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Abstract The present work investigates experimentally the changes on the properties of
horizontal slug flows subject to fluid injection at the wall. Measurements include data
on global flow rates, pressure drop and local mean and fluctuating velocity profiles for
nine different conditions. The properties of the two-phase flow are measured through a
Shadow Sizer system and laser-based sensors. Two distinct flow transpiration rates are stud-
ied, v++

wi = vw/Um = 0.0005 and 0.001. The effects of flow transpiration were observed
to induce bubble break-up and large changes in the passage frequency and characteris-
tic lengths of the unit cells. In addition to the two-phase flow results, single-phase flow
measurements are presented with a view to compare the different turbulent effects intro-
duced by the second phase. The work also proposes modifications in the models of Dukler
and Hubbard (Ind. Eng. Chem. Fund. 14 337–347 (1975)) and Orell (Chem. Eng. Sci. 60
1371–1381 (2005)) so that fluid injection at the wall can be accounted for. All theoretical
predictions are compared with the experimental data.

Keywords Turbulence · Bubble break up · Slug flow · Wall transpiration · Law of
resistance

1 Introduction

Turbulent flow through straight circular pipes is considered by Townsend [1] the most
important class of basic flows bounded by rigid walls. Single phase flows limited by imper-
meable walls are the most symmetrical and homogeneous of all turbulent shear flows and
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have the particular property that all mean values – except pressure – are dependent on one
co-ordinate, the radial direction.

However, once a fluid is introduced uniformly over a porous surface, the details of the
flow change significantly. The addition of mass at the wall implies that solutions must now
incorporate not only the effects of friction but also of acceleration. Turbulent quantities
are further altered by the injection of fluid, in a very complicate manner that has not been
completely understood.

The flow complexities described above are immensely aggravated by the presence of a
second flow phase, gas. In fact, and irrespective of the specified liquid and gas flow rates,
this is a problem that has been deficiently addressed in literature. One particular research
topic of great relevance is the description of slug flow subject to fluid transpiration at the
wall.

The purpose of the present work is to carry out reference experiments in horizontal pipes
with fluid injection at the wall for single- and two-phase (slug) flow patterns. Measurements
of global flow rates and pressure drop are made for different injection rates. In addition, the
work presents local mean and fluctuating turbulent profiles obtained through Laser-Doppler
Anemometry. The properties of the two-phase flow are measured through a Shadow Sizer
system and laser-based sensors. Results showing the effects of fluid injection at the wall
on the translational velocity of unit cells, liquid film length and passage frequency of long
bubbles are also presented. The validity of the law of resistance previously advanced by
Loureiro and Silva Freire [2] for single phase flow is also investigated through the new data.

To account for the effects of fluid injection at the wall on slug flow, modifications in the
unit cell models of Dukler and Hubbard [3] and Orell [4] are proposed. Unit cell models
are of undisputed importance in the numerical prediction of industrial problems. The two
models considered here are based on different modeling parameters. For example, the model
of Dukler and Hubbard [3] (D&H) considers the shape of the large bubbles and a shedding
rate relation for the prediction of the front propagation velocity (Vt ). The model of Orell [4]
considers cylindrical bubbles and uses an input relation for Vt .

In unit cell models, a typical cell is postulated to repeat itself moving down a pipe. Pro-
vided a reference frame exists where the liquid and gas phases are considered to travel in
a fully developed state with about the same velocity, the flow randomness can be encap-
sulated in models with fixed or stochastic cell lengths (Fabre and Line [5]). In the present
work, modifications to account for fluid injection at the wall include an extra acceleration
term and changes in the friction coefficient in the liquid slug. Of course, the continuous
and homogeneous injection of fluid at the wall implies that the unit cell changes properties
locally, in a dynamic behavior that must the tracked by the numerical computations.

Important properties of slug flow including the frequency of unit cells (νs) and the length
(lf ) distribution of long bubbles have not been previously discussed in the literature in
connection with wall transpiration. The flow acceleration provoked by the wall injection of
fluid and the very high levels of turbulence observed in the near wall region are shown here
to exert a large influence on both νs and lf .

The theory of Loureiro and Silva Freire [2] advanced for the prediction of the skin-
friction coefficient in transpired turbulent pipe flows is briefly reviewed here. The unit cell
models of Dukler and Hubbard [3] and Orell [4] for slug flow are also introduced. This
section also shows how both theories are merged to yield a theory for slug flow subject to
wall transpiration.

