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UNIFIED INTEGRAL TRANSFORMS ALGORITHM
FOR SOLVING MULTIDIMENSIONAL NONLINEAR
CONVECTION-DIFFUSION PROBLEMS
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The present work summarizes the theory and describes the algorithm related to an

open-source mixed symbolic-numerical computational code named unified integral trans-

forms (UNIT) that provides a computational environment for finding hybrid

numerical-analytical solutions of linear and nonlinear partial differential systems via inte-

gral transforms. The reported research was performed by employing the well-established

methodology known as the generalized integral transform technique (GITT), together with

the symbolic and numerical computation tools provided by the Mathematica system. The

main purpose of this study is to illustrate the robust precision-controlled simulation of multi-

dimensional nonlinear transient convection-diffusion problems, while providing a brief intro-

duction of this open source implementation. Test cases are selected based on nonlinear

multidimensional formulations of Burgers’ equation, with the establishment of reference

results for specific numerical values of the governing parameters. Special aspects in the

computational behavior of the algorithm are then discussed, demonstrating the implemented

possibilities within the present version of the UNIT code, including the proposition of a

progressive filtering strategy and a combined criteria reordering scheme, not previously

discussed in related works, both aimed at convergence acceleration of the eigenfunction

expansions.
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1. INTRODUCTION

Analytic-based approaches for purely diffusive and convection-diffusion
problems, despite the extensive progress achieved by discrete numerical methods,
have been progressively advanced, unified, and further formalized by a few research
groups, in part motivated by offering benchmark results for validation and cali-
bration of numerical schemes. In addition, a number of hybrid analytical-numerical
methodologies have appeared in the open literature, which attempt to combine
classical analytical methods with modern computational tools, in the search for more
accurate, robust and economical options to the nowadays well-established discrete
solution methods. For instance, a hybrid method for solving diffusion and
convection-diffusion problems that has been advanced along more than two decades
is the so-called generalized integral transform technique (GITT) [1–9], based on the
classical integral transform method for linear diffusion problems [10]. This hybrid
approach was developed to overcome barriers posed by different classes of problems
that were before supposed to be tractable solely by discrete-type methods, including
situations involving nonlinear physical properties, moving boundaries, irregular geo-
metries, and nonlinear convective terms, to name a few. The relative merits of such
an approach over purely numerical procedures include the automatic global error
control and the mild increase in computational effort for multidimensional nonlinear
situations. The GITT hence complements the available numerical simulation tools,
either as a companion in co-validation tasks, or as an alternative approach for
analytically oriented users.

NOMENCLATURE

c nonlinear parameter in convection

term

d dissipation operator coefficient

F filtering solution

g nonlinear source term

K diffusion operator coefficient

M number of sub-regions in

semi-analytical or Gaussian

integration

n number of coupled potentials in

general problem (1)

N truncation order in eigenfunction

expansion

t dimensionless time variable

T dimensionless potential in general

problem (1); potential in Burgers’

equation, Eqs. (14) and (15)

u nonlinear function in convection

term

u0 linear parameter in nonlinear

convection term

w transient operator coefficient

x longitudinal coordinate in problems

(14, 15)

x position vector in general problem

(1)

x1, x2, x3 space coordinates in solution (9)

y transversal coordinate in problems

(14, 15)

z transversal coordinate in problems

(14, 15)

a boundary condition coefficient

b boundary condition coefficient

/k source terms in boundary

conditions

h filtered potential

m eigenvalues

n diffusion coefficient in Burgers’

equation

w eigenfunctions

Subscripts & Superscripts

i, m, n, o order of eigenquantities

k quantity corresponding to the

equation of the kth potential

- integral transform

� normalized eigenfunction
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Hybrid methods become even more powerful and applicable when symbolic
manipulation systems, which were also widely disseminated along the last two
decades, are employed. The present algorithm has been implemented within a mixed
symbolic-numerical environment, allowing for a marked reduction on formula deri-
vation and analysis effort while providing integrated algorithms for numerical com-
putations and post-processing analyses. One of the main goals of the current work
comprised an effort to integrate the knowledge of the GITT application into a
symbolical-numerical algorithm named unified integral transforms (UNIT) initially
intended to bridge the gap between simple problems that allow for a straightforward
analytical solution, and more complex and involved situations that almost unavoid-
ably require specialized software systems. The open-source UNIT code is thus an
implementation and development platform for researchers and engineers interested
in solutions of convection-diffusion problems by integral transforms.

This contribution is part of an ongoing project entitled UNIT Project: Hybrid
Methods in Engineering and Multiphysics, which is, in synthesis, a coordinated
effort towards consolidating and constructing computational simulation tools based
on hybrid numerical-analytical methodologies for multiphysics engineering prob-
lems. In this work, the UNIT methodology is demonstrated for nonlinear
multi-dimensional convection-diffusion problems and special aspects on the compu-
tational behavior of the algorithm are discussed, focusing on illustrating the imple-
mented features of the UNIT code in its present form. For instance, a progressive
filtering procedure is formalized, which is applied to the presented test cases, and
critically compared to a more usual Laplacian polynomial filtering. In addition, an
alternative reordering scheme is implemented, based on combining estimates of
the transformed initial conditions and source terms importance, and adding to the
traditional squared eigenvalues criterion, to complement the convergence enhance-
ment tools in the automatic code. Such aspects are then illustrated and critically
discussed as applied to the nonlinear Burgerś equation in three-, two- and
one-dimensional formulations.

2. PROBLEM FORMULATION

In order to unify the classes of problems handled by the formal integral
transforms procedure programmed into the UNIT platform, a transient
convection-diffusion problem of n coupled potentials (for instance velocity, tempera-
ture, and=or concentrations) is considered. These potentials are defined in the region
V, with boundary surface S and including non-linear coefficients and convective
terms, incorporated into the source terms, as follows.

wkðxÞ
qTkðx; tÞ

qt
¼ Gkðx; t;TÞ; x 2 V ; t > 0; k ¼ 1; 2; . . . ; n ð1aÞ

with

Gkðx; t;TÞ ¼ r � KkðxÞrTkðx; tÞð Þ � dkðxÞTkðx; tÞ þ gkðx; t;TÞ ð1bÞ

with initial and boundary conditions given, respectively, by
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Tkðx; 0Þ ¼ fkðxÞ; x 2 V ð1cÞ

akðxÞ þ bkðxÞKkðxÞ
q
qn

� �
Tkðx; tÞ ¼ /kðx; t;TÞ; x 2 S; t > 0 ð1dÞ

where

T ¼ T1;T2; . . . ;Tk; . . . ;Tnf g ð1eÞ

where n denotes the outward-drawn normal to the surface S.
Equation (1) is sufficiently general once all nonlinear and convection terms are

grouped within the equations and boundaries source terms. For linear source terms,
i.e., g� g(x, t), and /�/(x, t), this example becomes a class I linear diffusion prob-
lem according to the classification in reference [10], and exact analytical solutions are
readily available via the classical integral transform technique. Otherwise, this prob-
lem is not a priori transformable, and the ideas in the generalized integral transform
technique [1–9] can be utilized to develop hybrid numerical-analytical solutions, as
now summarized.

3. FORMAL SOLUTION

Following the solution path previously established for convection-diffusion and
purely diffusive nonlinear problems, the formal integral transform solution of the
posed nonlinear problem requires the proposition of eigenfunction expansions for
the associated potentials. The linear situation mentioned above, that allows for an
exact solution via the classical integral transform approach, naturally leads to the
eigenvalue problems to be preferred in the analysis of the nonlinear situation as well.
They appear in the direct application of the separation of variables methodology to
the linear homogeneous purely diffusive version of the above problem. Thus, the
recommended set of uncoupled auxiliary problems is given by the following.

r � KkðxÞrwkiðxÞð Þ þ ½m2kiwkðxÞ � dkðxÞ�wkiðxÞ ¼ 0; x 2 V ð2aÞ

akðxÞ þ bkðxÞKkðxÞ
q
qn

� �
wkiðxÞ ¼ 0; x 2 S ð2bÞ

where the eigenvalues, mki, and related eigenfunctions,wki(x), are assumed to be known
from exact analytical expressions obtainable for instance through symbolic compu-
tation systems [11] or application of computational methods for Sturm-Liouville type
problems [4, 10, 12–15]. In fact, the written form of Eq. (1) already reflects this choice
of eigenvalue problems, Eq. (2), via prescription of the linear coefficients in both the
equations and boundary conditions, since any remaining term is directly incorporated
into the general nonlinear source terms without loss of generality. The problem
indicated by Eq. (2) allows, through the associated orthogonality property of the
eigenfunctions, the definition of the following integral transform pairs.
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TkiðtÞ ¼
Z
V

wkðxÞ~wwkiðxÞTkðx; tÞdV transforms ð3aÞ

Tkðx; tÞ ¼
X1
i¼1

~wwkiðxÞTk;iðtÞ inverses ð3bÞ

where the symmetric kernels ~wwkiðxÞ are given by the following.

