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ABSTRACT
The present work studies, in detail, the unsteady wall-layer model of Walker et al. (1989, AIAA J., 27, 140 
– 149) for the velocity profile in turbulent flows. Two new terms are included in the transcendental non-
linear system of equations that is used to determine the three main model parameters. The mathematical 
and physical feasible domains of the model are determined as a function of the non-dimensional pressure 
gradient parameter (p+). An explicit parameterization is presented for the average period between bursts 
(T 

+
B), the origin of time (t 

+
0) and the integration constant of the time dependent equation (A0) in terms of p+. 

In the present procedure, all working systems of differential equations are transformed, resulting in a very 
fast computational procedure that can be used to develop real-time flow simulators.

Key words: law of the wall, turbulent boundary layer, unsteady model, feasible domain, asymptotic theory.

INTRODUCTION

Over the last forty years much effort has been placed on understanding the dynamical processes through 
which turbulence is created and maintained in boundary layers. The implications are evident. Provided a 
clear picture of the turbulence structure is developed, the basis for the construction of statistical-structural 
turbulence models is immediately laid down.

Wall-layer models for the innermost portions of the boundary layer are of particular interest. The 
extreme thinness of the viscous sublayer naturally demands the use of exceptionally fine meshes in the 
numerical computation of flows. To overcome this difficulty, an elegant method resides on the specification 
of local analytical solutions that can then be used to represent the properties of the flow throughout the 
wall layer. This type of approach was originally described in Patankar and Spalding (1967) and is normally 
referred to as the wall function method.

Most of the research on wall models is historically related to Reynolds averaged Navier-Stokes (RANS) 
methods; however, this approach has also appropriately served large eddy simulations (LES) of turbulent 
flows. Piomelli and Ballaras (2002) have reviewed the applicability of some available methodologies to 
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LES, discussing their assets and drawbacks. In hybrid RANS/LES approaches – whether zonal or non-zonal 
approaches – wall functions have also been extensively used (see, e.g., Hsieh et al. (2010)) to specify the 
lower boundary conditions.

Attempts to incorporate the structure of organized motions into near-wall analytical models persist today, 
but were given particularly interesting contributions through the works of Bark (1975), Hatziavramidis and 
Hanratty (1979), Chapman and Kuhn (1986), Walker et al. (1989) and Landahl (1990). These authors followed 
modeling routes that were completely original at the time they were proposed, but to some extent the works did 
not receive the attention they probably deserved. Here, we concentrate on the analysis of Walker et al. (1989).

The model of Walker et al. (1989) is set on premises that differ somewhat from all the mentioned 
above; it strives to develop an analytical solution for the time-dependent velocity profile from asymptotic 
arguments and similarity solutions of a non-homogeneous diffusion equation. The other models, briefly 
reviewed below, are treated computationally.

Bark (1975) evaluates the fluctuating velocity field with simplified models for the mean velocity 
distribution and the intermittent Reynolds stress during bursting periods. The model considers how a 
turbulent boundary layer responds to excitation caused by bursting motions which occur randomly. The 
length and time scales are considered larger than those typically associated with the bursting phenomenon. 
The energy spectra of the fluctuating large-scale motions in the wall layer region are resolved by the model.

Hatziavramidis and Hanratty (1979) discuss the numerical solution of the unsteady Navier-Stokes 
equations in the viscous wall region with simplications resulting from the "slender body" assumption. Their 
model evaluates the cross-flow velocity field for a flow that is periodic in time and in the direction transverse 
to the direction of the mean flow. An eddy time-varying model that incorporates observed wavelengths and 
bursting frequency of the wall eddies is used to formulate the boundary conditions. The near wall flow is 
driven by the fluctuating pressures originating from the outer flow.

Three distinct models are presented in Chapman and Kuhn (1986). They embody more complex space- 
and time-dependent boundary conditions at the outer edge of the viscous boundary layer, so as to reflect, as 
much as possible, the flow structure observed in experiments. Eight physical modeling guidelines are used 
to characterize the organized quasi-periodic eddy motion near the wall. A comparison between computed 
turbulence quantities and experiments is presented. The limiting behavior of turbulence near the wall is 
discussed in terms of power-law expressions.