The experiments are described in a separate section, after which validation of the
theoretical predictions is carried out.
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2 Preliminaries

A discussion on the physics of the effects of fluid injection at the wall on water-air horizontal
slug flow is presented next. The reconstruction of bubble shape was made according to the
fixed window method described in Matamoros et al. [6].

In what follows, v++
wi = vw/Um, where vw is the normal injection velocity at the wall and

Um is the bulk velocity in the entrance section of the pipe.
The shape of a typical bubble at position x = 7 m of the test section of the present

experimental apparatus and with no fluid injection at the wall is shown in Fig. 1. The liquid
slug and liquid film are fully developed and relatively free of small bubbles. Experiments
on the evolution of slug frequencies performed by Ujang et al. [7] indicate that for the range
of liquid and gas flow rates used in the present work, fully developed slug frequencies are
obtained for lengths over 75 pipe diameters. At position x = 7 m, the slug development
length was about 225 pipe diameters.

Fluid injection at the wall is considered next. In the measurement section located 13
meters downstream of the inlet (Figs. 2 and 3), the high levels of near wall turbulence break
up the long bubbles and aerate the flow provoking the appearance of small bubbles in the
whole extent of the unit cell. The perturbations caused by the fluid injection tend to decrease
the mean size of the large bubbles and increase their frequency of passage.

For the lower injection rate, v++
wi = 0.0005, (where the subscript i indicates that Um is

considered at the inlet) the strong disturbances on the body of the large bubble are clearly
visible (Fig. 2). The many detached small bubbles tend to migrate to the upper part of the
pipe, forming a layer of bubbles underneath which the large bubble travels.

An increase in the injection rate (v++
wi = 0.001) thickens the layer of dispersed small

bubbles, forcing the large bubbles to occupy the lower half of the pipe (Fig. 3a). The intense
bubble break up process eventually gives origin to a flow pattern characterized by large
bubbles that are much reduced in size (Fig. 3b–c) and very long and extremely aerated liquid
slugs (Fig. 3d).

The flow pattern shown in Fig. 3 illustrates some of the difficulties that are commonly
associated with the application of experimental techniques for the determination of the flow
properties. The large number of closely packed small bubbles throughout the entire unit cell
tends to distort the signal produced by a given sensor, introducing noise that is difficult to
be interpreted.

Typical signals furnished by a laser phase detection sensor are shown in Fig. 4. At x =
3 m from the pipe inlet, the shapes of the bubbles are still well discerned (Fig. 4a), so that
their lengths and passage frequencies can be characterized. As the turbulence level increases
downstream (x = 13 m), the laser light is strongly scattered giving rise to a signal of difficult
analysis (Fig. 4b).

Fig. 1 Bubble shape at x = 7 meters with no fluid injection at the wall (v++
wi = 0). Ql = 2.46 m3h−1, Qg =

2.06 m3h−1. The top and bottom limits of the pipe are shown in red
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Fig. 2 Bubble shape at x = 7 meters for Ql = 2.46 m3h−1, Qg = 3.2 m3h−1 and v++
wi = vw /Um = 0.0005,

where vw is the normal velocity at the wall and Um is the bulk velocity in the entrance section of the pipe.
The top and bottom limits of the pipe are shown in red

To determine some of the flow properties of interest the choice was then to use the
Shadow Sizer Technique. Bubble lengths and slug frequencies were obtained directly from
high speed photographs.

3 Theoretical Background

For laminar flow, the Navier-Stokes equations can be solved to unveil the dependence of
the velocity components and pressure on position coordinates, pipe dimensions and fluid
properties. Berman [8] proposed a classical solution for two-dimensional, incompressible,
steady-flow in a channel. Other authors have examined Berman’s solution to consider
pressure-dependent wall suction [9] or the effect of slip boundary condition [10].

The above mentioned analyses consider symmetric flows in ducts with symmetric bound-
ary conditions. Extension of the solutions to circular pipes were provided, e.g., by Erdogan
and Imrak [11] and Tsangaris et al. [12].

For high Reynolds number flow, the search for analytical solutions is much complicated
by the natural requirement of turbulence closure. Additionally, turbulent flow is known to
be sensitive to wall roughness. For external flow, some authors have resorted (Stevenson

Fig. 3 Bubble shape at x = 13 m (a-b-c) and liquid slug pattern (d), for Ql = 2.7 m3h−1, Qg = 2.6 m3h−1

and v++
wi = 0.001. The top and bottom limits of the pipe are shown in red
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Fig. 4 Typical signals of the phase detection sensor. The highest values of E correspond to the liquid phase

[13], Simpson [14], Silva Freire [15]) to simple algebraic closure hypotheses and pertur-
bation arguments to develop local analytical solutions for the fully turbulent region. These
solutions exhibit bi-logarithmic terms and incorporate the effects of local Reynolds number
and transpiration rate. One prominent feature of the resulting solution is the dependence of
an integration parameter on the transpiration rate.