~wwkiðxÞ ¼
wkiðxÞffiffiffiffiffiffiffi

Nki

p ; Nki ¼
Z
V

wkðxÞw2
kiðxÞdv ð3c; 3dÞ

with Nki being the normalization integral.
The integral transformation of Eq. (1a) is accomplished by applying the

operator
R
V
~wwkiðxÞ �ð ÞdV and making use of the boundary conditions given by

Eqs. (1d) and (2b), yielding the following:

dTkiðtÞ
dt

þ m2kiTkiðtÞ ¼ �ggkiðt;TÞ þ �bbkiðt;TÞ; i ¼ 1; 2; . . . ; t > 0; k ¼ 1; 2; . . . ; n

ð4aÞ

where the transformed source term �ggkiðt;TÞ is due to the integral transformation of

the equation source term, and the other, �bbkiðt;TÞ, is due to the contribution of the
boundary source term.

�ggkiðt;TÞ ¼
Z
V

~wwkiðxÞgkðx; t;TÞdv;

�bbkiðt;TÞ ¼
Z
S

KkðxÞ ~wwkiðxÞ
qTkðx; tÞ

qn
� Tkðx; tÞ

q~wwkiðxÞ
qn

" #
ds ð4bÞ

The boundary conditions contribution may also be expressed in terms of the
boundary source terms, after manipulating Eqs. (1d) and (2b), to yield the following.

�bbkiðt;TÞ ¼
Z
S

/kðx; t;TÞ
~wwkiðxÞ � KkðxÞ q

~wwkiðxÞ
qn

ak xð Þ þ bk xð Þ

" #
ds ð4cÞ

The initial conditions given by Eq. (1c) are transformed through the operatorR
v wkðxÞ~wwkiðxÞ �ð Þdv, to provide the following.

Tkið0Þ ¼ �ffki �
Z
V

wkðxÞ~wwkiðxÞfkðxÞdv ð4dÞ

Equation (4) forms an infinite coupled system of nonlinear ordinary differential

equations for the transformed potentials, Tk;iðtÞ; which is unlikely to be analytically
solvable. Nevertheless, reliable algorithms are readily available to numerically
handle this ODE system, after truncation to a sufficiently large finite order. The
Mathematica system [11] provides the routine NDSolve for solving stiff ODE systems
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such as the one here obtained, under automatic absolute and relative error control.
Once the transformed potentials have been numerically computed, the Mathematica
routine automatically provides an interpolating function object that approximates
the t variable behavior of the solution in a continuous form. Then, the inversion
formula can be recalled to yield the potential field representation at any desired
position x and time t (or equivalent space coordinate).

4. PROGRESSIVE FILTERING SCHEME

The formal solution above derived provides the basic working expressions for
the integral transform method. However, for an improved computational perfor-
mance, it is always recommended to reduce the importance of the equation and
boundary source terms so as to enhance the eigenfunction expansions convergence
behavior [6].

One possible approach for achieving this goal is the proposition of analytical
filtering solutions, which essentially remove information from the source terms into
a desirably simple analytical expression. Several different alternative filters may be
proposed for the same problem, and the user experience may be helpful in finding
the right combination of analytical involvement and numerical improvement. Thus,
the solution is in general proposed as follows.

Tkðx; tÞ ¼ Fkðx; tÞ þ hkðx; tÞ ð5Þ

Where the variable t is a parameter in the filter proposition, Fk(x, t).
The net effect of the filter is to provide a new filtered problem, with reduced

importance of the original problem source terms, written as follows

wkðxÞ
qhkðx; tÞ

qt
¼ r � KkðxÞrhkðx; tÞ

� �
� dkðxÞhkðx; tÞ þ g�k ðx; t;TÞ; x 2 V ; t > 0

ð6aÞ

Where the filtered equation source term is given by the following.

g�kðx; t;TÞ ¼ gkðx; t;TÞ þ r � KkðxÞrFkðx; tÞ
� �

� dkðxÞFkðx; tÞ � wkðxÞ
qFkðx; tÞ

qt
ð6bÞ

with initial and boundary conditions,

hkðx; 0Þ ¼ f �k ðxÞ ¼ fkðxÞ � Fkðx; 0Þ; x 2 V ð6cÞ

akðxÞhkðx; tÞ þ bkðxÞKkðxÞ
qhkðx; tÞ

qn
¼ /�

kðx; t;TÞ; x 2 S ð6dÞ

Where the filtered boundary source term is rewritten as follows.

/�
kðx; t;TÞ ¼ /kðx; t;TÞ � akðxÞFkðx; tÞ � bkðxÞKkðxÞ

qFkðx; tÞ
qn

ð6eÞ
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Thus, the previously established formal solution is directly applicable to the
above filtered problem given by Eq. (6) once the initial conditions, the filtered equa-
tion, and boundary source terms have been adequately substituted.

The UNIT code allows for different choices of filtering solutions, either user
provided or automatically determined from the symbolic computation feature of
the Mathematica system. For instance, in the one-dimensional situation, the simplest
possible filtering solution is written as a linear function in the space variable that
simultaneously satisfies both boundary conditions, i.e.,

Fkðx; tÞ ¼ a1;kðtÞxþ a0;kðtÞ ð7Þ

For second kind boundary conditions on both sides, one may just multiply the two
terms in the above filter expression by x, in order to allow for satisfaction of both
prescribed derivatives.

For the two- and three-dimensional cases the definition of such a simple gen-
eral function that homogenizes all four or six boundary conditions simultaneously
becomes less trivial, although still feasible, for instance, through multiplication
and combination of powers of the independent variables. Since the filtering of the
boundary conditions is a very important step in enhancing the convergence of
solutions obtained by means of GITT, it is quite desirable that the UNIT code offers
an automatic filtering option for multidimensional problems, similarly to the
one-dimensional situation, since the user might not have enough experience to
propose an appropriate specific filtering in such cases.

In this context, an automatic filtering alternative is proposed and implemented
in the UNIT code, known as progressive linear filtering. The basic idea behind the
progressive filtering approach is that two or three-dimensional problems may be par-
tially transformed in each spatial direction successively until all spatial directions
have been transformed. So, it is possible to filter the boundary conditions of the first
spatial direction to be transformed using any simple analytical function that satisfies
both boundary conditions with respect to that spatial direction, and once more, the
simplest possibility is a linear function such as the one given by Eq. (7). Once the first
spatial direction has been integral transformed, it is possible to employ the same pro-
cedure in this first transformed field in order to filter the boundary conditions of the
next spatial direction to be transformed. This successive procedure goes on until all
spatial directions have been transformed. In this case, assuming that one is dealing
with a general three-dimensional problem with space variables x¼ {x1, x2, x3},
bounded by x1, i� x1� x1, f, x2, i� x2� x2, f, and x3, i� x3� x3, f, the eigenfunctions
and weighting functions can be written as follows:

~wwkmnoðxÞ ¼ ~XXkmðx1Þ~nnknðx2Þ~vvkoðx3Þ; wkðxÞ ¼ w1kðx1Þw2kðx2Þw3kðx3Þ ð8a; 8bÞ

where, ~XXkm(x1), w1k(x1); ~nnknðx2Þ, w2k(x2), and ~vvkoðx3Þ, w3k(x3) correspond to the
eigenfunctions and weighting functions in the first, second and third independent
variables and corresponding integral transform pairs, respectively.
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The filtering proposal is then given by the following.