In Landahl (1990), local intermittent streaks are considered to act locally and for a very short time, setting 
up the initial conditions for the evolution of three-dimensional perturbations that are considered linear and 
inviscid. The prescribed model for the initial nonlinear perturbation results in an eddy that is observed to grow 
linearly in time. The associated Reynolds shear stress is expressed in terms of the lift-up of fluid elements.

The theory of Walker et al. (1989) was given a first glimpse in Walker and Abbott (1976). In fact, some 
results had previously appeared in reports difficult to find. However, Figure 1 of Walker and Abbott (1976) is 
exactly Figure 2 of Walker et al. (1989). Therefore, it is clear that, at least for a zero-pressure gradient flow, 
a time-dependent solution for the instantaneous longitudinal velocity was available as early as 1976. The 
model of Walker et al. (1989) is formulated in terms of the dynamics of the time-dependent wall-layer flow. 
A simplified set of the Navier-Stokes (N.-S.) equations is obtained to describe the unsteady flow in the wall 
layer during a quiescent period. Following the general description commonly found in literature, the flow 
dynamics is considered to be dominated by two features: wall layer streaks and the bursting phenomenon. 
The streaks are elongated in the flow direction, typically have a length of the order of 1000v/uτ and can be 
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observed over a large characteristic time, the quiescent period (Kline et al. 1967). To determine the mean velocity 
profile in the wall layer, a time-average of the leading order instantaneous velocity is performed over the average 
period between bursts, which is considered to be approximately equal to the duration of the quiescent period.

The present work studies, in great detail, the feasible domain of the model proposed by Walker et al. 
(1989). The definitions of the instantaneous and mean velocity profiles, as preconceived by Walker et al. 
(1989), depend on the determination of four unknowns, the average period between bursts (T 

+
B), the origin 

of time (t 
+
0 ), a constant of integration of the time dependent equation (A0) and the local pressure gradient 

(p+). Once p+ is specified, a set of three non-linear equations must be solved to reveal T 
+
B, t 

+
0  and A0. These 

parameters must be real and satisfy T 
+
B > t 

+
0 . In Walker et al. (1989) no comments are made regarding any 

possible limitation on the value of p+. Our attempts to find a feasible domain p+
min  ≤ p+≤ p+

max from the 
expressions shown in Walker et al. (1989) failed.

Here, all expressions introduced in Walker et al. (1989) are verified through the MathematicaTM (Wolfram 
2008) software system. In fact, it was later discovered that two terms are missing in equation (63) of Walker 
et al. (1989). The resulting non-linear set of equations for parameters T 

+
B, t 

+
0  and A0 is thus correctly presented 

and the feasible domain p+
min  ≤ p+≤ p+

max is determined. To find the numerical solution, the system of non-linear 
algebraic equations was transformed onto a system of ordinary differential equations with initial conditions. 
The system was then solved by NDSolve to generate a solution in terms of interpolation functions. 

As it turns out, the model developed by Walker et al. (1989) is mathematically feasible in the 
domain p+  2 [-0.025, 41.886]. To find this interval, the model was only required to provide real values 
for the parameters computed from the governing system of non-linear equations and to satisfy the 
condition T 

+
B  > t 

+
0 ; no further stringency to physical validity was required. However, if the model is 

required to furnish only positive derivatives at the wall for the instantaneous velocity, the feasible 
domain is reduced to p+ 2 [-0.025, 0.104996].

The present work derives in detail all similarity solutions for the homogeneous diffusion differential partial 
equation presented in Walker et al. (1989). In doing so, a new treatment is introduced whereby the pressure 
term is included as a non-homogeneous contribution. To permit fast computations, interpolation functions 
were generated from initial and boundary value problems, to represent some complex special functions, 
including Ξ. The special function Ξ (Walker et al. 1989) and its derivatives are given exact expressions (see 
Mikhailov and Silva Freire 2012), based on original identities for the hypergeometric functions 1F1 and p Fp.

The analysis of Walker et al. (1989) is specially developed for attached flow. The dominance of the 
error and logarithmic functions over the solution must clearly prevent its use in regions of separated flows 
since solutions of the type y 

2 and y1/2 cannot occur as predicted by Goldstein (1930, 1948) and Stratford 
(1959). This aspect of their analysis is further discussed here.