The underlying assumption of the above mentioned analytical methods is that flow tran-
spiration at the wall is homogeneous. Some applications, however, need to be approached
differently. They consider fluid injection through isolated perforations, so that frictional
losses need to be described through a decomposition of effects: wall friction and mixing
effects. The latter effect is compared to the problem of multiple interacting jets in a cross
flow. This approach results in a very intricate analysis so that only external empirical evi-
dence can be used to determine the correct behavior of the pressure loss. Fortunately, in
many applications the injection of fluid over the wall is to a good approximation uniform.
Typical examples include the thermal protection of walls, filtration or the production of oil
in horizontal or vertical wells.
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The law of resistance introduced in Loureiro and Silva Freire [2] is valid for single-phase
flow and incorporates the effects of roughness and wall transpiration. The law is derived
from a perturbation solution (see also Silva Freire [15]); a short presentation of the main
results follows next.

3.1 Resistance law for single phase flow in smooth pipes

The friction coefficient f can be defined through

p1 − p2

L
= f

D

ρ

2
U2

m, (1)

where D denotes the pipe diameter, Um is the mean flow velocity and L the length of the
fluid portion.

For very large Reynolds numbers, the velocity distribution in the near wall fully turbulent
region is given by

u

u∗
= 1

κ

ln
(yu∗

ν

)
+ A, (2)

where y is the wall distance, u∗ is the friction velocity (=
√

τw/ρ), κ (= 0.4) is von Karman’s
constant and A = 5.5 (Schlichting [16]).

The integration of Eq. (2) over the cross-sectional area of a pipe shows that the universal
law of friction for a smooth pipe should yield a straight line provided f −0.5 is plotted against
log(Ref

0.5). Validation against the data of different experiments (Schlichting [16]) shows
that

1√
f

= 2.0 log
(
Re

√
f

)
− 0.8, (3)

with Re = UmD/ν.

3.2 Resistance law for single phase flow in smooth pipes with wall transpiration

For flow subject to wall transpiration, Eq. (3) is clearly ineffective. One effect of fluid
transpiration in pipe flow is to distort the velocity distribution throughout the pipe diameter
so that friction drag is either reduced or increased. Thus, any advanced equation for the
estimation of the friction coefficient should explicitly incorporate the transpiration rate in
addition to the bulk velocity.

In Silva Freire [15], the matched asymptotic expansions method was applied to the equa-
tions of motion to find a law of the wall with a bi-logarithmic term. Comparison with
some experimental data showed the additive parameter A to vary with the transpiration rate
according to

u+ = 1

κ

ln
(
y+) + A + �

κ

W
(y

δ

)
+ v+

w

(
1

2κ
ln

(
y+) + A

2

)2

+ �̃

κ

W
(y

δ

)
, (4)

with u+ = u/u∗, y+ = yu∗/ν, v+
w = vw/u∗, vw = normal velocity at the wall and

A = 5 − 512
vw

U
, (5)

where U is the maximum velocity at the pipe centerline and parameters �, �̃ and function
W are related to the universal wake function.



Flow Turbulence Combust (2017) 98:923–945 929

The integration of Eq. (4) over the cross-sectional area of a pipe gives

Um = U − 3.75u∗ − vw(1.86A + 2.34 ln(Re+2
) − 5.47), (6)

with Re+ = Ru∗ν−1.
Considering that

Um

u∗
= 2

√
2√

f
, (7)

further algebraic manipulations yield

1 =
√

f

2
√

2
(2.5 ln(Re+) + A − 3.75)

+v++
w (1.56 ln2(Re+) + (1.25A − 4.68) ln(Re+) + A2

4
+ 1.86A + 5.47), (8)

where

v++
w = vw

Um

and Re+ = UmD

ν

√
f

4
√

2
. (9)

The transcendental equation, Eq. (8), gives f for known values of Re+ and v++
w .

