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The present work advances an analytical approach for conjugated conduction-convection heat transfer prob-
lems, by proposing a single domain formulation for modeling both the fluid stream and the channel wall re-
gions. Making use of coefficients represented as space variable functions with abrupt transitions occurring at
the fluid-wall interface, the mathematical model is fed with the information concerning the transition of the
two domains, unifying the model into a single domain formulation with space variable coefficients. The Gen-
eralized Integral Transform Technique (GITT) is then employed in the hybrid numerical-analytical solution of
the resulting convection-diffusion problem with variable coefficients, and critically compared for two alter-
native solution paths. A test problem is chosen that offers an exact solution for validation purposes, based
on the extended Graetz problem including transversal conduction across the channel walls. The excellent
agreement between approximate and exact solutions demonstrates the feasibility of the approach in han-
dling more involved conjugated problems.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The miniaturization of mechanical equipment such as heat ex-
changers is a subject of major interest in recent years, in light of the
increasing demand on high performance devices and processes with
high thermal efficiency, on sensors with rapid and accurate response,
and on the ever growing need for heat dissipation in electronic de-
vices, which tend to be conceived in even smaller dimensions and
with more powerful data processing capacity.

For conception and design optimization, it is of crucial importance
to employ reliable mathematical models and solution methodologies
capable of describing the physical phenomena that take place in such
micro-systems. Nevertheless, recent contributions have shown signif-
icant discrepancies between experimental results and macro-scale
correlations and simulations [1,2] which may be the result of neglect-
ing terms that are usually not important at the macro-scale, but
whose effects may have significant importance in micro-scale heat
transfer. In order to achieve simulated results with better agreement
against experimental data, a lot of effort is being dispended in the
proposition of models and solution methodologies to deal with fluid
flow and heat transfer in microchannels, such as the consideration
of slip flow in opposition to the classical no-slip condition, the inclu-
sion of terms related to the viscous dissipation and axial diffusion
which are often neglected in macro-scale problems, besides the

investigation of corrugated walls effects in heat transfer enhance-
ment [3–11]. Recently, Nunes et al. [12], motivated by the theoretical
conclusions reached in [13], presented some experimental and theo-
retical results showing the importance of taking into account the heat
conduction within metallic microchannel walls, leading to a conjugat-
ed problem which solution yields results in much better agreement
with the available experimental data. The theoretical approach then
employed was an extension of the work of [14], based on the Gener-
alized Integral Transform Technique (GITT), a hybrid numerical-
analytical technique for the solution of convection-diffusion problems
[15–20], accounting for the longitudinal heat conduction along the
asymmetric walls.

The present work is thus aimed at progressing into the analysis of
conjugated heat transfer in channels, developing and validating a
methodology for the approximate treatment of the conjugated prob-
lem reformulated into a single domain model. Thus, inspired by the
well succeeded approach developed in reference [21] for the solution
of heat conduction problems in heterogeneous media, we propose in
this paper the reformulation of conjugated problems as a single
region model that accounts for the heat transfer at both the fluid
flow and the channel wall regions. By making use of coefficients
represented as space variable functions, with abrupt transitions
occurring at the fluid-wall interface, the mathematical model is fed
with the information concerning the two original domains of the
problem.

For the solution of the proposed mathematical model we again
make use of the Generalized Integral Transform Technique (GITT).
This approach is based on extending the classical integral transform
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method [22], making it sufficiently flexible to handle problems that
are not a priori transformable, such as in the case of problems with ar-
bitrarily space-dependent and nonlinear coefficients in either the
equation or the boundary conditions. In order to validate the approx-
imate solution herein obtained, a test problem was chosen based on
an extended Graetz problem with transversal conduction across the
wall, which results in an exact solution for the conjugated problem
achieved with the Classical Integral Transform Technique (CITT),
here used as a benchmark result. The developed approach is critically
compared for two alternative solution paths. First, we propose the
simplest possible auxiliary problem with constant coefficients to
demonstrate this most flexible solution path via GITT. Then, the
auxiliary problem is formulated by directly applying separation of
variables to the homogeneous version of the original problem so
that all the information concerning the transition of the two domains

is represented by the space variable coefficients of the eigenvalue
problem, which in this case is tackled with the GITT itself.