For the first time, an explicit parameterization is presented for T 
+
B, t 

+
0  and A0 in terms of p+. These 

expressions make abundantly clear that p+ and T 
+
B  cannot be independently specified for computations of 

the instantaneous velocity profile. They show that once the near wall flow dynamics is accepted to be driven 
by dominating diffusion effects, T 

+
B  is determined uniquely by p+.

MODEL FORMULATION

Some relevant features of the model proposed by Walker et al. (1989) are briefly reviewed to set the necessary 
background for discussion. Only the main aspects of the theory are presented. The properties of turbulent 
flows are known to experiment a complex behavior in the near wall region, with very steep changes in 
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mean-velocity profiles and higher-order statistics. Early studies (Prandtl (1925), von Karman (1930), 
Coles (1956)) of the attached turbulent boundary layer have successfully split the boundary layer into 
two typical regions, a viscous (inner) sublayer where turbulent and laminar stresses are of comparable 
magnitude and a defect (outer) layer where the turbulent stresses provoke a small perturbation to the 
inertia dominated external flow solution.

The identification of the pertinent length scale δ+ (= v/uτ, v = kinematic viscosity, uτ = friction velocity) 
for the wall region permitted authors to develop local analysis, that naturally lead to analytical solutions 
(Prandtl (1925), Millikan (1939)) and the advance of proper dimensional arguments. For example, authors 
have identified the peak production of turbulent kinetic energy to occur at wall distances of the order of 
12δ+ (Laufer (1954), Gad-el-Hak and Bandyopadhyay (1994)).

TIME-MEAN STRUCTURE

The time-mean structure of the flow in Walker et al. (1989) is based on the classical two-layered 
asymptotic analyses (Yajnik (1970), Bush and Fendell (1972), Mellor (1972)) of large Reynolds 
number turbulent boundary layer flow. Solutions are then developed in terms of two small parameters, 
R‒1 and u*, where R denotes the Reynolds number based on representative external flow scales and 
u* = uτ / ue, ue = mainstream velocity.

Because the analysis is restricted to the inner layer, the local variables are scaled with uτ and v 
(kinematic viscosity).

The leading-order governing equation of the mean wall flow is set to be (Walker et al. (1989); see also: 
Loureiro and Silva Freire (2011), Sychev and Sychev (1987), Cruz and Silva Freire (1998)),

@ 2U +
+ @¾1 = p+

@y+2 @y+ (1)

with U+ = u / uτ, ¾1 = ‒ u' v' / u2
τ  and the pressure gradient parameter p+ is defined through

p+ = v dpe
ρu 3

τ dx (2)

where pe denotes the external flow pressure.
The salient aspect of Eq. (2) is that it becomes undetermined at a point of flow separation, xs, since 

uτ = 0. Also note that, at this point, pressure changes greatly across the boundary layer, implying that pe is 
not an appropriate reference parameter at the wall (Stratford (1959), Loureiro and Silva Freire (2009, 2011), 
Loureiro et al. (2008)).

In the outer limit of the wall region, the mean velocity profile, U+, is required to follow a logarithmic 
behavior, implying that the dominant effect in Eq. (1) is the Reynolds stress effect.

In the outer region of the wall layer, U+ must satisfy

U + = 1 ln y+ + Ci, as y+ → ∞ϰ (3)

with ϰ = 0.4 and Ci = 5.0.
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TIME-INSTANTANEOUS STRUCTURE

To obtain the governing equations of the unsteady flow in the wall layer during a quiescent period, Walker 
et al. (1989) introduced the following non-dimensional variables,

u+ = u / uτ,	 v+ = v / uτ,	 w+ = w / uτ (4)

and
x~ = x / Lx, y+ = y uτ / v, z+ = z uτ /v, t+ = tu2

τ /v
(5)

where Lx is a characteristic length in the x-direction associated with the longitudinal extent of the outer-
region structures that drive the wall-layer dynamics.

In accordance with experiments, Walker et al. (1989) consider

Lx >> v / uτ, (6)

and pick a time scale determined from the condition that the unsteady term is balanced by the viscous term 
in the N.-S. equations (see, Eq. (5)).