Tkðx; tÞ ¼ F1;kðx1; tÞ þ
X1
m¼1

�FF2;kmðx2; tÞ~XXkmðx1Þ

þ
X1
m¼1

X1
n¼1

��FF�FF 3;kmnðx3; tÞ~XXkmðx1Þ~nnknðx2Þþ

þ
X1
m¼1

X1
n¼1

X1
o¼1

�hhkmnoðtÞ~XXkmðx1Þ~nnknðx2Þ~vvkoðx3Þ ð9aÞ

Which may be rewritten in the more adequate single summation form as follows.

Tkðx; tÞ ¼ Fkðx; tÞ þ
X1
i¼1

�hhkiðtÞ~wwkiðxÞ ð9bÞ

where

Fkðx; tÞ ¼ F1;kðx1; tÞ þ
X1
m¼1

�FF2;kmðx2; tÞ~XXkmðx1Þ þ
X1
m¼1

X1
n¼1

��FF�FF 3;kmnðx3; tÞ~XXkmðx1Þ~nnknðx2Þ

ð9cÞ

Defining the operator Bk as,

Bk �ð Þ � akðxÞ �ð Þ þ bkðxÞKkðxÞ
q �ð Þ
qn

ð9dÞ

Where F1,k(x1;t), �FF2;kmðx2; tÞ, and ��FF�FF3;kmnðx3; tÞ are linear functions (or quadratic in
case of both boundary conditions in that coordinate being of the second kind) that
satisfy the following.

BkF1;kðx1; tÞ ¼ /kðx1; x2; x3; tÞ at x1 ¼ x1;i and x1 ¼ x1;f ð9eÞ

Bk
�FF2;kmðx2; tÞ ¼ �//kmðx2; x3; tÞ at x2 ¼ x2;i and x2 ¼ x2;f ð9f Þ

Bk
��FF�FF3;kmnðx3; tÞ ¼ ��//�//kmnðx3; tÞ at x3 ¼ x3;i and x3 ¼ x3;f ð9gÞ

with

�//kmðx2; x3; tÞ ¼
Zx1;f
x1;i

w1;kðx1Þ~XXmðx1Þ /kðx1; x2; x3; tÞ � BkF1;kðx1; tÞ
� �

dx1 ð9hÞ

��//�//kmnðx3; tÞ ¼
Zy1;f
y1;i

w2;kðx2Þ~nnnðx2Þ �//kmðx2; x3; tÞ � Bk
�FF2;kmðx2; tÞ

� �
dx2 ð9iÞ
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5. COMPUTATIONAL ALGORITHM

The constructed UNIT code in the Mathematica platform [11] encompasses all
of the symbolic derivations that are required in the above GITT formal solution,
besides the numerical computations that are required in the solutions of the chosen
eigenvalue problem and the transformed ODE system. The user essentially needs to
specify the problem formulation, according to Eq. (1) together with the required
problem parameters, solve the problem using the provided UNIT algorithm, and
then choose how to present the results according to the specific needs.

In order to computationally solve the problem defined by Eqs. (1), a straight-
forward general algorithm can be described as follows.

. The user provides the input and problem formulation module, which includes the
equation and boundary condition coefficients in Eq. (1), besides the correspond-
ing source terms, G and /. As the problem is formulated, with particular expres-
sions for wk, Kk, dk, ak, and bk, there is an implicit choice of the eigenvalue
problem then proposed.

. The automatic filtering module is then activated, or the filter is provided as a
problem formulation by the user, to be eventually handled via symbolic compu-
tation. The option of not providing a filtering solution is also allowed, either
because it might not be actually necessary or as a solution strategy to be comple-
mented by the user, such as by an integral balance acceleration a posteriori [6].

. The auxiliary eigenvalue problem (2) is solved for the eigenvalues and related
normalized eigenfunctions, either in analytic explicit form, when applicable, as
obtained for instance by the symbolic routine DSolve [11], after separation of vari-
ables in multidimensional applications, or through the GITT itself [4, 12–15].

. The transformed initial conditions are computed, either analytically (function
Integrate [11]) or with a general-purpose procedure through adaptive numerical inte-
gration (function NIntegrate [11]). Two additional options are here provided to the
user; namely, a semi-analytical evaluation where the analytical integration of the
eigenfunction oscillatory behavior is preserved [16, 17], and a simplified and
cost-effective numerical integration with Gaussian quadrature, automatically exploit-
ing the frequency of oscillation of the eigenfunctions in the choice of subintervals for
integration. Similarly, the transformed source term in the transformedODE system in
Eq. (4a), once not dependent on the transformed potentials, can be evaluated in
advance. For the more general situation of nonlinear coefficients, there are some com-
putational savings in grouping them into a single integrand, as represented in Eq. (4b).
The integration can be obtained analytically, if feasible, or again by the automatic
Gaussian quadrature scheme that accounts for the information regarding the eigen-
functions’ oscillatory behavior. The alternative semi-analytical integration procedure
is also implemented, which is particularly convenient in nonlinear formulations that
might require costly numerical integration. For instance, the integral transformation
of the equation source term would then be evaluated as follows:

�gg�kiðt;TÞ ¼
Z
V

~wwkiðxÞg�kðx; t;TÞdV ¼
XM
m¼1

Z
Vm

~wwkiðxÞĝg�k;mðx; t;TÞdVm ð10Þ
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where ĝg�k;mðx; t;TÞ are simpler representations of the source term, defined in

sub-regions Vm, for which analytical integration of the eigenfunctions is still obtain-
able. The simplest choice would be the adoption of uniform values of the source terms
within the subdomains (zeroth order approximation), but linear and quadratic
representations of the source terms behavior are also implemented [16, 17].

. The truncated ODE system (4) is then numerically solved through the NDSolve
routine of the Mathematica system [11]. In general, such initial value problem
solvers are recommended to work under the automatic selection of a stiff system
situation, such as with the BDF method [11], since the resulting system is likely to
become stiff, especially for increasing truncation orders in the expansion. This
subroutine offers an interesting combination of accuracy control, simplicity in
use, and reliability.

. Once all the intermediate numerical tasks are accomplished within user-prescribed
accuracy, one is left with the need of reaching convergence in the eigenfunction
expansions and controlling the truncation order N for the requested accuracy in
the final solution. The analytic nature of the inversion formula allows for a direct
testing procedure at each specified position within the medium where a solution is
desired, and then the truncation order N can be increased (or eventually
decreased), to fit the user global error requirements over the entire solution
domain. The simple tolerance testing formula employed is written as follows.

e ¼ max
x2V

PN
i¼N�

~wwkiðxÞ�hhkiðtÞ

Fkðx; tÞ þ
PN
i¼1

~wwkiðxÞ�hhkiðtÞ

���������

���������
ð11Þ

where Fk is the filtering solution. Therefore, this testing can be implemented by
choosing the value of N� so as to have a small odd number of terms in the numer-
ator sum, then offering error estimations at any of the selected test positions
within the domain.

6. REORDERING SCHEMES

In multidimensional applications, the final integral transform solution for the
related potential is expressed as double or triple infinite summations for two or
three-dimensional transient problems, respectively. From a computational point of
view, only a truncated version of such nested summations can be actually evaluated.
However, if one just truncates each individual summation to a certain prescribed
finite order, computations become quite ineffective, and even risky. By following this
path some still important information to the final result can be disregarded due to
the fixed summations limits, while other terms are accounted for that have essentially
no contribution to convergence of the potential in the relative accuracy required.
Therefore, for an efficient computation of these expansions, the infinite multiple
summations should first be converted to a single sum representation with the appro-
priate reordering of terms according to their individual contribution to the final
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numerical result [6, 18, 19]. Then, it becomes possible to evaluate the minimal num-
ber of eigenvalues and related derived quantities required to reach the
user-prescribed accuracy target [6]. Since the final solution is not, of course, known
a priori, the parameter which shall govern this reordering scheme must be chosen
with care. Once the reordering is completed, the remainder of the computational
procedure becomes as straightforward and cost-effective as in the one-dimensional
case. The most common choice of reordering strategy is based on arranging in
increasing order the sum of the squared eigenvalues in each spatial coordinate, which
is implemented as a default in the UNIT code and offers a good compromise
between the overall convergence enhancement and simplicity in use. However, indi-
vidual applications may require more elaborate reordering that accounts for the
influence of transformed initial conditions and transformed nonlinear source terms
in the ODE system.