3.3 Resistance law for single phase flow in rough pipes

For a rough pipe, Nikuradse [17] showed the law of resistance to reduce to

u

u∗
= 1

κ

ln

(
y

ks

)
+ B, (10)

where ks is a characteristic length of the roughness and B = 8.5 (completely rough regime).
In fact, B is a function of Rek (= ksu∗ν−1). The behavior of B for the three types of flow

regime discussed in Nikuradse [17] has been largely discussed in literature.
Ligrani and Moffat [18] suggest

B = 8.5σ + 1 − σ

κ

ln (Rek) + (1 − σ)C, (11)

where Rek = ksu∗/ν, C = 5.1 and σ = sin((1/2)πg) with

g = ln
(
Rek/Rek,s

)

ln
(
Rek,r/Rek,s

) , (12)

Rek,s = 5, Rek,r = 70 and this approximation is valid in the range 5 ≤ Rek ≤ 70. For Rek

> Rek,r , g = 1, whereas for Rek < Rek,s , g = 0.
A resistance formula for flow in a rough pipe can then be obtained by integrating Eq. (10)

over the cross-sectional area of a pipe. The result is

f = (0.88 ln(R/ks) + 0.35B − 1.33)−2 . (13)

A comparison of Eq. (13) with the experiments of Nikuradse shows that for a fully rough
regime the logarithmic additive term should be replaced by 1.74.
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3.4 Resistance law for single phase flow in rough pipes with wall transpiration

A law of resistance for rough pipes with wall transpiration can now be advanced provided
the results of the previous sections are considered. Let us define Re++ = R/ks and Ak = B

− 512 vw/U . It follows immediately from Eqs. (8) and (13) that

1 =
√

f

2
√

2
(2.5 ln(Re++) + Ak − 3.75) + v++

w (1.56 ln2(Re++)

+(1.25Ak − 4.68) ln(Re++) + A2
k

4
+ 1.86Ak + 5.47). (14)

3.5 Unit cell models

The motion of large bubbles in a vertical liquid stream was studied by Dumitrescu [19],
Davies and Taylor [20] and Nicklin et al. [21]. Wallis [22] discussed horizontal and vertical
slug flows from the point of view of a unit cell. Compared to the simplicity of the origi-
nal works, the model advanced by Dukler and Hubbard [3] was much more evolving. The
model is based on the observation of a two-layered system. A fast moving slug overruns a
slow moving film that is shed behind the upstream Taylor bubble and mixes with the sur-
rounding fluid due to turbulence diffusion. Pressure drop is thus assigned to two effects: (i)
the pressure drop that results from the acceleration of the slow moving liquid film to the full
slug velocity and (ii) the pressure drop required to overcome the wall shear in the back sec-
tion of the slug. The model predicts the unit cell velocity, slug velocity, film velocity, slug
length, mixing eddy length and the length of the film region.

Recently, the unit cell model was given more simplified formulations. The work of Orell
[4] considers a uniform film thickness (thus a cylindrical bubble) and disregards end effects
so that the flow in the film region can be treated as stratified flow. The nose of the elongated
bubble and the slug unit travel with a velocity that is specified through an experimental
correlation.

In literature, the details of the D&H model vary according to authors. In fact, some of
the implementations are completely uncharacteristic to the original model, with additional
hypotheses that often conflict with the considered modeling principles. In the following,
both models are summarized so that no doubt remains regarding their implementation
details.

3.5.1 The model of Dukler and Hubbard

The idealized unit cell slug model of Dukler and Hubbard [3] (Fig. 5) consists of a long
bubble travelling over a liquid film that is followed by a liquid plug with a strong mixing
region at the front. Since in the film region pressure is essentially constant, pressure losses

Fig. 5 The physical model of Dukler and Hubbard [3]
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are confined to the liquid slug region where they can be considered to result from the two
effects described above: the acceleration of the slow moving liquid film to the unit cell
velocity and the pressure loss required to overcome the wall shear stress in the main part of
the liquid slug (Dukler and Hubbard [3]).

The mean velocity of the liquid slug (Vs) is very close to the mixture velocity (Vm),

Vs = 1

A

(
WL

ρL

+ WG

ρG

)
, (15)

where W is the mass flow rate and the subscripts L and G indicate the liquid and gas phases.
A is the area of the cross section of the pipe.