Substitution of Eqs. (4) through (6) into the N.-S. equations together with an appropriate expansion 
for the pressure distribution in the wall layer and collection of the terms of leading order, furnishes the 
approximate governing equations.

Hypothesis (6) implies that the x-momentum equation develops independently from the other 
equations of motion. The flow evolution in a cross-flow plane (y+, z+) is determined from conditions that are 
representative of the motions during a typical quiescent state. Solutions are then considered to be given in 
terms of the periodic flow development between a pair of streaks, so that the cross-flow velocity field (v+, 
w+) is represented by Fourier series; appropriate wall and outer conditions are specified to reproduce the 
wall-layer structure. The longitudinal velocity u+ is determined from conditions imposed by the outer flow 
and effects of the evolving flow in the cross-plane.

Solution for u+ is also written as a Fourier series with coefficients un; substitution of the Fourier 
expressions for u+, v+ and w+ into the approximate equations of motion, yields

@ un +
2πn

fn
@ u0 +

π ∑
m = 1

∞
@ um ( jfj + (n + m) fn+m )@ t+ ¸+ @ y+ ¸+ @ y+

+
π ∑

m = 1

∞

mum

Ã

sgn (m − n)
@ fj +

@ fn+m
!

=
@ 

2un −
Ã

2nπ
!

un¸+ @ y+ @ y+ @y+2 ¸+

2
(7)

with n = 1,2,3,..., j = | m − n |, ¸+ = non-dimensional mean streak distance and where the fn's are the 
functional coefficients of the Fourier series used to describe v+ and w+.

The leading-order velocity solution, u0, is to be found from

@ u0 = − p+ + @ 
2 u0 + M ( y+, t+)

@t+ @ y+2 (8)

with

(9)M = @ p0 π ∑
n = 1

∞

m @ ( um
  fm )

x~@ ¸+ @ y+−
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Equation (8) is shown in Walker et al. 1989 (as Eq. 27) with an obvious typographical mistake. The 
term @ u0 / @t+ was mistyped as @ u0 / @ y+. In fact, the time dependency on Walker et al.'s model is only 
accounted for by the term @ u0 / @t+.

The set of Eqs. (7) to (9) is a coupled system of non-linear equations that has to be solved numerically. 
The forcing function M depends on a pressure term that must be determined from the time-dependent 
motions in the outer layer and on further terms arising from the evolution of the other modes. Walker et 
al. (1989) remark that numerical computations for large R¸ (Reynolds number based on the mean streak 
spacing, ¸) show the coupling between Eqs. (7) and (8) to be weak, so that contributions to the solution of 
Eq. (8) from Eq. (9) may be neglected. Since this term is not considered in Walker et al.'s solution, it will 
not be further considered here.

SIMILARITY SOLUTIONS

Clearly, signicant contributions to the mean-velocity profile during the quiescent time are due to u0, which 
is now solely determined from Eq. (8). The implication is that Walker et al.'s theory of wall-turbulence can 
be expressed in terms of a one-dimensional diffusion equation with a source term.

The solution presented in Walker et al. (1989) considers first the homogeneous time-dependent heat 
transfer equation. Classical similarity methods for the homogeneous heat conduction equation consider 
one similarity variable and initial conditions. Equation (8) is non-homogeneous and is subject to boundary 
conditions. To extend the semi-similarity solution developed in Walker et al. (1989) to the non-homogeneous 
case, a new term is considered here, p+τF(η) that is

u0 = p+ τ F (η) + G (η) + g (η) h (τ), (10)

with

(11)η = y+ / 2 τ1/2, τ = t+ + t0

where t +
0  represents the origin of time.

Substitution of Eq. (10) into Eq. (8) yields

(12)
− 1 p+

 F ''(η) + h(τ) g'' (η) + G'' (η)
4 4τ 4τ

− p+  F (η) + 1 p+
 ηF (η) − ηh(τ) g' (η) − ηG' (η) + g (η) h' (τ) = − p+

2 2τ 2τ

The collection of the terms dependent on p+ furnishes a differential equation for F,
F'' (η) + 2 ηF' (η) − 4F (η) + 4 = 0 (13)

The terms that are independent of p+ furnish

2ηG' (η) + G'' (η) = 4τg (η)h' (τ) − h (τ)(2 ηg' (η) + g'' (η)) (14)