To more clearly understand the possible reordering schemes, let us start from
the formal solution of the transformed potentials equations (4), which is written as
follows.

TkiðtÞ ¼ �ffki exp �m2kit
� �

þ
Z t

0

�̂gg�ggkiðt0;TÞ exp �m2kiðt� t0Þ
� �

dt0 ð12aÞ

Where the nonlinear transformed source term �̂gg�ggkiðt;TÞ includes the contributions of
both the equation and boundary conditions source terms.

�̂gg�ggkiðt;TÞ ¼ �ggkiðt;TÞ þ �bbkiðt;TÞ ð12bÞ

Integration by parts of Eq. (12a) provides an alternative expression that allows the
understanding of the influence of the transformed initial conditions and source terms
in the choice of terms reordering in rewriting the multiple series as a single one.

TkiðtÞ ¼ �ffki exp �m2kit
� �

þ 1

m2ki
�̂gg�ggkiðt;TÞ � �̂gg�ggkið0;TÞ exp �m2kit

� �� �

� 1

m2ki

Z t

0

d�̂gg�ggki
dt0

exp �m2kiðt� t0Þ
� �

dt0 ð13Þ

It is evident that the squared eigenvalues, which involve the combination of the
eigenvalues in each spatial coordinate, play the most important role in the decay of
the absolute values of the infinite summation components, both through the expo-

nential term exp �m2kit
� �

and, at a lower convergence rate, through the inverse of

the squared eigenvalues, 1=m2ki. Therefore, this traditionally employed reordering

scheme should be able to account for the most important terms in the adequate reor-
dering of the expansion. Nevertheless, supposing that the last integral term in Eq.
(13) plays a less important role in the reordering choice, and in fact it vanishes when
the source term is not time dependent, one concludes that the decay of the trans-
formed initial condition and the transformed source term evolution from its initial
value, play a complementary role in the selection of terms in the eigenfunction
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expansion for a fixed truncation order. Thus, a more robust selection can be pro-
posed, based on adding to the initially reordered terms, according to the squared
eigenvalues criterion, a few extra terms that are of possible contribution to the final
result under the analysis of the initial condition decay and=or the transformed source
term behavior. In the first case, for the lowest time value of interest, t¼ tmin, the cri-
terion that reorders the terms based on the decay of the initial conditions is based on

sorting in decreasing order from the expression �ffki exp �m2kitmin

� �
. In the second case,

for the general case of a nonlinear transformed source term, the estimation of the
terms importance is more difficult, since the source terms are not known a priori.
One possible approach is to consider the limiting situation of an uniform unitary
source term, representing for instance its normalized maximum value, and analyzing
the reordering of terms in descending absolute value based on the expression
1
m2
ki

R
V
~//kiðxÞdV . Therefore, combining the three criteria, and eliminating the dupli-

cates with respect to the traditional reordering scheme based on the squared eigen-
values, a few extra terms are added to the initially reordered terms that may have still
some relevant effect in the final truncated summation, as will later on be illustrated.

7. APPLICATION

In order to illustrate the methodology and the behavior of the developed
implementation, a test case problem based on the nonlinear Burgers’ equation
formulation is selected, starting from its three-dimensional version. Then, to demon-
strate the unifying feature of the UNIT code and inspect the different behavior in
each formulation level, the 2-D and 1-D versions were also investigated, which are
obtained by simply successively dropping the z and y coordinates in the input
module of the UNIT code. The mathematical formulation of the multidimensional
nonlinear convection-diffusion problem here considered is given by the following

qTðx;y;z; tÞ
qt

þuðTÞqTðx;y;z; tÞ
qx

¼ n
q2Tðx;y;z;tÞ

qx2
þ

"
q2Tðx;y;z; tÞ

qy2
þq2Tðx;y;z;tÞ

qz2

#

0<x< 1; 0<y< 1; 0<z< 1;t> 0

ð14aÞ

with initial and boundary conditions given by the following.

Tðx;y;z;0Þ¼ 1; 0� x� 1; 0� y� 1; 0� z� 1 ð14bÞ

Tð0;y;z;tÞ¼ 0; Tð1;y;z; tÞ¼ 0;t> 0 ð14c;14dÞ

qTðx;0;z;tÞ
qy

¼ 0; Tðx;1;z;tÞ¼ 0;t> 0 ð14e;14f Þ

qTðx;y;0;tÞ
qz

¼ 0; Tðx;y;1;tÞ¼ 0; t> 0 ð14g;14hÞ
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For the present application, the nonlinear function u(T) is taken as follows.

uðTÞ¼ u0þ cT ð14iÞ

This specific example allows for analytical integration of the coefficients in the
transformed system, as presented in references [3, 4], which then provides the most
cost-effective GITT solution to this problem, with very accurate predictions, as will
be shown. However, since the objective is to demonstrate the performance of the
more general and unifying features of the developed code, the focus is shifted
towards the illustration of the automatic and cost effective options of the UNIT
code, such as the integration schemes, the semi-analytical integration and the Gaus-
sian quadrature, such as the boundary conditions filters, the progressive filtering and
the Laplacian polynomial filter, and such as the reordering schemes, the traditional
squared eigenvalues criterion and the combined criterion. With respect to the coeffi-
cients integration schemes, both options work with an automatic selection of
sub-regions, based on the known oscillatory behavior of the eigenfunctions. With
respect to the semi-analytical integration scheme, a zeroth order level of approxi-
mation of the source term was employed, and the results were compared with those
of the Gaussian quadrature scheme.

In order to illustrate the implemented automatic progressive linear filtering for
multidimensional applications, we also investigate the same problem but with
non-homogeneous boundary conditions, as follows.

qTðx;y;z; tÞ
qt

þ uðTÞqTðx;y;z; tÞ
qx

¼ n
q2Tðx;y;z; tÞ

qx2
þ

"
q2Tðx;y;z; tÞ

qy2
þq2Tðx;y;z; tÞ

qz2

#

0<x< 1; 0<y< 1; 0<z< 1; t> 0

ð15aÞ

Tðx;y;z;0Þ ¼ 1; 0� x� 1; 0� y� 1;0� z� 1 ð15bÞ

Tð0;y;z; tÞ ¼ 1; Tð1;y;z; tÞ ¼ 0; t> 0 ð15c;15dÞ

qTðx;0;z; tÞ
qy

¼ 0; Tðx;1;z; tÞ ¼ 0; t> 0 ð15e;15f Þ

qTðx;y;0; tÞ
qz

¼ 0; Tðx;y;0; tÞ ¼ 0; t> 0 ð15g;15hÞ

where u(T) is again the function given by Eq. (14i).
The inherent choice of the eigenvalue problem is made when the user

establishes the equivalence between the general problem, given by Eq. (1), and the
considered application. For the first application considered in this work, given by
Eq. (14), the UNIT code parameters were taken as follows.
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x ! fx; y; zg; n ! 1; Tkðx; tÞ ! Tðx; y; z; tÞ; fkðxÞ ! 1;wkðxÞ ! 1; KkðxÞ ! n:

dkðxÞ ! 0; gkðx; t;TlÞ ! �uðTÞ qTðx; y; z; tÞ
qx

; /kðx; t;TlÞ ! 0:

ð16a� 16iÞ

akðxÞ ! 1 ; bkðxÞ ! 0; for x ¼ 0:

akðxÞ ! 0 ; bkðxÞ ! 1; for y; z ¼ 0:

akðxÞ ! 1 ; bkðxÞ ! 0; for x; y; z ¼ 1

ð16j � 16oÞ

Whereas for the nonhomogeneous example given by Eq. (15), the source terms are
given by the following.

/kðx; t;TlÞ ! 1; for x ¼ 0

/kðx; t;TlÞ ! 0; for y; z ¼ 0; x; y; z ¼ 1
ð17a; 17bÞ

8. RESULTS AND DISCUSSION

The UNIT code is here illustrated through its version 2.2.3 (available from the
site http://2009unit.vndv.com), in Mathematica 7.0, which is the presently employed
version, and has the following main features.

. System of linear or nonlinear equations (parabolic problems, parabolic-hyperbolic
problems, or elliptic problems via pseudo-transient).

. Multidimensional transient formulations.

. Eigenvalue problem analytically solved via DSolve routine (Sturm-Liouville
problem).

