp, CD takes on the value
1.058.

3. Series for the Oseen drag of a sphere

This section shortly reviews the formulations of other authors for
extensions of the Oseen equation.

The models discussed in this section are shown in advance in Fig. 1
so that all theoretical results can be appreciated relatively to each
other. In addition to the solutions of Stokes and Oseen, Fig. 1 illustrates
the models that will be discussed next, the models of Goldstein [5],
Proudman and Pearson [15], Chester and Breach [16], Van Dyke [17]
and Liao [1] as well as the experimental data (black points) of Roos
and Willmarth [6] and the numerical data (small empty circles) of
Chow [18] obtained through an application of Galerkin method to the
full Navier–Stokes equations. Fig. 1 also shows the results obtained by
application of Shanks transformations (6 and 16 terms respectively)
to the solution of Goldstein [5].

Starting with Oseen's equation, Goldstein [5] proposed the drag of
a sphere to be described according to the expression:

CD ¼ 24
Rp

ð1þ 3
16

Rp−
19

1280
R2
p þ

71
20480

R3
p

− 30179
34406400

R4
p þ

122519
550502400

R5
pÞ:

ð3Þ

This series is useful for Rp up to 2, but quickly diverges for Rp larger
than 5. Subsequently, Goldstein (1938) stated that “if the neglected
terms in the equations of motion could be retained, only the first
two terms in the expansion of CD would be unaltered”.

Van Dyke [17] extended Eq. (3) to 24 terms. He also used a linear
fractional transformation to exclude a singularity from the negative
axis of Rp and extend the convergence region of CD to infinity. However,
his solution is only satisfactory to Rp smaller than 5.

Hunter and Lee [19] computed 66 terms of Goldstein's power series.
They show that neither Padé approximants nor a Euler transformation
formed from their solution gives good convergence. The asymptotic be-
havior of CD is suggested to proceed in powers of Rp−2/3. Similar sugges-
tion had already been advanced by Van Dyke [17].

To improve the previous results, some authors have applied pertur-
bation methods directly to the N.–S. equations. Using Stokes variables
for the inner flow and Oseen variables for the outer flow, Kaplun and
Lagerstrom [20] were able to find a composite expansion uniformly
valid in the entire flow domain. Their method, taken up by Proudman
and Pearson [15] leads to:

CD ¼ 24
Rp

1þ 3
16

Rp−
9

160
R2
plnRp

� �
: ð4Þ

A higher-order correction of Eq. (4) was advanced by Chester and
Breach [16],

CD ¼ 24
Rp

1þ 3
16

Rp−
9

160
R2
p lnRp þ γ þ 2

3
ln2−323

360

� �
þ 27
640

R3
plnRp

� �
ð5Þ

where γ is the Euler constant.
Liao [1] notices that Eq. (4) only furnishes good results for Rpb1. In

fact, the radius of convergence of Eq. (5) is shorter than that of Eq. (4).
Using the homotopy analysismethod, Liao [1] proposed a solution to

the problem of a viscous flow past a sphere in a uniform stream. The
method is applied directly to the N.–S. equations and is observed to
give good prediction for Rp up to 30.

4. Rational fractions

Shanks [4] developed a remarkable non-linear operation to trans-
form divergent and slowly convergent series in rational fraction func-
tions with improved convergences. One of the present authors (MDM),

Fig. 1. Comparison between theories and the experimental data of Roos andWillmarth
[6] and the numerical data of Chow [18].
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developed a special Mathematica™ package to construct such nonlinear
transformation.

To establish an accurate approximation to CD from the few terms
of Eq. (3) and increase its range of convergence, a generalized Shanks
transformation can be used with the extra information that the drag
coefficient is finite at infinite Rp.

The Shanks transformation of Goldstein series (Eq. (3)) with 6
polynomial terms gives

CDS
¼

1920 3696þ 1665Rp þ 136R2
p

� �
Rp 295680þ 77760Rp þ 689R2

p

� � : ð6Þ

Eq. (6) follows the correction of Van Dyke [17] up to Rp=10,
plunging next to unphysical values. For larger Rp this equation does
not agree with the data of Roos and Willmarth [6].

A further application of Shanks transformation with 16 polynomial
terms to the series of Goldstein yields a very complex expression (not
shown here). Results, however, are much worse than those provided
by Eq. (6) (Fig. 1).

5. Present proposition

The difficulties illustrated by Fig. 1 have led authors to propose ap-
proximations for the estimation of CD from empirical or numerical data
through regression techniques. Two recent articles by Cheng [2] and
Almedeij [3] review respectively nine and seven different expressions
for the prediction of CD. These are discussed in the next section.