2. Problem formulation and solution methodology

The problem chosen to illustrate the proposed methodology in-
volves a laminar incompressible internal flow of a Newtonian fluid
between parallel plates, in steady-state and undergoing convective
heat transfer due to a prescribed temperature, Tw, at the external
face of the channel wall. The channel wall is considered to participate
on the heat transfer problem through transversal heat conduction
only. The fluid flows with a known fully developed velocity profile
uf(y), and with an inlet temperature Tin. Fig. 1 depicts a schematic
representation of this problem.

2.1. Single domain formulation

We assume that the flow is dynamically developed and thermally
developing. Then, the formulation of the conjugated problem as a sin-
gle region model that accounts for the heat transfer phenomena at
both the fluid flow and the channel solid wall is achieved by making
use of coefficients represented as space variable functions where the
abrupt transitions occur at the fluid–solid wall interface. The conju-
gated problem is then given by the following single domain formula-
tion with space variable coefficients:

u yð Þwf
∂T y; zð Þ

∂z ¼ k yð Þ ∂
2T
∂z2

þ ∂
∂y k yð Þ ∂T∂y
� �

;0bybyw;z > 0 ð1aÞ

T y; z ¼ 0ð Þ ¼ Tin ð1bÞ

∂T
∂y y¼0 ¼ 0; T y ¼ yw;zð Þ ¼ Tw

��� ð1c;dÞ

where the following space variable functions have been used:

u yð Þ ¼ uf yð Þ; if0bybyi
0; ifyibybyw

�
ð1eÞ

k yð Þ ¼ kf ; if 0bybyi
ks; if yibybyw

�
ð1fÞ

where wf is the heat capacity of the fluid, ks is the thermal conductiv-
ity of the channel wall, kf is the thermal conductivity of the fluid, and
uf(y)is the known parabolic velocity profile of the fully developed
flow. Defining the following dimensionless groups:

Z ¼ z=yw
RePr

¼ z
ywPe

; Y ¼ y
yw

; U ¼ u
4uav

; θ ¼ T−Tin

Tw−Tin
; K ¼ k

kf

Re ¼ uav4yw
ν

; Pr ¼ ν
α
;Pe ¼ RePr ¼ uav4yw

α
; α ¼ kf

wf

ð2Þ

Fig. 1. Schematic representation of the conjugated heat transfer problem.

Nomenclature

u fluid velocity;
T temperature field;
y transversal coordinate;
z longitudinal coordinate;
w heat capacity;
k thermal conductivity;
yw distance from the channel centerline to the external

face of the channel wall;
yi distance from the channel centerline to the internal

face of the channel wall;
Y dimensionless transversal coordinate;
Z dimensionless longitudinal coordinate;
U dimensionless fully developed velocity profile;
θ dimensionless temperature field;
K dimensionless thermal conductivity;
Pe Péclét number;
Nu Nusselt number;
N Truncation order of the temperature field expansions;
M Truncation order of the auxiliary problem, Eqs. (14a,b)

Greek letters
ψ eigenfunction of the constant coefficients eigenvalue

problem;
ξ eigenfunction of the space variable coefficients eigen-

value problem;
Ω eigenfunction of the auxiliary problem corresponding

to the variable coefficients eigenvalue problem;
ϕ eigenfunction of the exact solution;
μ, β, λ, γ eigenvalues corresponding to ψ, ξ, Ω and ϕ,
respectively;

Subscripts & Superscripts
i, n order of eigenquantities
– integral transform
~ normalized eigenfunction
* filtered temperature field
s quantity corresponding to the solid region (channel

walls)
f quantity corresponding to the fluid flow region
in quantity corresponding to the entrance of the channel

(Z=0)
w quantity corresponding to the external face of the

channel wall
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we obtain the dimensionless formulation of this problem