. Transformed coefficients determined by semi-analytical integration (zeroth order),
numerical integration (Gaussian quadrature or NIntegrate routine) or analytical
integration (Integrate routine or user supplied).

. User defined or automatic progressive linear filtering.

. Reordering by squared eigenvalues criterion or combination of transformed initial
conditions, transformed source term, and squared eigenvalues.

. Non-homogeneous term via Green’s 2nd formula.

. Error estimator.

The analysis that will be shown below for the applications detailed in section 7,
adopted the following governing parameters values: u0¼ 1, c¼ 5, and n¼ 1.

The first investigated application, presented in section 7, is given by Burgers’
equation formulation with homogenous boundary conditions, in Eq. (9), starting
from its three-dimensional version. Then, in order to demonstrate the unifying fea-
tures of the UNIT code and inspect the different behavior for each formulation level,
the 2-D and 1-D versions were also investigated, by simply successively dropping the
z and y coordinates, respectively, just changing the statement of the problem at the
input module.
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In order to offer a benchmark solution for the three dimensional nonlinear
Burgerś equation, the UNIT code was first employed with user provided analytical
integration of the transformed initial condition and nonlinear source term, and dou-
ble checked against a dedicated GITT solution of the same problem implemented in
Fortran 95. Then, high truncation orders could be achieved with reduced computa-
tional cost so as to offer a reliable numerical solution with four fully converged sig-
nificant digits, as illustrated in Table 1a, where convergence is reached at truncation
orders around N¼ 300 with the traditional squared eigenvalues reordering criterion.

Table 1b illustrates a comparison of the UNIT code solution for the
three-dimensional formulation, with different number of terms in the eigenfunction
expansion (N¼ 45 and 70) with automatic reordering through the squared eigenva-
lues criterion, and fixed values for the number of points in the Gaussian integration
in each spatial direction (M¼ {12, 12, 12}), so as to allow for a comparison just in
terms of the truncation orders in the eigenfunction expansions. It is then shown the
UNIT solution, starting from a fixed truncation order N¼ 45, with the automatic
combined reordering scheme, which includes another 24 terms in the final reorder-
ing, bringing the truncation order up to N¼ 69. Also, a numerical solution obtained
by the Method of Lines implemented in the NDSolve routine of theMathematica sys-
tem is shown, not in default mode but controlling the maximum step size in each
independent variable to achieve comparable accuracy as the UNIT code, together
with the benchmark GITT solution with N¼ 300, fully converged to four significant
digits, as shown in the previous table. It should be noticed that at the selected posi-
tions, all the UNIT results are converged at least to the second significant digit for
t¼ 0.02 and to the third significant digit for t¼ 0.1, thus with the expected improved
convergence behavior for larger values of t. At the same time, they agree to at least
the same significant digit with the GITT benchmark solution, in a comparable beha-
vior with the numerical solution from the NDSolve routine. There is some slight
improvement in taking the combined reordering solution with N¼ 69 instead of
the default solution with N¼ 70 terms with the squared eigenvalues reordering

Table 1a. Convergence of GITT solution for three-dimensional Burgers’ equation (N¼ 40 to 300 terms

and user provided analytical integration)

x N¼ 40 N¼ 70 N¼ 100 N¼ 140 N¼ 180 N¼ 220 N¼ 260 N¼ 280 N¼ 300

t¼ 0.02, y¼ 0.5, and z¼ 0.5

0.1 0.2601 0.2868 0.2868 0.2782 0.2814 0.2813 0.2780 0.2797 0.2798

0.3 0.7416 0.7349 0.7361 0.7402 0.7414 0.7415 0.7398 0.7395 0.7396

0.5 0.9208 0.9355 0.9361 0.9351 0.9331 0.9329 0.9330 0.9331 0.9331

0.7 0.9208 0.9157 0.9151 0.9128 0.9140 0.9141 0.9155 0.9157 0.9156

0.9 0.4815 0.4857 0.4858 0.4893 0.4898 0.4898 0.4905 0.4905 0.4905

t¼ 0.1, y¼ 0.5, and z¼ 0.5

0.1 0.04898 0.04981 0.04983 0.04920 0.04938 0.04938 0.04923 0.04922 0.04922

0.3 0.1491 0.1491 0.1491 0.1493 0.1495 0.1495 0.1492 0.1492 0.1492

0.5 0.2221 0.2233 0.2233 0.2231 0.2231 0.2231 0.2231 0.2231 0.2231

0.7 0.2237 0.2236 0.2235 0.2231 0.2233 0.2233 0.2235 0.2235 0.2235

0.9 0.1017 0.1024 0.1024 0.1028 0.1030 0.1030 0.1031 0.1031 0.1031
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criterion. Nevertheless, at least in the present example and with the adopted trunc-
ation order of N¼ 45, the improvement seems to be concentrated at the lower values
of the t variable. This observation can be confirmed with the aid of Figures 1a and
1b, where it is shown the variation of the transformed potentials along the t variable.
Figure 1a shows the t evolution of the transformed potentials originally selected by
the squared eigenvalues reordering criterion, from N¼ 1 to 45, while Figure 1b
shows the transformed potentials added by the combination of the other two
selection schemes, the decay of the transformed initial condition and the normalized
transformed source term, from N¼ 46 to 69. It can be observed that the largest terms
in the first criterion are at least one order of magnitude larger than those from the
second group, and one may observe the fast decay of the added terms as t increases,
from Figure 1b, showing that the contribution of the added terms after the combined
reordering, is indeed concentrated within the lower range of the t variable, thus not
so evidently relevant in Table 1b above.

Table 1c brings a comparison of the automatically generated results for N¼ 45,
with zeroth order semi-analytical integration, with a fixed number of sub-regions
M¼ {16,16,16}, and those also obtained from the UNIT code solution with Gaus-
sian quadrature, with the same number of quadrature points as sub-regions, against
the results obtained with the fully converged solution through GITT with analytical
integration and N¼ 300. A column with error estimates automatically provided by
the UNIT code, based on the last three terms of the expansions, is also presented.
After observing the results, one may conclude that the two sets of results obtained
with the UNIT code are in agreement with the benchmark results to at least two sig-
nificant digits for t¼ 0.02, and to three significant digits for t¼ 0.1, as practically pre-
dicted by the error estimates provided. The error estimation through the proposed
straightforward testing formula provides reasonable predictions, indicating a

Table 1b. Comparison of UNIT code solutions for three-dimensional Burgers’ equation with different

reordering schemes (GITT with squared eigenvalues reordering, N¼ 45 and 70 terms and M¼ {12, 12,

12} in Gaussian integration, and GITT with N¼ 69 terms in combined reordering)

x UNIT� N¼ 45 UNIT� N¼ 70 UNIT�� N¼ 69 NDSolve GITTþN¼ 300

t¼ 0.02, y¼ 0.5, and z¼ 0.5

0.1 0.2626 0.2874 0.2859 0.2804 0.2798

0.3 0.7439 0.7363 0.7371 0.7403 0.7396

0.5 0.9250 0.9349 0.9361 0.9334 0.9331

0.7 0.9243 0.9164 0.9159 0.9159 0.9156

0.9 0.4806 0.4836 0.4859 0.4911 0.4905

t¼ 0.1, y¼ 0.5 and z¼ 0.5

0.1 0.04922 0.04996 0.05017 0.04947 0.04922

0.3 0.1496 0.1495 0.1497 0.1494 0.1492

0.5 0.2227 0.2238 0.2239 0.2232 0.2231

0.7 0.2239 0.2238 0.2240 0.2236 0.2235

0.9 0.1016 0.1023 0.1024 0.1031 0.1031

(�)UNIT code with Gaussian integration {12, 12, 12} points and squared eigenvalues reordering.

(��)UNIT code with Gaussian integration {12, 12, 12} points and combined reordering.

(þ)UNIT code with user provided analytical integration.
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maximum relative error of around 4� 10�3 for the worst tabulated case at t¼ 0.02,
thus possibly affecting the second digit to plus or minus one, as confirmed by the
benchmark results. These results also show that in this particular case there is no
need to increase the number of terms, for instance from three to five terms, in the
estimation of the residues.