Here, to improve Eq. (6), we fit its coefficients directly to the exper-
imental data of Roos and Willmarth [6] in the range 5.33bRpb118,300,
to obtain

CDP
¼

777 669806=875ð Þ þ 114976=1155ð ÞRp þ 707=1380ð ÞR2
p

� �
646Rp 32869=952ð Þ þ 924=643ð ÞRp þ 1=385718ð ÞR2

p

� � : ð7Þ

Results given by Eq. (7) are shown in Fig. 2. Eq. (7) is based on a
non-linear rational fraction transform of the series of Goldstein
(Eq. (6)), thus establishing a physically meaningful form that can be
used to fit the experimental data. Eq. (7) can be used in the interval
5.33bRpb118,300, with a standard deviation of 0.04.

For low Reynolds numbers, in the range 0.1bRpb10, the expression
of Shanks (1955), Eq. (6), should be used (see Fig. 1). Alternatively,

Eq. (7) can be improved for low Rp, provided that the experimental
data of Brown and Lawler [7] are considered (Fig. 3).

The resulting expression is shown below (Eq. (8)),

CDA
¼

3808 1617933=2030ð Þ þ 178861=1063ð ÞRp þ 1219=1084ð ÞR2
p

� �
681Rp 77531=422ð Þ þ 13529=976ð ÞRp− 1=71154ð ÞR2

p

� � :

ð8Þ

This expression significantly improves the low-Rp results, but fur-
nishes slightly higher results of CD for very large values of Rp. Predictions
furnished by Eqs. (6), (7) and (8) are shown in Fig. 3 and Table 1.

6. Comparison with the CD-expressions of other authors

Eq. (7) here is compared with the expressions reported in Cheng
[2]. These formulas are supposed to be very accurate and valid up to
Rpb105. In addition to his own formulation, Cheng discusses the ex-
pressions originally presented by Almedeij [3], Brown and Lawler
[7], Flemmer and Banks [21], Turton and Levenspiel [22], Concha
and Barrientos [23], Clift et al. [24]. All expressions are presented in
detail in Table 1 of Cheng [2].

The formulas of Cheng [2], Brown and Lawler [7], Clift et al. [24] and
Turton and Levenspiel [22] bear great resemblance. They basically have
the form,

CD ¼ 24
Rp

1þ aRm
p

� �
þ b
1þ cR−n

p
ð9Þ

Fig. 2. Comparison between Eq. (7) the data of Roos and Willmarth [6].

Fig. 3. Behavior of Eqs. (6), (7) and (8) against the data of Roos and Willmarth [6] and
Brown and Lawler [7].

Table 1
Comparison between results provided by Eqs. (6) through (8) and the experimental
data.

Rp Eq. (7) Eq. (8) Eq. (6) Experiments

0.1 269.02 245.85 244.47 242.63
1 28.95 27.35 28.21 27.24
11 4.17 4.20 5.44 4.30
101 1.064 1.023 1.953 1.08
1000 0.5016 0.5155 0.3446 0.478
9620 0.4441 0.4645 0.0390 0.49
100,000 0.5241 0.5055 0.00378 0.467
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where a, b, c, m and n assume different values according to the different
authors.

Concha and Barrientos [23] write

CD ¼ 0:284153
R2
p

1þ δ0
R1=2
p

 !2X5
1

βiRe
i ð10Þ

where δ0 and the βi's are constants adjusted from experimental data.
Flemmer and Banks [21] and Almedeij [3] make respectively

CD ¼ 24
Rp

10α
;α ¼ dRp

p−eRq
p−

f
1þ log2Rp

ð11Þ

CD ¼ 1
φ1 þ φ2ð Þ−1 þ φ−

3 1
þ φ4

" #1=10
; ð12Þ

where, α and functions φi are again determined from the experimental
data.

The formula of Clift et al. [24] consists of ten stepwise approximations.
None of the above expressions consists of a rational fraction, such

as expression (7). To compare the present results with other authors,
we consider the absolute error, CD(literature)−CD(present). Fig. 4 shows
the deviations of Eq. (7) from the other formulations for Rp ranging
from 100 to 100,000. (P.S.: Symbols here are only used to identify the
different curves; they do not show the actual frequency of experimental
data).

Notice that for low Rp, of the ordemof 100, a large disagreement is ob-
serve between all correlations. In general, the formulations of Cheng [2]
and Brown and Lawler [7] are close together and far from those of Clift
et al. [24], Flemmer and Banks [21] and Concha and Barrientos [23]. The
expression of Almedeij [3] has the most distinct behavior, approaching
the correlation of Turton and Levenspiel [22] and the present correlation
for 2.104bRpb6.104.

7. Final remarks

The present work has advanced a rational fraction (Eq. (7)) for the
evaluation of the drag coefficient of a falling sphere that can be used
in applications with Rp in the range 5 to 100,000. An alternative ex-
pression is also proposed, (Eq. (8)), to improve prediction for low
Rp in the interval (0.1, 10).

The basis for Eqs. (7) and (8) is the non-linear operation introduced
by Shanks to transformdivergent and slowly convergent series in rational
fraction functions with improved convergences. Here, a Shanks transfor-
mation is applied directly to the data of Roos andWillmarth [6], to allow
the range of validity of Eq. (7) to be expanded to 100,000.

The proposed expressions are particularly very simple, so as to
make their practical implementation an easy procedure.
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