The effective Reynolds number in the liquid slug can be evaluated from

Res = DVs

ρLRs + ρG(1 − Rs)

μLRs + μG(1 − Rs)
, (16)

where Rs is the liquid holdup and ρ stands for density.
The translational velocity of the unit cell is the mean velocity of the liquid slug added

to the apparent velocity gained by fluid shedding from the preceding liquid slug. Parameter
CDH expresses the ratio of the rate of shedding to the rate of flow in the liquid slug. A mass
balance performed over a cross section of the flow in the liquid slug region can be used to
estimate the shedding rate so that CDH can be expressed as

CDH = 0.021 ln Res + 0.022. (17)

There follows immediately that the translational velocity of the unit cell can be found from

Vt = (1 + CDH )Vs. (18)

To find the pressure drop due to the acceleration of the film, the fractional area occupied
by the film at the rear of the long bubble and the mean velocity at this position need to be
known. The momentum and mass balances applied to the film region yield

∫ Rs

Rf e

W(Rf )dRf = lf

D
, (19)

and
Vt

νs

− lf = Vs

νs(Rs − Rf e)

[
WL

ρLAVs

− Rf e + CDH (Rs − Rf e)

]
, (20)

where, νs is the frequency of passage of unit cells, lf the film length, Rf e the liquid holdup
of the film just before pick-up, and

W(Rf ) =
C2

DH R2
s

R2
f

− 1
Fr

(
π
2 Rf sin θ

2 +sin2 θ
2 cos θ

2
1−cos θ

− 1
2 cos θ

2

)

ff B2 θ
π

+ Rf

Fr
sin β

, (21)

B = 1 − CDH

(
Rs − Rf

Rf

)
, (22)

Rf = θ − sin θ

2π
, (23)

Fr = V 2
s

gD
, (24)

Ref = 2πBRf

θ
Res, (25)

ff = 0.0791Re−0.25
f . (26)
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The solution of Eqs. (19) and (20) furnishes lf and Rf e. θ is the angle that subtends the
liquid film, as illustrated in Fig. 5b (see Dukler and Hubbard [3]).

The above equations can be rearranged to find θf e through an equation with the general
form,

F(θf e) =
∫ θS

θf e

W�(θ)dθ − G(θf e) = 0, (27)

W�(θ) =

C2
DH R2

s(
θ−sin θ

2π

)2 − 1
Fr

(
π
2

(
θ−sin θ

2π

)
sin θ

2 +sin2 θ
2 cos θ

2

1−cos θ
− 1

2 cos θ
2

)

0.0791
(

B(θ−sin θ)
θ

Res

)−0.25
B2 θ

π
+

(
θ−sin θ

2π

)

Fr
sin β

, (28)

G(θf e) = Vs

νsD
[
Rs −

(
θf e−sin θf e

2π

)]
{

WL

ρLAVs

−
(

θf e − sin θf e

2π

)
+ CDH

[
Rs −

(
θf e − sin θf e

2π

)]}
− Vt

νsD
. (29)

Provided Rf e is known, parameter Vf e can be determined from:

Vf e = Vs

[
1 − CDH

(
Rs − Rf e

Rf e

)]
. (30)

The rate of liquid pick-up, the length of the liquid slug and the length of the mixing
vortex region, can then be evaluated from

x = CDH ρLARf e(Vt − Vf e), (31)

ls = Vt

νs

− lf , (32)

lm = 0.3(Vs − Vf e)
2

2gc

(
ρL

sL

)
, (33)

where gc is a conversion factor and sL is the specific weight of the liquid.
The total pressure loss is finally found from

�P = �Pa + �Pf , (34)

where

�Pa = x

A
(Vs − Vf e), (35)

�Pf = 2fs[ρLRs + ρG(1 − Rs)]V 2
s (ls − lm)

D
, (36)

and fs is the friction factor for the liquid slug.

3.5.2 The model of Orell [4]

The model of Orell [4] is based on the simplified model presented in Taitel and Barnea
[23]. The model considers uniform film thickness and takes into account the increase of the
apparent viscosity in the liquid slug due to the presence of air bubbles (Fig. 6).
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Fig. 6 The physical model of Orell [4]

The mass balance equations for the liquid and the gas phases are:

VSL = VsRs

ls

lu
+ Vf Rf

lf

lu
, (37)

and

VSG = Vs(1 − Rs)
ls

lu
+ VG(1 − Rf )

lf

lu
, (38)

where VG is the velocity of the gas phase and Vs is given by Eq. (15).
A liquid mass balance relative to a coordinate system that moves with the unit cell

velocity furnishes

(Vt − Vf )Rf = (Vt − Vs)Rs, (39)

where Vt is determined through the experimental expression advanced by Nicklin et al. [21]

Vt = CVm + Vd, (40)

where C = 1.2, Vm is the mixture velocity and Vd (=0.54
√

gD for horizontal flow) is the
bubble drift velocity.