In classical similarity methods, separable solutions are easily obtained. The case of Eq. (14) is more 
complicated since two separation constants are required. Divide both sides of Eq. (14) by g(η) and use a 
separation constant, a, to get

2ηG' (η) + G'' (η) − ag (η) = 0 (15)
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4 τg (η)h' (τ) − h (τ) (2 ηg' (η) + g'' (η)) − ag (η) = 0 (16)

Next, divide Eq. (16) by h(τ)g(η) and use a separation constant 2α to obtain

2 ηg' (η) + g'' (η) − 2αg (η) = 0 (17)

4τh' (τ) − 2αh (τ) − a = 0 (18)

An analysis of the role of α on the problem solution is presented inWalker et al. (1989). Only solutions 
of Eqs. (17) and (18) for α = 0 are presented. The separation constant a is set equal to a0 and is related to the 
asymptotic behavior of the time-mean profile for large η.

The solution of Eqs. (13) with conditions F(0) = 0 and F(∞) → 1, is given by

F (η) = 1 − 8
e−η2 HermiteH( −3, η )

√π (19)

The above solution is shown in Walker et al. (1989) with a different representation (Eq. 48); however, 
both forms have been verified and were found to be exactly the same.

Equation (17) is solved with conditions g(0) = 0 and g(∞) → 1, to give

g (η) = erf (η) (20)

To solve Eq. (18), we make a = a0 and integrate directly to find

h (τ) = a0ln τ + A0 (21)

where A0 is the constant of integration.
The solution of Eq. (15) is obtained with conditions G(0) = 0 and G'(0) = 0, and is expressed in terms 

of a special function, Ξ (η), that behaves logarithmically for large values of the argument. This function has 
been extensively studied in Mikhailov and Silva Freire (2012) and for this reason is not further discussed 
here. We may then write,

G (η) = 2a0 Ξ (η)
√π (22)

The preceding solutions are substituted into Eq. (10) to give the instantaneous velocity profile,

u0 = [ (a0 /4) log τ + A0 ] erf η + (2 a0 /π) Ξ (η) − p+τ 1 − 8
 e−η2

 HermiteH( −3, η )
√π (23)

This expression depends on four unknown parameters − a0, A0, t 
+
0  and T 

+
B  − which must be specified 

for prescribed pressure gradients, p+. Walker et al. (1989) proposed to determine these parameters by 
computing the time-average of u0 and forcing the asymptotic form of the resulting expression in the limit of 
high y+ to follow a logarithmic behavior.

MEAN VELOCITY PROFILE

The time-mean averaged profile (U 
+) is evaluated by an integration of Eq. (23) over the average time 

between burts, T 
+
B. Walker et al. (1989) show that this can be made analytically. The resulting expression 
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is very long and for this reason is not repeated here. All expressions used here in the definition of U 
+ were 

checked against Eqs. (53) through (59) of Walker et al. (1989); all results coincided.
The mean velocity profile is required to satisfy conditions

@ U 
+

= 1, @ 
2U 

+
= p+, @ 

3U 
+

= 0    at y+ = 0.
@ y+ @ y+2 @ y+3 (24)

and the previous condition specified by Eq. (3).
Condition (3) immediately gives

a0 =
2
ϰ (25)

A0 = Ci + p+ t 
+
0  +

1
p+ T 

+
B −

γ0 + ln 2
2 2ϰ ϰ (26)

The first condition in Eq. (24) gives

(27)
4p+ ϰ((t 

+
0 )3/2 − ( t 

+
0  + T 

+
B  )3/2) + 3 ( −√πϰ T 

+
B  − √ t 

+
0  ( − 2 + 2A0 ϰ + ln (t 

+
0 ))

+ √ t 
+
0  + T 

+
B   (− 2 + 2A0 ϰ + ln ( t 

+
0  + T 

+
B  ))) = 0

The second condition is satisfied identically. The third condition gives

(28)

Ã

A0

  

− 2
!Ã

1 − 1
!

+ 2p+ 
Ã

√ t 
+
0  −√ t 

+
0  + T 

+
B  
! 

ϰ √ t 
+
0  + T 

+
B  √ t 

+
0

+ 1
Ã

ln( t 
+
0  + T 

+
B  ) − ln t 

+
0
!