Figure 1. Evolution of the transformed potentials in UNIT solution for the three-dimensional Burgers

equation. (a) Orders 1–45, selected from default squared eigenvalues reordering scheme; and (b) orders

46–69, added from the optional combined reordering scheme.
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Table 2 illustrates the convergence behavior of the UNIT code results for a
fixed truncation order (N¼ 45), but varying the number of sub-regions in the
semi-analytical integration (M). One may see the consistency of such results, which
are apparently converged within three to four significant digits around
M¼ {12,12,12} for the time t¼ 0.02 and to four significant digits for t¼ 0.1. The
automatic procedure for selecting the number of sub-intervals, available in the
UNIT code, considers the eigenfunction of highest frequency (highest eigenvalue)
in each direction, and multiplies by four the number of periods of the eigenfunction
oscillation in the space variable domain. With N¼ 45, in the present case, the code
would then automatically find the number of sub-regions to be M¼ {16, 12, 12},
which provides very close results.

Next, similar analyses were undertaken for the 2-D and 1-D cases, which are
shown in Tables 3–6. From Table 3a one may observe the convergence of the UNIT
code solution to plus or minus one in the fourth significant digit for both t¼ 0.02 and
0.1, and truncation orders up to N¼ 60. From Table 3b one may observe the agree-
ment to at least the third significant digit when comparing the two automatic inte-
gration schemes implemented in the UNIT code. Also, the error estimates are
compatible with the oscillation in the fourth significant digit and aid in the verifi-
cation of the numerical results from the NDSolve routine. Table 4 shows the conver-
gence behavior of the present UNIT code solution for the two-dimensional Burgers’
equation obtained with N¼ 50 terms and different numbers of sub-regions (M) in the
semi-analytical integration. As can be seen, four significant converged digits are
practically reached with M¼ {24,24} for all investigated times and positions, which
is also confirmed by the last column with the results from the UNIT code solution
itself with automatically generated number of sub-regions, M¼ {32,28}.

Table 5a shows that for the one-dimensional case the UNIT results are fully
converged to at least four significant digits at t¼ 0.02, with a maximum truncation

Table 1c. Comparison of UNIT code solutions with different integration schemes for the

three-dimensional Burgers’ equation and evaluation of error estimation procedure

x UNITa Error estimateb UNITc Error estimated GITTe

t¼ 0.02

0.1 0.2615 2.47� 10�3 0.2600 2.51� 10�3 0.2798

0.3 0.7436 3.56� 10�3 0.7432 3.57� 10�3 0.7396

0.5 0.9250 4.32� 10�3 0.9250 4.33� 10�3 0.9331

0.7 0.9242 2.86� 10�3 0.9241 2.87� 10�3 0.9156

0.9 0.4813 1.34� 10�3 0.4823 1.35� 10�3 0.4905

t¼ 0.1

0.1 0.04914 3.44� 10�4 0.04902 3.58� 10�4 0.04922

0.3 0.1494 6.52� 10�5 0.1491 6.77� 10�5 0.1492

0.5 0.2224 6.44� 10�5 0.2221 6.71� 10�5 0.2231

0.7 0.2238 4.35� 10�5 0.2237 4.51� 10�5 0.2235

0.9 0.1016 1.66� 10�4 0.1017 1.72� 10�4 0.1031

aSemi-analytical integration (N¼ 45 and M¼ {16, 16, 16}).
b,destimate for 3 terms residue.
cGaussian quadrature (N¼ 45 and M¼ {16,16,16}); and
eUNIT with user provided analytical integration (N¼ 300).
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order of N¼ 35, as expected, with improved convergence behavior with respect to
the previous two and three-dimensional situations, since the squared eigenvalues
governing terms experience a faster increase in the one-dimensional solution. The
results from the two automatic integration schemes, semi-analytical and Gaussian
quadrature, are in very good agreeement at the same truncation order of N¼ 35
and number of sub-regions M¼ 150, as shown in Table 5b. The NDSolve numerical
results are comparatively improved, also from Table 5b, with at least a three-digits
agreement with the converged UNIT results in the tabulated range. Again, Table 6
shows the consistency of the automatic semi-analytical integration, by comparing
results obtained with different numbers of sub-regions, M, in the vicinity of the
automatically selected number of sub-regions. Here, the automatic number of
sub-regions, for a truncation order of N¼ 35, would result in M¼ 140.

Table 2. Convergence of UNIT code solution for three-dimensional Burgers’ equa-

tion (GITT with fixed truncation order, N¼ 45, and different number of sub-regions

(M) in semi-analytical integration)

x

M

{6, 6, 6} {9, 9, 9} {12, 12, 12} {16, 16, 16}

t¼ 0.02

0.1 0.2692 0.2645 0.2626 0.2615

0.3 0.7458 0.7444 0.7439 0.7436

0.5 0.9251 0.9250 0.9250 0.9250

0.7 0.9247 0.9244 0.9243 0.9242

0.9 0.4762 0.4793 0.4806 0.4813

t¼ 0.1

0.1 0.04982 0.04938 0.04922 0.04914

0.3 0.1511 0.1500 0.1496 0.1494

0.5 0.2245 0.2232 0.2227 0.2224

0.7 0.2244 0.2240 0.2239 0.2238

0.9 0.1013 0.1015 0.1016 0.1016

Table 3a. Convergence of UNIT code solution for two-dimensional Burgers’ equation (N¼ 20 to 60 terms

and M¼ {28, 28} in semi-analytical integration)

x N¼ 20 N¼ 30 N¼ 40 N¼ 50 N¼ 60

t¼ 0.02

0.1 0.2904 0.2813 0.2845 0.2830 0.2830

0.3 0.7437 0.7488 0.7500 0.7482 0.7483

0.5 0.9473 0.9464 0.9443 0.9445 0.9446

0.7 0.9275 0.9251 0.9261 0.9277 0.9276

0.9 0.4924 0.4960 0.4966 0.4973 0.4972

t¼ 0.1

0.1 0.06495 0.06405 0.06432 0.06410 0.06410

0.3 0.1953 0.1957 0.1959 0.1956 0.1956

0.5 0.2971 0.2969 0.2968 0.2968 0.2968

0.7 0.3044 0.3038 0.3040 0.3043 0.3043

0.9 0.1424 0.1430 0.1432 0.1434 0.1434
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Figures 2a–2c depict the graphical comparison of the present UNIT code
solutions for the homogeneous problem at different times, and, respectively, for
the three-, two- and one-dimensional situations, against those obtained with the
NDSolve routine. A very good graphical agreement between the results can be
observed, including the more computationally intensive three-dimensional case.

Now, in order to illustrate and compare the implemented automatic progress-
ive linear filtering and the Laplacian polynomial filter for multi-dimensional applica-
tions, we investigate the second application presented in section 7, given by the
nonlinear Burgers’ equation with non-homogeneous boundary conditions, presented

Table 3b. Comparison of UNIT code solutions with different integration schemes for two-dimensional

Burgerś equation and evaluation of error estimation procedure

x GITTa Error estimateb GITTc Error estimated NDSolvee

t¼ 0.02

0.1 0.2830 �4.46� 10�4 0.2827 �4.48� 10�4 0.2837

0.3 0.7482 �3.79� 10�4 0.7480 �3.85� 10�4 0.7490

0.5 0.9445 1.81� 10�5 0.9446 1.89� 10�5 0.9450

0.7 0.9277 2.69� 10�4 0.9276 2.72� 10�4 0.9274

0.9 0.4973 3.23� 10�4 0.4977 3.26� 10�4 0.4968

t¼ 0.1

0.1 0.06410 �6.65� 10�5 0.06407 �6.49� 10�5 0.06434

0.3 0.1956 �3.78� 10�5 0.1955 �3.71� 10�5 0.1957

0.5 0.2968 4.37� 10�7 0.2966 4.54� 10�7 0.2968

0.7 0.3043 2.35� 10�5 0.3042 2.30� 10�5 0.3043

0.9 0.1434 3.16� 10�5 0.1434 3.09� 10�5 0.1434

aSemi-analytical integration (N¼ 50 and M¼ {28,28}).
b,destimate for 3 terms residue.
cGaussian quadrature (N¼ 50 and M¼ {28,28}); and
eMathematica 7.