U Yð Þ ∂θ Y; Zð Þ
∂Z ¼ K Yð Þ

Pe2
∂2θ
∂Z2 þ

∂
∂Y K Yð Þ ∂θ∂Y
� �

; 0bYb1; Z > 0 ð3aÞ

θ Y; Z ¼ 0ð Þ ¼ 0 ð3bÞ

∂θ
∂Y

�����
Y¼0

¼ 0; θ Y ¼ 1; Zð Þ ¼ 1 ð3c;dÞ

where

U Yð Þ ¼ Uf Yð Þ; if 0bYbYi ¼ yi=yw
0; if YibYb1

�
ð3eÞ

K Yð Þ ¼ 1; if 0bYbYi ¼ yi=yw
ks=kf ; if YibYb1

�
ð3fÞ

To improve the computational performance of the formal solutions
to be derived below, it is recommended to reduce the importance of
the boundary source terms, so as to enhance the eigenfunction expan-
sions convergence behavior [18]. One possible approach for achieving
this goal is the proposition of analytical filtering solutions, and in this
work the proposed filter is just the temperature at the external wall,
as represented in the following expression:

θ Y; Zð Þ ¼ 1þ θ� Y ; Zð Þ ð4Þ

The filtered problem is thus rewritten by substituting Eq. (4) into
Eqs. (3a)–(3f).

For validation purposes, in order to obtain a problem that still of-
fers a fairly simple exact solution, we neglect the axial conduction
term in Eq. (3a), which is a feasible assumption for this problem
when dealing with high Péclét numbers and walls with a low thermal
conductivity, such as micro-channel walls made of polymeric mate-
rials. The following equations provide the filtered problem formula-
tion when the axial conduction term is neglected:

U Yð Þ ∂θ
� Y; Zð Þ
∂Z ¼ ∂

∂Y K Yð Þ ∂θ
�

∂Y

� �
; 0bYb1; Z > 0 ð5aÞ

θ� Y; Z ¼ 0ð Þ ¼ θ�Z¼0 ¼ −1 ð5bÞ

∂θ�

∂Y

�����
Y¼0

¼ 0;θ� Y ¼ 1;Zð Þ ¼ 0 ð5c;dÞ

Two alternatives for handling problem (5) above via integral
transforms are now more closely considered. The first methodology
involves the consideration of an auxiliary eigenvalue problem with
constant coefficients, thus without transferring to the eigenfunction
expansion basis the information on the space variation of the original
problem coefficients. Although this could be the simplest and most
flexible solution path when employing the GITT, it is not necessarily
the most effective from the computational point of view, as we shall
examine within the results and discussion section. The second meth-
odology is based on considering the auxiliary eigenvalue problem
with all the information on the space variable coefficients, as obtained
from applying separation of variables to the homogeneous version of
the originally posed problem. In this case, the GITT itself must eventu-
ally be employed in the solution of the proposed eigenvalue problem,
but may also result in marked simplification of the following steps in
the solution methodology, with an overall gain in convergence rates
and computational efficiency, as we shall later on discuss.

2.2. Solution with constant coefficients eigenvalue problem

Following the GITT formalism, the transform/inverse pair for solv-
ing problem (5) with a constant coefficients eigenvalue problem is
defined as follows:

transform : �θ�n Zð Þ ¼ ∫
1

0

~ψn Yð Þθ� Y; Zð ÞdY ð6aÞ

inverse : θ� Y ; Zð Þ ¼
X∞
n¼1

~ψn Yð Þ�θ�n Zð Þ ð6bÞ

where

~ψn Yð Þ ¼ ψn Yð Þffiffiffiffiffiffi
Nn

p ;normalized eigenfunctions ð6cÞ

Nn ¼ ∫
1

0

ψ2
n Yð ÞdY;normalization integrals ð6dÞ

where the eigenfunctions ψn(Y) come from the eigenvalue problem
solution, which is here first chosen as the simplest possible auxiliary
problem, to demonstrate this flexible solution path which is very
attractive for implementation in automatic solvers such as the recently
developed UNIT code (UNified Integral Transforms) [23]:

d2ψn Yð Þ
dY2 þ μn

2ψn Yð Þ ¼ 0 ð7aÞ

dψn

dY

�����
Y¼0

¼ 0; ψn Y ¼ 1ð Þ ¼ 0 ð7b; cÞ

Operating Eq. (5a) on with ∫
1

0

~ψn Yð Þ ⋅ð ÞdY , one obtains:

∫
1

0

U Yð Þ ∂θ
�

∂Z
~ψn Yð ÞdY ¼ ∫

1

0

~ψn Yð Þ ∂
∂Y K Yð Þ∂θ

�

∂Y

� �
dY ¼

¼ ∫
1

0

∂
∂Y

~ψn Yð ÞK Yð Þ∂θ
�

∂Y

� �
dY−∫

1

0

d~ψn Yð Þ
dY

K Yð Þ∂θ
�

∂Y dY

ð8aÞ

which can be rewritten as:

∫
1

0

U Yð Þ ∂θ
�

∂Z
~ψn Yð ÞdY ¼ ~ψn Yð ÞK Yð Þ ∂θ

�

∂Y

!1
0

−∫
1

0

d~ψn Yð Þ
dY

K Yð Þ ∂θ
�

∂Y dY ð8bÞ

where

~ψn Yð ÞK Yð Þ ∂θ
�

∂Y Þ10 ¼ 0 ð8cÞ

Thus:

∫
1

0

U Yð Þ ∂θ
�

∂Z
~ψn Yð ÞdY ¼ − ∫

yw

0

d~ψn Yð Þ
dY

k Yð Þ ∂θ
�

∂Y dY ð8dÞ

Using the inverse formula (6b) into Eq. (8d), one obtains:

∫
1

0

U Yð Þ
X∞
m¼1

d�θm
�

dZ
~ψm Yð Þ

" #
~ψn Yð ÞdY ¼ −∫

1

0

d~ψn Yð Þ
dY

K Yð Þ
X∞
m¼1

�θm
� d~ψm Yð Þ

dY

" #
dY

ð8eÞ

which can be rewritten as:

X∞
m¼1

d�θm
�

dZ
∫
1

0

U Yð Þ~ψn Yð Þ~ψm Yð ÞdY ¼ −
X∞
m¼1

�θ�m ∫
1

0

K Yð Þd
~ψn Yð Þ
dY

d~ψm Yð Þ
dY

dY ð8fÞ
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and concisely given in matrix form by:

A
d
˜
�θ�

dZ
¼ −B

˜
�θ� ð9aÞ

where :Anm ¼ ∫
1

0

U Yð Þ~ψn Yð Þ~ψm Yð ÞdY;

Bnm ¼ ∫
1

0

K Yð Þ d
~ψn Yð Þ
dY

d~ψm Yð Þ
dY

dY

ð9b; cÞ

The ordinary differential equations (ODE) system (9) can be ana-
lytically solved to provide results for the transformed temperatures,
upon truncation to a sufficiently large finite order N, in terms of the
matrix exponential function

˜
�θ� Zð Þ ¼ exp −A−1BZ

� �
˜
�θ� 0ð Þ ð10aÞ

where
˜
�θ� 0ð Þ are the transformed initial conditions, given by:

�θ�n 0ð Þ ¼ ∫
1

0

~ψn Yð Þθ�Z¼0dY ð10bÞ

Once the transformed potentials �θ�n Zð Þ, with n=1,2,…,N, have
been computed, the inversion formula can be recalled to yield the
temperature field θ*(Y, Z) representation at any desired position Y
and Z. The original dimensionless temperature field θ(Y, Z) can then
be approximately obtained in analytical form by:

θ Y; Zð Þ ¼ 1þ θ� Y ; Zð Þ ¼ 1þ
XN
n¼1

�θ�n Zð Þ~ψn Yð Þ ð11Þ

2.3. Solution with Variable Coefficients Eigenvalue Problem

In many applications, especially when dealing with inverse or opti-
mization problems, it becomes crucial to adopt a solution methodology
that is both accurate and computationally fast, so as to allow for inten-
sive iterative analyses. In this context, it is desirable that the eigenvalue
problem be chosen in order to contain as much information as possible
about the original problem. The following eigenvalue problem has
been formulated by directly applying separation of variables to problem
(5) so that all the information concerning the transition of the two
domains is represented within the eigenvalue problem, by means of
the space variable coefficients K(Y) and U(Y). Thus,

d
dY

K Yð Þ dζ i Yð Þ
dY

� �
þ βi

2ζ i Yð ÞU Yð Þ ¼ 0 ð12aÞ

dζ i

dY

�����
Y¼0

¼ 0; ζ i Y ¼ 1ð Þ ¼ 0 ð12b; cÞ

Problem (12) does not allow for an explicit analytic solution, but
the GITT itself can be used in order to provide a hybrid numerical-
analytical solution. The GITT is here employed in the solution of
this eigenvalue problem via the proposition of a simpler auxiliary
eigenvalue problem, and expanding the unknown eigenfunctions in
terms of the chosen basis. The chosen auxiliary problem is given by:

d2Ωn Yð Þ
dY2 þ λ2

nΩn Yð Þ ¼ 0 ð13aÞ

dΩn Yð Þ
dY

�����
Y¼0

¼ 0;Ωn Y ¼ 1ð Þ ¼ 0 ð13b; cÞ

The proposed expansion of the original eigenfunction is then given by:

ζ i Yð Þ ¼
X∞
n¼0

~Ωn Yð Þ�ζ i;n; inverse ð14aÞ

�ζ i;n ¼ ∫1

0
ζ i Yð Þ ~Ωn Yð ÞdY ; transform ð14bÞ

The integral transformation of the eigenvalue problem with
space variable coefficients is then performed by operating on
Eq. (5a) with ∫1

0
~Ωn Yð Þ ⋅ð ÞdY , to yield the following algebraic problem

in matrix form [21]:

A−νBð Þ�ζ ¼ 0;with νi ¼ βi
2 ð15aÞ

�ζ ¼ �ζ n;m

n o
;B ¼ Bn;m

n o
;Bn;m ¼ ∫

1

0

U Yð Þ ~Ωn Yð Þ ~Ωm Yð ÞdY ð15b� dÞ

A ¼ An;m

n o
;An;m ¼ ∫

1

0

~Ωm Yð Þ d
dY

K Yð Þ d
~Ωn Yð Þ
dY

 !
dY ¼

¼−∫
1

0

K Yð Þd
~Ωm Yð Þ
dY

d ~Ωn Yð Þ
dY

dY

ð15e; fÞ

The algebraic problem (15a) can be numerically solved to provide re-
sults for the eigenvalues and eigenvectors, upon truncation to a suffi-
ciently large finite order M, and then combined by the inverse
formula (9a) to provide the desired original eigenfunctions.

Once the solution of the eigenvalue problem (12) is made available,
the original problem (5) becomes completely transformable and the
final solution is then obtainable by separation of variables, and given by:

θ Y; Zð Þ ¼ 1þ θ� Y; Zð Þ ¼ 1þ
XN
i¼1

�θ�Z¼0;i exp −β2
i Z

� �
~ξ i Yð Þ

�θ�Z¼0;i ¼ ∫
1

0

U Yð Þ~ξ i Yð Þθ�Z¼0dY

ð16Þ

2.4. Exact Solution

Problem (5) has been here selected for illustration of the method-
ology since a straightforward exact solution can be readily obtained.
For this purpose, the heat transfer problem is then modeled as a con-
duction problem for the solid wall, coupled at the interface Y=Yi
with the internal convective problem for the fluid, as represented
by the following equations:

Solid heat conduction equation:

0 ¼ ∂2θs Y; Zð Þ
∂Y2 ;YibYb1; Z > 0 ð17aÞ

θs Y ¼ 1; Zð Þ ¼ 1 ð17bÞ

Fluid heat convection equation:

Uf Yð Þ ∂θf Y ; Zð Þ
∂Z ¼ ∂2θf

∂Y2 ;0bYbYi;Z > 0 ð17cÞ

θf Y ; Z ¼ 0ð Þ ¼ 0 ð17dÞ

∂θf
∂Y

�����
Y¼0

¼ 0 ð17eÞ
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Interface conditions:

∂θf
∂Y

�����
Y¼Yi

¼ ks
kf

∂θs
∂Y

�����
Y¼Yi

andθf Yi; Zð Þ ¼ θs Yi; Zð Þ ð17f ; gÞ

For the exact solution of the proposed problem, Eqs. (17), we first
consider Eq. (17a) and the boundary conditions given by Eqs. (17b)
and (17g), which readily yield the following expression for the solid
wall temperature distribution:

θs Y ; Zð Þ ¼ 1−
1−θf Yi; Zð Þ

1−Yi
þ 1−θf Yi; Zð Þ

1−Yi
Y ð18Þ

and the boundary condition given by Eq. (17f) can then be rewritten
as:

∂θf
∂Y

�����
Y¼Yi

þ ks
kf

1
1−Yi

θf Yi; Zð Þ ¼ ks
kf

1
1−Yi

ð19Þ

Thus, the problem for the fluid flow region becomes a Graetz type
problem with third kind boundary condition:

Uf Yð Þ ∂θf Y ; Zð Þ
∂Z ¼ ∂2θf

∂Y2 ; 0bYbYi; Z > 0 ð20aÞ

θf Y ; Z ¼ 0ð Þ ¼ 0 ð20bÞ

∂θf
∂Y

�����
Y¼0

¼ 0;
∂θf
∂Y

�����
Y¼Yi

þ ks=kf
1−Yi

θf Yi; Zð Þ ¼ ks=kf
1−Yi

ð20c;dÞ

Problem (20) has an exact analytical solution readily obtainable
by the Classical Integral Transform Technique [16,22] and then the
channel wall region temperature distribution, θs(Y, Z), can be directly
obtained from Eq. (18). This exact solution for the wall and fluid flow
regions will later on be used as a benchmark solution for the valida-
tion of the conjugated problem approximate solutions described in
the previous sections. The exact solution for the fluid flow region is
obtained from the solution of the following eigenvalue problem, for-
mulated by directly applying separation of variables to the homoge-
neous version of problem (20):

d2ϕ Yð Þ
dY2 þ Uf Yð Þγ2ϕ Yð Þ ¼ 0 ð21aÞ

dϕ
dY

�����
Y¼0

¼ 0;
dϕ
dY

�����
Y¼Yi

þ ks=kf
1−Yi

ϕ Yið Þ ¼ 0 ð21b; cÞ

which allows for an analytical solution in terms of hypergeometric
functions that can be readily obtained using the routine DSolve of
the Mathematica platform [6].

2.5. Nusselt Number Calculation

The main interest in convective heat transfer analysis is often to
determine the local Nusselt number, Nu(Z), to be evaluated here
from both the approximate and the exact solutions. The following

expressions for the local Nusselt number and for the bulk tempera-
ture are then employed:

Nu Zð Þ ¼ − 1
θav Zð Þ

∂θ Y; Zð Þ
∂Y

�����
Y¼Yi

; θav Zð Þ ¼
∫
Yi

0

Uf Yð Þθ Y ; Zð ÞdY

∫
1

0

U Yð ÞdY
ð22a;bÞ

In order to avoid the direct evaluation of the derivative ∂θ/∂Y|Y=Yi

when using the approximate solutions, the following alternative inte-
gral balance formula [18] has been used:

∫
Yi

0

U Yð Þ ∂θ∂Z dY ¼ ∫
Yi

0

∂
∂Y

∂θ
∂Y

� �
dY; or

∂θ
∂Y

�����
Y¼Yi

¼ ∫
Yi

0

U Yð Þ ∂θ∂Z dY ð24a;bÞ

3. Results and Discussion

Fig. 2a,b below illustrate the behavior of the space variable coeffi-
cients that are feeding the single region model in Eq. (3a), U(Y) and
K(Y), as space variable functions where the region from Y=0 to
Y=Yi=0.5 corresponds to the fluid flow domain and the region from
Y=Yi=0.5 to Y=1corresponds to the channelwall. The dimensionless
thermal conductivity has been calculated motivated by an application
with a microchannel made of polyester resin (ks=0.16W/m°C) with
water as the working fluid (kf=0.64W/m°C), so that ks/kf=0.25 [24].

The conjugated problem presented in this work has been
solved using the approximate single region approach described in
Sections 2.1–2.3 and compared to the exact solution of Section 2.4.
Fig. 3a shows the transversal temperature profiles for a few different
longitudinal positions along the flow, Z=0.01, 0.05, 0.1, 0.2, 0.3, 0.5,
0.75, 1.0 and 1.5, for the fluid and the channel wall regions obtained
with the solution with the constant coefficients eigenvalue problem
described in Section 2.2, with N=20 terms as the truncation order.
In these results it can be observed the excellent agreement between
the approximate and exact solutions, which are essentially coincident
to the graph scale. In Fig. 3b it can be seen the temperature evolution
at the centerline of the channel (Y=0) for Z=0 up to 1.6, again using
the single domain approach with constant coefficients eigenvalue
problem, and it also shows the Graetz problem solution with first
kind boundary condition, which is a simplification of this problem
when the wall thermal resistance is neglected. In this test case, it
can be concluded that the thermal resistance of the polymeric wall
noticeably delays the increase of the fluid temperature along the flow.