= 0
 

2κ √ t 
+
0  + T 

+
B  √ t 

+
0

Equations (26), (27) and (28) can be solved to yield A0, t +
0  and T +

B  . They specify a system of 
transcendental non-linear algebraic equations that needs to be solved numerically.

In Walker et al. (1989) two terms were missing in their Eq. (63), they are

2 − 2
ϰ√ t 

+
0 ϰ√ t 

+
0  + T 

+
B  

(29)

The solution of a system of algebraic non-linear equations is normally carried out in the software 
MathematicaTM through FindRoot. Here, the system of Eqs. (26) to (28) was transformed onto a 
system of differential equations with initial conditions, and solved through NDSolve. The special 
features of NDSolve resulted in a very fast computational procedure and in a very convenient solution 
expressed in terms of interpolation functions. This particular aspect of the present work will be 
discussed in detail elsewhere.

For the computations, the parameter Ci in Eq. (26) was set constant and equal to 5. For flows under a 
variable longitudinal pressure gradient this certainly is not true. However, Walker et al. (1989) performed 
their computations with this restrictive assumption (Ci = 5). So that the present results can be compared 
with those of the original reference, the same hypothesis was adopted here. In any case, provided Ci is 
parameterized in terms of p+, the system of Eqs. (26) to (28) can be easily solved to determine new values 
of A0, t 

+
0  and T 

+
B . See, e.g., the parameterizations presented in Mellor (1966) and Nickels (2004).
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MATHEMATICAL AND PHYSICAL FEASIBLE DOMAINS

The validity of the model proposed by Walker et al. (1989) depends on the resolution of the system of Eqs.
(26), (27) and (28) and on the satisfaction of some mathematical and physical conditions. One evident 
condition, is that parameters A0, t 

+
0  and T 

+
B, be real numbers. Another condition is that t 

+
0  < T 

+
B.

Following is a brief explanation for the last condition. The cycle is considered to begin in the final 
stages of sweep. Parameter t 

+
0  gives the initial distribution of u0 at the beginning of the cycle, at t+ = 0. Since  

T 
+
B  is the dominant time scale of the cycle, t 

+
0  < T 

+
B. According toWalker et al. (1989), typical common 

values of t 
+
0  and T 

+
B are respectively ord(10‒3) and ord(103).

The mean and instantaneous velocity profiles for p+ = 0 are shown in Fig. 1. The logarithmic behavior 
of all profiles for large y+ must be observed. Since all instantaneous profiles are required to tend to the same 
steady solution for large y+, their average is objectively that solution. For small values of y+ solutions are 
dominated by the error function, erf, for large y+ solutions are dominated by the special function, Ξ.

To find parameters A0, t 
+
0  and T 

+
B the software MathematicaTM was used. Solutions were found with 25 

precision digits. Given the above four constrains, the feasible domain of Walker et al.'s model was found to 
be p+ 2 [-0.025, 41.886]. The behavior of A0, t 

+
0  and T 

+
B is shown in Figs. 2 and 3.

The behavior of A0 was not disclosed in Walker et al. (1989). This parameter appears in the integration 
of Eq. (18). Basically, A0 controls the level of function erf. The process is non-linear and difficult to explain, 
but generally as p+ increases, the last term in Eq. (23) becomes large and negative. The other terms of the 
equation must then counterbalance this effeect to keep the global level of the external logarithmic solution 
in accordance with the classical law of the wall. The discussion is further aggravated by the realization that 
the relative magnitude of the terms in Eq. (23) vary with time during a cycle. Consider then the situation at 
the end of a cycle, t+ / T 

+
B = 1. For p+ about three, the negative term achieves its maximum absolute value. 

Also at about this value A0 achieves a maximum (Fig. 2). The contribution of the erf-term in Eq. (23) to 
counterbalance the pressure term reaches its maximum, with about 2/3 of the total contribution. The Ξ-term 
becomes prevalent for p+ > 20.

Figure 1 - Mean (thick line) and instantaneous velocity profiles 

for p+ = 0 (t+/T 
+
B = 0.01, 0.1, 0.2, 0.5, 1).