Table 4. Convergence of UNIT code solution for two-dimensional Burgerś equation (GITT with fixed

truncation order, N¼ 50, and different number of sub-regions (M) in semi-analytical integration)

X

M

{16, 16} {20, 20} {24, 24} {28, 28} Default {32, 28}

t¼ 0.02

0.1 0.2834 0.2832 0.2831 0.2830 0.2829

0.3 0.7486 0.7484 0.7483 0.7482 0.7482

0.5 0.9444 0.9445 0.9445 0.9445 0.9445

0.7 0.9279 0.9278 0.9277 0.9277 0.9276

0.9 0.4964 0.4969 0.4971 0.4973 0.4974

t¼ 0.1

0.1 0.06418 0.06414 0.06412 0.06410 0.06410

0.3 0.1958 0.1957 0.1956 0.1956 0.1956

0.5 0.2971 0.2969 0.2968 0.2968 0.2968

0.7 0.3044 0.3043 0.3043 0.3043 0.3043

0.9 0.1433 0.1433 0.1433 0.1434 0.1434
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in problem formulation (15). Since the progressive filtering procedure is based on
successively filtering the problem in each spatial direction, the order in which each
direction is filtered and then transformed must be chosen. First, the two-dimensional
version of problem (15) is investigated. Thus two possibilities arise: the progressive
filtering procedure can start in the x direction, or it can start in the y direction, whose
boundary conditions are actually already homogeneous in the original formulation.
In order to evaluate the performance of the progressive filtering, both possibilities
are investigated. In order to provide reference results for this investigation, and also
to illustrate the flexibility of the UNIT code, the user provided filtering option has
been employed and a Laplacian polynomial filtering solution for problem (15), that

Table 5b. Comparison of UNIT code solutions with different integration schemes for one-dimensional

Burgerś equation and evaluation of error estimation procedure

X GITTa Error estimateb GITTc Error estimated NDSolvee

t¼ 0.02

0.1 0.2867 1.48� 10�6 0.2867 1.47� 10�6 0.2867

0.3 0.7577 �6.75� 10�6 0.7577 �6.74� 10�6 0.7576

0.5 0.9567 5.54� 10�7 0.9567 5.49� 10�7 0.9567

0.7 0.9394 1.22� 10�5 0.9394 1.22� 10�5 0.9395

0.9 0.5039 �4.49� 10�5 0.5039 �4.49� 10�5 0.5040

t¼ 0.1

0.1 0.08281 5.15� 10�6 0.08281 5.13� 10�6 0.08297

0.3 0.2542 �5.86� 10�6 0.2542 �5.85� 10�6 0.2543

0.5 0.3923 8.94� 10�7 0.3923 8.92� 10�7 0.3923

0.7 0.4138 1.04� 10�5 0.4138 1.04� 10�5 0.4138

0.9 0.2004 �4.48� 10�5 0.2004 �4.48� 10�5 0.2006

aSemi-analytical integration (N¼ 35 and M¼ 180).
b,destimate for 3 terms residue.
cGaussian quadrature (N¼ 35 and M¼ 180); and
eMathematica 7.

Table 5a. Convergence of UNIT code solution for one-dimensional Burgers’ equation (N¼ 20 to 35 terms

and M¼ 150 in semi-analytical integration)

x N¼ 20 N¼ 25 N¼ 30 N¼ 35

t¼ 0.02

0.1 0.2867 0.2867 0.2867 0.2867

0.3 0.7577 0.7577 0.7577 0.7577

0.5 0.9567 0.9567 0.9567 0.9567

0.7 0.9394 0.9394 0.9394 0.9394

0.9 0.5038 0.5039 0.5039 0.5039

t¼ 0.1

0.1 0.08283 0.08282 0.08281 0.08281

0.3 0.2542 0.2542 0.2542 0.2542

0.5 0.3923 0.3923 0.3923 0.3923

0.7 0.4137 0.4138 0.4138 0.4138

0.9 0.2004 0.2004 0.2004 0.2004
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is able to homogenize all the four boundary conditions simultaneously, is implemen-
ted. The simplest choice is given by the following polynomial filtering.

Fðx; yÞ ¼ ax2 þ by2 þ cxyþ dxþ ey ð18aÞ

Where the coefficients are readily computed by solving a system of algebraic equa-
tions stemming from substituting Eq. (18a) into the following system.

q2Fðx; yÞ
qx2

þ q2Fðx; yÞ
qy2

¼ 0 ð18bÞ

Fð0; yÞ ¼ 1; Fð1; yÞ ¼ 0 ð18c; 18dÞ

qFðx; yÞ
qy

����
y¼0

¼ 0; Fðx; 1Þ ¼ 0 ð18e; 18f Þ

Figures 3a and 3b depict the graphical comparison of the UNIT code solutions with
progressive filtering at different times, along x (with y¼ 0.5) and along y (with
x¼ 0.5), respectively, obtained with N¼ 65 terms selected with the simple squared
eigenvalues reordering criterion, and M¼ {20, 20} points in the integrations via
Gaussian quadrature, against those obtained with the polynomial filtering and
N¼ 90 terms selected with the combined reordering scheme and M¼ {20, 20} points
in the integrations via Gaussian quadrature. Both possibilities for the progressive fil-
tering, either starting with the direction x or with the direction y, are presented.
These figures confirm the overall good adherence of the most direct UNIT code solu-
tions, with automatic progressive filtering and the simplest reordering scheme, to the
reference values, also obtained via UNIT code, but with an user provided filtering
option and more robust reordering scheme. For this case, it is also possible to see
slightly improved results achieved when the progressive filtering procedure starts

Table 6. Convergence of UNIT code solution for one-dimensional Burgers’ equation (GITT with fixed

truncation order, N¼ 35, and different number of sub-regions (M) in semi-analytical integration)

x

M

60 100 140 180

t¼ 0.02

0.1 0.2867 0.2867 0.2867 0.2867

0.3 0.7577 0.7577 0.7577 0.7577

0.5 0.9567 0.9567 0.9567 0.9567

0.7 0.9394 0.9394 0.9394 0.9394

0.9 0.5038 0.5039 0.5039 0.5039

t¼ 0.1

0.1 0.08282 0.08282 0.08281 0.08281

0.3 0.2542 0.2542 0.2542 0.2542

0.5 0.3923 0.3923 0.3923 0.3923

0.7 0.4138 0.4138 0.4138 0.4138

0.9 0.2004 0.2004 0.2004 0.2004
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with the direction having originally homogeneous boundary conditions, being more
noticeable for increasing y values, especially near y¼ 1 (Figure 3b).

Finally, we investigate problem (15) in its full three-dimensional version employ-
ing the automatic progressive filtering option and also an user provided polynomial fil-
tering solution in order to provide reference results, which has been chosen as follows.

Fðx; y; zÞ ¼ ax4 þ by4 þ cz2 þ dxyzþ exyþ fxzþ gyz ð19aÞ

Where the coefficients are computed to satisfy the following.

q2Fðx; y; zÞ
qx2

þ q2Fðx; y; zÞ
qy2

þ q2Fðx; y; zÞ
qz2

� Fðx; y; zÞ ¼ 0 ð19bÞ

Fð0; y; zÞ ¼ 1; Fð1; y; zÞ ¼ 0 ð19c; 19dÞ

Figure 2. Comparison between the UNIT code and the NDSolve routine solutions with homogeneous

boundary conditions. (a) three-dimensional formulation; (b) two-dimensional formulation; and (c)

one-dimensional formulation (color figure available online).
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qFðx; y; zÞ
qy

����
y¼0

¼ 0; Fðx; 1; zÞ ¼ 0 ð19e; 19f Þ

qFðx; y; zÞ
qz

����
z¼0

¼ 0; Fðx; y; 1Þ ¼ 0 ð19g; 19hÞ

Figures 4a–4c bring the comparison between the solutions obtained with the
UNIT code using the automatic progressive filtering option with those obtained

Figure 3. Comparison between the UNIT code solutions with automatic progressive filtering and user

provided polynomial filtering for the two-dimensional formulation with nonhomogeneous boundary con-

ditions. (1) automatic progressive filtering starting with the x direction; (2) automatic progressive filtering

starting with the y direction: (a) along x; and (b) along y (color figure available online).
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when using the user provided polynomial filtering (19), showing T profiles along x, y,
and z coordinates, respectively. The progressive filtering solution is obtained with
N¼ 75 terms, M¼ {8, 8, 10} points in the integrations via Gaussian quadratures,
and employing the simplest reordering scheme with the squared eigenvalues cri-
terion. For the reference results, with the polynomial filtering solution, N¼ 94 terms
were selected via the combined reordering scheme and M¼ {8, 8, 10} points were
employed in the integrations via Gaussian quadratures. In all the graphs one can
observe an excellent adherence of the curves obtained when employing the automatic
progressive filtering option with the reference solution with user provided boundary
conditions filter. These results illustrate the robustness of the UNIT code in tackling
nonhomogeneous boundary conditions also for non-linear multidimensional formu-
lations, and confirms the automatic progressive filtering option as an alternative tool
either for users with no experience to propose a specific filtering solution or for users
interested in the most practical solution path for a given problem.