Tables 1a, 1b illustrate the convergence behavior of the tempera-
ture profile for the single domain approach with constant coefficients
eigenvalue problem (Section 2.2), respectively at Z=0.01 and Z=0.05,
for different positions in the fluid flow region. The results are apparently
fully converged to at least three digits for N=50 in all selected posi-
tions. The exact solution results are fully converged to all five digits
shown, which are achieved to within only five terms in the eigenfunc-
tion expansion. One may observe that in all selected positions the
error of the approximate solution with respect to the exact one was
smaller than 1.26%,which occurred at the interface position for Z=0.01.

The approximate solution for the single domain approach with vari-
able coefficients eigenvalue problem, here proposed in Section 2.3, is
also critically examined. First, Table 2 illustrates the excellent conver-
gence behavior of the first 10 eigenvalues associated with the original
problem, Eqs. (12), and Fig. 4 depicts the convergence behavior of the
10th eigenfunction, for different truncation orders in Eq. (14a),
M=10, 12, 14, and 16, where it can be noticed that with only 16
terms the 10th eigenfunction is fully converged to the graph scale.

The comparison of both approximate solutions with the exact so-
lution at Z=0.01 is shown in Table 3, in which the single domain ap-
proach with variable coefficients eigenvalue problem has been
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obtained with M=50 terms in the eigenvalue problem solution and
N=5 terms in the temperature expansion, achieving full conver-
gence to the five digits shown. It can be noticed that the relative
error dropped significantly with the variable coefficients approach,
which is computationally faster and more adequate for inverse and
optimization problems. Fig. 5 finally depicts both the approximate
and the exact computations of the local Nusselt number, where an
excellent agreement can also be observed. It is also clear that the ther-
mal development in the case under consideration, with the establish-
ment of a fully developed asymptotic Nusselt number, is noticeably
delayed with respect to the classical Graetz problem with prescribed
wall temperature (case without wall conjugation). It is also evident
that marked differences between the estimates of Nusselt number,
with and without wall conjugation, can be achieved.

4. Conclusions

A single domain approach has been developed and validated for
the approximate analytical treatment of conjugated heat transfer
problems, here illustrated for laminar thermally developing channel
flow, modeling the heat transfer phenomena at both the fluid flow

and the channel wall regions. By making use of coefficients repre-
sented as space variable functions, with abrupt transitions occurring
at the fluid-channel wall interface, the mathematical model is fed
with the information concerning both domains of the problem. The
chosen test problem has been tackled with the Generalized Integral
Transform Technique (GITT), with both a straightforward constant
coefficients eigenvalue problem and a more elaborate space variable

Fig. 2. a Representation of the space variable coefficients as space variable functions
with the abrupt transition occurring at the interface fluid–solid wall: U(Y).b Represen-
tation of the space variable coefficients as space variable functions with the abrupt
transition occurring at the interface fluid–solid wall: K(Y).

Fig. 3. a Temperature profiles calculated using the single domain approach with con-
stant coefficients eigenvalue problem in comparison with the exact solution.b Compar-
ison of the temperature evolution along the centerline of the channel (Y=0) for Z=0
up to 1.6, using the single domain approach with constant coefficients eigenvalue prob-
lem in comparison with the exact solution and Graetz problem solution with first kind
boundary condition.

Table 1a
Convergence behavior of the temperature profile for the single domain approach with
constant coefficients eigenvalue problem, at Z=0.01, for the fluid flow region.

order Y=0 Y=0.25 Y=0.5

N=10 0.010441 0.041455 0.14716
N=20 0.010389 0.042408 0.14068
N=30 0.010507 0.042456 0.13856
N=40 0.010482 0.042288 0.13754
N=50 0.010500 0.042329 0.13704
Exact solution 0.010413 0.042193 0.13534
Relative error 0.84% 0.32% 1.26%
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coefficients case, in which the auxiliary problem itself is handled by
GITT. An excellent agreement between the approximate and exact so-
lutions was obtained, demonstrating the feasibility of the general ap-
proach herein proposed. It was also observed that the solution path
that accounts for the space variable behavior within the eigenfunc-
tion expansion basis, provides better convergence rates and more ef-
ficient computational performance, in comparison to the solution
with an eigenvalue problem with constant coefficients, and should
in principle be preferred when dealing with more involved conjugat-
ed problems.
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