The characteristic behavior of t 
+
0  and T 

+
B at the extremes of the interval [-0.025, 41.886] where t 

+
0  = T 

+
B, are 

devoid of physical meaning. Let alone the fact that these two time scales should be at least two orders of magnitude 
different, on the left extreme t 

+
0  is too high (= 29.54 s); on the opposite end, T 

+
B is too low (= 0.029 s). To this clear 
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stringency on the validity of the physical model, a second condition can be added; this is discussed below. 
The lowest value of  t 

+
0  is obtained for p+ = 2.9 (= 0.000058).

In the physical model formulation, the instantaneous and mean velocity profiles are always required 
to approach a logarithmic solution in the outer region. Velocity logarithmic profiles are typical of attached 
flows. Once separation occurs, a different velocity profile of the type y1/2 sets in (Stratford (1959), Loureiro 
and Silva Freire (2009, 2011), Loureiro et al. (2008)). Even over rough surfaces a y1/2-profile is observed 
for the mean velocity profile at a separation point (Loureiro et al. 2009).

In Walker et al. (1989), instantaneous and averaged velocity profiles are presented for four combinations 
of p+ and T 

+
B in accordance with typically measured values. For constant pressure flow (p+ = 0.0, T 

+
B = 110.2) 

the canonical boundary layer structure is well reproduced. Under a favorable pressure gradient (p+ = ‒ 
0.098, T 

+
B   = 164), the instantaneous profiles are accelerated as expected. For adverse pressure gradients 

(p+ = 0.11, T 
+
B  = 29.8; p+ = 0.5, T 

+
B = 25), T 

+
B decreases and, for the latter case, reverse instantaneous flow 

is observed over the latter portion of the cycle.
In our computations, the second set of conditions (p+ = ‒ 0.098) could not be reproduced since 

some of the flow parameters were rendered imaginary numbers. All other flows were well reproduced, 
including the instantaneous reverse flow for condition p+ = 0.5 (Fig. 4). However, for p+ = 0, Walker et 
al. (1989) found ( t 

+
0  = 0.008, T 

+
B  = 110.2), whereas we have found ( t 

+
0  = 0.62, T 

+
B  = 103.4).

Figure 2 - Characteristic behavior of A0.

Figure 3 - Characteristic behavior of t 
+
0  and T 

+
B.
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Figure 4 - Mean (thick line) and instantaneous velocity profiles 
for p+ = 0.5 (t+ / T 

+
B = 0.01, 0.1, 0.2, 0.5, 1).

In the instantaneous motion equations, scale velocities were introduced in terms of the friction velocity, 
Eq. (4). As defined in Walker et al. (1989), uτ is obtained from the time-mean structure, which is never 
allowed to admit a y1/2 behavior for the mean-velocity profile irrespective of the value of p+; as a corollary, 
uτ is also never admitted to be negative or zero. However, in an unsteady flow computation, if at two distinct 
instants of time the instantaneous velocity derivatives at the wall change sign, there must be a third instant 
where it is identical to zero. At this instant, the wall scaling variables need to be expressed in terms of the 
local pressure gradient at the wall. In fact, close to a separation point the relevant velocity scale in the wall 
region is upv (= (v / p) (@ pw / @ x)1/3, pw = wall pressure). The conclusion is that in a same cycle, positive and 
negative velocity derivatives at the wall must not be allowed to occur.

To determine the pressure gradient value where flow separation is first observed, consider the extreme 
situation, t+ = T 

+
B , that is, the end of the cycles. Figure (5) shows that du0 / dy+ = 0 at p+ = 0.104996. 

Therefore, if as a further requirement, the model of Walker et al. (1989) is asked to furnish only positive 
derivatives at the wall for the instantaneous velocity, the feasible domain is reduced to p+ 2 [-0.025, 
0.104996]. The behavior of parameters A0, t 

+
0  and T 

+
B can then be better observed in Figs. 6 and 7.

Figure 5 - First derivative of Eq. (23) at the wall and at t+ = T 
+
B as 

a function of p+.
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Figure 6 - Characteristic behavior of A0 with the extra condition 
u'0 (y = 0) > 0.

Figure 7 - Characteristic behavior of t 
+
0 and T 

+
B with the extra 

condition u'0 (y = 0) > 0.