Figure 4. Comparison between the UNIT code solutions with automatic progressive filtering and user pro-

vided polynomial filtering for the three-dimensional formulation with nonhomogeneous boundary con-

ditions: (a) along x; (b) along y; and (c) along z (color figure available online).
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9. CONCLUSION

This article presented a unified automatic algorithm for the hybrid
numerical-analytical solution of multi-dimensional convection-diffusion problems
based on the Generalized Integral Transform Technique. The UNIT algorithm, as
it has been previously coined in one-dimensional situations [17], was implemented
using mixed symbolic-numerical computation under the Mathematica framework.
The algorithm and relevant features in its computational implementation are dis-
cussed, and application results were subsequently presented. Three specific aspects
in the algorithm are more closely analyzed in the present work. First, the alternative
automatic coefficients integration schemes, a semi-analytical procedure and a Gaus-
sian quadrature scheme, with automatic selection of the number of integration
sub-regions or points based on the oscillatory behavior of the eigenfunction of high-
est frequency; second, the automatic reordering schemes for multidimensional situa-
tions, either the traditional squared eigenvalues reordering criterion, or a more
conservative combined reordering scheme that adds extra terms due to the estimated
importance of the initial conditions and source terms on the transformed potentials
decay; and third, the automatic filtering of nonhomogeneous boundary conditions in
multidimensional problems, here described as a progressive filtering strategy, and
critically compared to a user provided Laplacian polynomial filter for the boundary
conditions.

A three-dimensional nonlinear Burgers’ equation formulation with homo-
geneous boundary conditions is first adopted to test the algorithm. Then, a second
test case, the three-dimensional nonlinear Burgers’ equation formulation with
non-homogeneous boundary conditions is addressed, in order to particularly com-
pare the filtering schemes for multidimensional problems. As a basis for comparison,
the solutions are here obtained with the UNIT code in its most crude and automatic
usage form, i.e., with automatic semi-analytical or non-adaptive Gaussian inte-
gration schemes and with reordering based on the sum of the squared eigenvalues.
Although convergence rates, accuracy and computational costs may always be opti-
mized with this same approach, for instance via specific filtering using information
regarding the equations source terms, analytical integration of initial conditions
and coefficients, eigenvalue problems with convective terms, local instantaneous fil-
tering and dynamic reordering, the current examples herein presented were intended
to test the algorithm under the most adverse conditions due to the simplest user
choices, so as to demonstrate the robustness of the UNIT implementation. Neverthe-
less, even under these most direct usage choices, results were reported for all three
levels of formulation, from three to one-dimensional, confirming that the approach
is able to achieve accurate results in all cases, with higher accuracy in the one dimen-
sional case for a fixed truncation order in the eigenfunction expansions. The compu-
tational costs are not significantly different for the three levels of formulation at the
same truncation order, and the more significant computing effort increase is in the
generation of the transformed source terms through the approximate integration
schemes for the multidimensional situations. Research should now proceed towards
the implementation of additional refinements and usage options to the basic code
structure so as to progressively offer a more complete development platform for
hybrid integral transforms methods.

UNIT FOR SOLVING CONVECTION-DIFFUSION PROBLEMS 865



REFERENCES

1. R. M. Cotta and M. N. Ozisik, Laminar Forced Convection in Ducts with Periodic
Variation of Inlet Temperature, Int. J. Heat Mass Transfer, vol. 29, pp. 1495–1501, 1986.

2. R. M. Cotta, Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems,
Numer. Heat Transfer B, vol. 127, pp. 217–226, 1990.

3. R. Serfaty and R. M. Cotta, Hybrid Analysis of Transient Nonlinear Convection-Diffusion
Problems, Int. J. Numer. Meth. Heat Fluid Flow, vol. 2, pp. 55–62, 1992.

4. R. M. Cotta, Integral Transforms in Computational Heat and Fluid Flow, CRC Press,
Boca Raton, 1993.

5. R. M. Cotta, Benchmark Results in Computational Heat and Fluid Flow—The Integral
Transform Method, Int. J. Heat Mass Transfer (invited paper), vol. 37, pp. 381–394, 1994.

6. R. M. Cotta and M. D. Mikhailov, Heat Conduction: Lumped Analysis, Integral Trans-
forms, Symbolic Computation, Wiley-Interscience, Chichester, UK, 1997.

7. R. M. Cotta, (ed.), 1998. The Integral Transform Method in Thermal and Fluids Sciences
and Engineering, Begell House, New York.

8. C. A. C. Santos, J. N. N. Quaresma, and J. A. Lima, Benchmark Results for Convective
Heat Transfer in Ducts—The Integral Transform Approach, E–Papers, Rio de Janeiro,
Brazil 2001.

9. R. M. Cotta and M. D. Mikhailov, Hybrid Methods and Symbolic Computations, In
W. J. Minkowycz, E. M. Sparrow and J. Y. Murthy, (eds.), Handbook of Numerical Heat
Transfer, 2nd ed., chap. 16, John Wiley, New York, 2006.

10. M. D. Mikhailov and M. N. Ozisik, Unified Analysis and Solutions of Heat and Mass
Diffusion, John Wiley, New York, 1984; also, Dover Publications, 1994.

11. S. Wolfram, The Mathematica Book, Cambridge=Wolfram Media, Champaign, IL, 2005.
12. M. D. Mikhailov and R. M. Cotta, Integral Transform Method for Eigenvalue Problems,

Comm. Numer. Meth. Eng., vol. 10, pp. 827–835, 1994.
13. L. A. Sphaier and R. M. Cotta, Integral Transform Analysis of Multidimensional

Eigenvalue Problems within Irregular Domains, Numer. Heat Transfer B, vol. 38,

pp. 157–175, 2000.
14. L. A. Sphaier and R. M. Cotta, Analytical and Hybrid Solutions of Diffusion Problems

within Arbitrarily Shaped Regions via Integral Transforms, Computational Mechanics,
vol. 29, pp. 265–276, 2002.

15. C. P. Naveira-Cotta, R. M. Cotta, H. R. B. Orlande, and O. Fudym, Eigenfunction
Expansions for Transient Diffusion in Heterogeneous Media, Int. J. Heat Mass Transfer,
vol. 52, pp. 5029–5039, 2009.

16. R. M. Cotta and M. D. Mikhailov, Semi-Analytical Evaluation of Integrals for the Gen-
eralized Integral Transform Technique, 4th Workshop on Integral Transforms and Bench-
mark Problems, Rio de Janeiro, Brazil, 23–25 August 2005.

17. L. A. Sphaier, R. M. Cotta, C. P. Naveira-Cotta, and J. N. N. Quaresma, The UNIT
Algorithm for Solving One-Dimensional Convection-Diffusion Problems via Integral
Transforms, Int. Comm. in Heat and Mass Transfer, vol. 38, pp. 565–571, 2011.

18. M. D. Mikhailov and R. M. Cotta, Ordering Rules for Double and Triple Eigenseries in
the Solution of Multidimensional Heat and Fluid Flow Problems, Int. Comm. Heat &
Mass Transfer, vol. 23, pp. 299–303, January 1996.

19. E. J. Correa, R. M. Cotta, and H. R. B. Orlande, On the Reduction of Computational
Costs in Eigenfunction Expansions of Multidimensional Diffusion Problems, Int.
J. Numer. Meth. Heat & Fluid Flow, vol. 7, no. 7, pp. 675–695, 1997.

866 R. M. COTTA ET AL.