Combination of the momentum equation for both phases results in

τf Sf − τiSi

Af

= τGSG − τiSi

AG

, (41)

where

τf = 1

2
ff ρLV 2

f , (42)

τG = 1

2
fGρGV 2

G, (43)

τi = 1

2
fiρG(VG − Vf )2, (44)

ff = Cf

[ρLVf Dhf /μL]m , (45)

fG = CG

[ρGVGDhG/μG]m , (46)

fi = 0.0142, (47)

with Cf = CG = 0.046 and m = 0.2 for turbulent flow.
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The liquid slug holdup is given by the correlation of Andreussi and Bendiksen [24],
reformulated by Andreussi et al. [25]:

Rs = 1 − Vm/
√

gD − F0

Vm/
√

gD + 2400Bo−3/4
, (48)

where

Bo = (ρL − ρG)gD2

σ
, (49)

F0 =
⎧⎨
⎩

2.6

[
1 − 2

(
D0
D

)2
]

, if D ≥ √
2D0

0, else
(50)

where σ denotes the surface tension and D0 = 0.025 m.
Equations (37) through (41) define a nonlinear system that needs to be solved for four

variables: θ , Vf , VG, ls/ lu. All four variables can be written in terms of θ , so that just one
transcendental equation needs to be solved numerically.

The pressure drop can be directly calculated as the sum of the losses in the liquid slug
and liquid film:

�P

lu
= 2

fs

D
ρsV

2
s

ls

lu
+ τf Sf − τiSi

Af

lf

lu
, (51)

where

ρs = ρLRs + ρG(1 − Rs), (52)

μeff = μL[1 + 2.5(1 − Rs)], (53)

Res = ρsVsD

μeff

, (54)

fs = 0.046Re−0.2
s . (55)

The model evaluates the pressure gradient directly, without the need to specify the
pressure drop per unit cell. As such, no information about frequency or slug length is
necessary.

3.6 The effects of wall transpiration on unit cell modeling

Uniform mass injection through a pipe wall alters the pressure drop due to the acceleration
of the injected fluid in the axial direction. The pressure drop resulting from wall shear is
also affected through a dual effect: the fluid injection increases the mixture velocity of the
flow but decreases the liquid friction coefficient.

In particular, the following flow parameters may be expected to increase: the slug transla-
tional velocity, the length of the unit cell, the frequency of slug passage and the acceleration
pressure drop.

Since the length of the unit cell is unknown and the mixture velocity depends on the
amount of liquid that is transpired through the wall, an iterative scheme needs to be used to
find Vs and all other flow properties, which now obviously change from cell to cell. Thus,
in the extension of the model of Dukler and Hubbard to transpired walls, the addition of
mass has to be considered in Eqs. (15) through (36).
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Equation (35) in particular needs to be modified to

�Pa = x

A
(Vs − Vf e) + Ww

A
Vt , (56)

where Ww is the wall mass flow rate.
The friction coefficient needs to be modified according to Eq. (14) due to its dependence

on the injection rate and bulk velocity.
The changes in fs (Eq. (14)) as a function of the slug Reynolds number and the injection

rate are shown in Fig. 7.
The model of Orell furnishes predictions of θ , Vf , VG, ls/ lu from which pressure losses

can be inferred. Of course, with the fluid injection at the wall, VSL, Vt (through Vm) and Rs

vary from cell to cell. The friction coefficients, ff and fs , vary with the local injection rate
also according to Eq. (14).

The additional acceleration term to be considered in the model of Orell due to fluid
injection at the wall is

�P

lu
= 4ρLvw

Vt

D
. (57)

An important input parameter in mechanistic slug flow models is the passage frequency
of slugs, νs . Several correlations can be found in literature, based on empirical and mecha-
nistic reasonings. In the following, the correlation presented in Zabaras [26] was used. This
author analized 339 data points to propose the following correlation

νs = 0.0226

(
VSL

gD

)1.2 [
19.75

Vm

+ Vm

]1.2

[0.836 + 2.75 sin0.25(β)]. (58)

The above expression is to be used in IS units and β is the inclination of the pipe.

4 Experiments

Limited experimental works have been conducted for turbulent flow in porous pipes. The
investigation of Olson and Eckert [27] described the effects of continuous mass injection

Fig. 7 Dependence of fs on Res and v++
wi
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at the wall in the shape of the velocity profile and in the pressure loss. Results on friction
factor and eddy diffusivity were also discussed. Su and Gudmundsson [28] and Ouyang
et al. [29] provided further experimental data; the latter authors, in particular, considered
also two-phase flows.