Figure (7) shows that if a fourth condition is considered, that is, ord( t 
+
0  / T 

+
B) = 103, the feasible domain 

is reduced further to p+ 2 [-0.005, 0.104996]. Of course, this is an arbitrary condition based on experimental 
information. However, it does illustrate how Fig. (7) can be used to determine a domain of validity to the 
model of Walker et al. (1989) that is physically meaningful.

FINAL REMARKS

The present work has discussed for the first time the domain of validity of the unsteady wall-layer model of 
Walker et al. (1989) for the velocity profile in turbulent flows.

The model is formulated in terms of some very general considerations on the observed coherent motions 
in the wall region. However, after many simplifications, the flow features are expected to be represented by a 
nonhomogeneous time-dependent, one-dimensional, diffusion equation. Effects due to the structure of the organized 
motions are then restricted to the specification of the duration of a cycle and to the prescription of the external pressure 
gradient. Despite a claim from the original authors, the model is not appropriate to describe transient reverse flows.

To develop the solutions, a special numerical procedure was implemented. The computation of the 
special function Ξ is particularly time consuming, therefore a special evaluation scheme was proposed 
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(Mikhailov and Silva Freire 2012). Real time simulators for the velocity profile were implemented and 
can be obtained from either authors.

Provided a flow representation is required in the interval p+ 2 [-0.010, 0.104496], the following 
parameterization can be used:

(30)A0 = A03(p+)3 + A02(p+)2 + A01p+ + A00

with A03 = 260.0, A02 = -177.7, A01 = 51.3, A00 = 6.0 and a maximum relative error of 0.5% (Figure 8);

(31)T 
+
B = TB2(p+)2 + TB1p+

 + TB0

with TB2 = 719.0, TB1 = -383.7, TB0 = 103.1 and a maximum relative error of 1.5% (Figure 9);

t 
+
0 =

t01
 + t00

( t02+ (p+))2
(29)

with t01 = 0.000646, t02 = 0.0319, t00 = -0.0231.

Figure 8 - Parameterization of A0 in the interval p+ 
2 [-0.010, 0.104496], (Eq. 30). Error % stands for 
100(A0numerical ‒ A0approximate)/A0numerical .

Figure 9 - Parameterization of T 
+
B in the interval p+ 

2 [-0.010, 0.104496], (Eq. 30). Error % stands for 
(TBnumerical ‒ TBapproximate)/TBnumerical .
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Because the values of t 
+
0  span three orders of magnitude, and in view of the low values that this 

parameter attains as p+ → 0.104496, it was difficult to find a simple fit that furnished good results for the 
whole interval. At the extreme right, the relative error given by Eq. (32) is about 30% (Figure 10). However, 
over much of the interval, p+ 2 [-0.010, 0.075], the relative error is below 5%. In any case, equations (11) 
and (23) show that the impact of a large relative error in t 

+
0   on the evaluation of u0 is very small.

The set of Eqs. (23) and (30) through (32) permits a straightforward implementation of the model of 
Walker et al. (1989) in a domain that has physical meaning.

Figure 10 - Parameterization of t 
+
0  in the interval p+ 2 [-0.010, 

0.104496], (Eq. 30). Error % stands for 100(T0numerical ‒ 
T0approximate)/T0numerical .
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RESUMO

O presente trabalho estuda em detalhe o modelo parietal transiente de Walker et al. (1989, AIAA J., 27, 140-149) para 
perfis de velocidade em escoamentos turbulentos. Dois novos termos são adicionados ao sistema transcedental não 
linear de equações que é utilizado para determinar os três principais parâmetros do modelo. Os domínios matemático 
e físico de validade do modelo são determinados como uma função do parâmetro gradiente de pressão adimensional  
(p+). Uma parametrização explícita em termos de p+ é apresentada para o período médio entre eventos (T 

+
B), para a 

origem do tempo (t 
+
0) e para a constante de integração (A0) da equação dependente do tempo. Na presente análise, 

todos os sistemas de equações diferenciais são transformados, resultando em um procedimento computacional rápido 
que pode ser utilizado para o desenvolvimento de simuladores em tempo real.
Palavras-chave: lei da parede, camada limite turbulenta, modelo transiente, domínio de validade, teoria assintótica.
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