The present test section was assembled from 15 one-meter long units (31.75 mm in diam-
eter) consisting of three concentric stainless-steel tubes, as shown in Fig. 8. Water injected
in the plenum chamber defined by the outermost circular ring migrates to the intermediate
porous region and then onto the innermost producing pipe. Every one-meter long unit was
fitted with two pressure taps and a dedicated magnetic flowrate meter. The units were con-
nected together through a system of aligned flanges. Four plexiglass inspection windows
were installed to allow for local velocity measurements and characterization of the two-
phase flow properties. Air and water were mixed in a T-junction located one meter upstream
of the inlet of the porous pipe. A schematic diagram of the experimental setup is shown in
Fig. 9.

Turbulent quantities were measured by a two-component Dantec Laser-Doppler
Velocimetry System (LDV). The properties of the slug flow were measured through a Dan-
tec Shadow Sizer System (SSS). Additionally, laser diodes and photo detectors were used
to measure the properties of the two-phase flow along the pipe, so that changes in slug
frequency, bubble velocity and lengths of the liquid slug and liquid film could be assessed.

The working principle of the phase detection sensor was very simple. A pair of diode
lasers was aligned to a pair of photo detectors. Upon the passage of a large bubble, the laser
beam was deflected by the interface, missing its target detector. An analog circuit was then
used to condition the signal in a 0-8.5 Volts range. The highest voltage corresponded to the
presence of the liquid phase. An A/D converter together with further processing was used
to define the train of bubbles.

For data reduction of the single phase model, the pressure losses due to flow acceleration
needed to be accounted for. Pressure losses in a porous pipe with wall injection increase the
momentum flux and overcome wall friction. A momentum balance on a control volume of
length dx and radius R shows that the wall shear stress in given by

τw = −1

4

[
dp

d(x/D)
+ d(βρU2

m)

d(x/D)

]
, (59)

where β, the momentum flux factor, is the ratio of the real momentum flux through a given
cross section to that based on one-dimensional flow at the mean velocity.

Fig. 8 Description of the test section: a) dimensions of the concentric pipes, b) detail of the one-meter long
units
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(a) (b)

Fig. 9 Schematic diagram of the flow loop and test sections: (a) general view, (b) components of the
experimental apparatus

For a full discussion on Eq. (59), please, refer to Olson and Eckert [27].

5 Results and Discussion

5.1 Single-phase flow

The roughness length (ks) of the test pipe was determined from single-phase water flow
experiments with no injection at the wall. Various tests with Reynolds number varying from
6,000 to 100,000 were performed to find ks (= 0.000334 m).

Two distinct flow transpiration rates were studied to characterize the flow in the porous
pipe, v++

wi = vw/Um = 0.0005 and 0.001, where Um is the bulk velocity in the entrance
section of the pipe. In the tests, the injection rate was kept constant in all of the fifteen
one-meter long pipe segments.

The agreement provided by the predictions of Eq. (14) with the experimental data
(Fig. 10) is very good despite the fact that the parameters in Eq. (14) were not particularly
adjusted to fit the present experimental data. The values of the constants are the values pre-
sented in Loureiro and Silva Freire [2], and are based solely in the analysis of Silva Freire
[15].

Fig. 10 Total pressure drop distributions for single-phase flow. Comparison between results for the unblown
case and two different transpiration rates
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Fig. 11 Comparison between the results for the unblown case and two different transpiration rates studied:
logarithmic mean velocity distributions

To investigate the logarithmic character of the velocity profile, Eq.(4) is re-written in the
form


 = 2

v+
w

[(
v+
wu+ + 1

)1/2 − 1
]

= 1

κ

ln y+ + A. (60)

The mean velocity profile for all transpiration rates are shown in Fig. 11 according to the
coordinates defined by Eq. (60). The existence of a bi-logarithmic region is plausible, with
the level of the log-region decreasing as vw increases.

5.2 Two-phase flow

The two-phase flow experiments were conducted for the conditions shown in Table 1.
To characterize the influence of the transpiration flow rate on the slug flow behavior, the

Shadow Sizer System was positioned at transparent windows located at positions x = 3, 7
and 13 metres downstream of the inlet section. A NanoSense MKIII camera provided high
resolution images (1289 x 1024 pixels) at 2000 fps.

Table 1 Conditions of the
multiphase flow experiments.
v++
wi (= vwU−1

m ) where vw is the
normal injection velocity at the
wall and Um is the bulk velocity
in the inlet section of the pipe

Condition Ql [m3h−1] Qg [m3h−1] v++
wi

1 2.46 1.38 0.0

2 2.46 1.22 0.0005

3 2.46 2.06 0.0

4 2.46 1.81 0.0005

5 2.46 1.60 0.0010

6 2.85 1.45 0.0010

7 2.85 1.90 0.0010

8 2.85 3.59 0.0

9 2.85 2.54 0.0010
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Fig. 12 Laser-Doppler anemometry measurements: (a) mean velocity profiles and (b) longitudinal velocity
fluctuations for the single and two-phase flow conditions with and without flow transpiration. Profiles were
normalized by pipe diameter D and centerline velocity U . The mixture velocity at position x = 6 m was kept
at Vm = 0.34 ms−1 for all test conditions

The local turbulent properties of the continuous phase in the liquid slug of transpired
flows are discussed next. In particular, Fig. 12 illustrates the large degree of flow agitation
provoked by the addition of mass at the wall. The flow conditions at the measuring station
(x = 6 m) were adjusted so that the mixture velocity was kept at about Vm = 0.34 ms−1 for
all test conditions. For both injection rates, high levels of turbulence are noticed throughout
the cross section of the pipe for the two-phase flows. The phase interaction and the resulting
bubble break up naturally induce the formation of turbulent wakes with the consequent
general increase of turbulent intensity. Figure 12 shows that the increase in the streamwise
velocity fluctuations can reach 2 to 3 times the levels found for single-phase flow. For the
highest injection rate (v++

wi = 0.001), a peak value of 0.17U can be observed near the wall
for

√
< u′u′ >/U .

The changes in the lengths of the long bubbles as a result of the increase in turbulence
level due to the wall injection are shown in Fig. 13. Measurements were carried out at

Fig. 13 Probability density
function for the length of long
bubbles in slug flow subject to
wall injection
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Fig. 14 Probability density
function for the velocity of long
bubbles in slug flow subject to
wall injection

position x = 7 m. For a fixed value of Ql (= 2.6 m3h−1) and Qg about 2 m3h−1 (± 0.4), the
increase of v++

wi largely reduces lf . For zero injection rate, the average value of lf (μlf ) is
0.443 m. With injections of v++

wi = 0.0005 and 0.001, μlf is reduced to 0.243 and 0.194 m
respectively.

The addition of mass at the wall impacts on the translational velocity of the large bubbles
as shown in Fig. 14. The highest injection rate provokes an increase of 20 % in Vt .

The effects of flow injection on the passage frequency of bubbles is shown in Fig. 15.
The large increase in νs (50 %) as v++

wi varies from 0.0 to 0.001, results possibly from the
combined effects of the break up of the large bubbles and the increase in Vt .

Of course, the physical processes illustrated in Figs. 13 to 15 cannot be reproduced by the
unit cell models previously discussed. However, it is of interest to study the results provided
by the changes suggested in Subsection 3.6 on the prediction of slug flow properties.

The measured total pressure losses are compared with predictions obtained through the
models of D&H and Orell in Figs. 16 through 18.

The total pressure losses for flows without transpiration are shown in Fig. 16. For the low-
est liquid and gas flow rates (Ql = 2.46 m3h−1; Qg = 1.38 m3h−1) the agreement between

Fig. 15 Probability density
function for the passage
frequency of long bubbles in slug
flow subject to wall injection
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Fig. 16 Pressure drop predictions for two-phase flow without wall transpiration

Fig. 17 Pressure drop predictions for two-phase flow with wall transpiration, v++
wi = 0.0005 (a) and 0.001

(b)
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Fig. 18 Pressure drop predictions for two-phase flow with wall transpiration, v++
wi = 0.001

theories and experiments is within 11 % (D&H) and 3 % (Orell) in error. For the intermedi-
ate flow rates (Ql = 2.46 m3h−1; Qg = 2.06 m3h−1), the maximum differences reach 7 %
(D&H) and 2 % (Orell). For the highest flow rates (Ql = 2.85 m3h−1; Qg = 3.58 m3h−1),
differences between predictions and experiments are below 3.5 % (D&H) and 3 % (Orell).

The increase in pressure drop in flows where fluid injection at the wall occurs is illus-
trated in Fig. 17a for the liquid flow rate Ql = 2.46 m3h−1 and injection rate v++

wi = 0.0005.
For the two gas flow rates considered (Qg = 1.22 m3h−1 and 1.81 m3h−1) both modified
models underpredict the experimental results. For the lowest Qg , D&H and Orell under-
estimate the experimental data by 20 % and 25 % respectively. For the higher Qg , the
differences are within 15 % (D&H) and 18 % (Orell).

For the flow with Ql = 2.46 m3h−1 and injection rate v++
wi = 0.001, the models

underpredict the pressure drop by 10 % (D&H) and 11 % (Orell) (Fig. 17b).

Fig. 19 Evolution of Vt with flow injection at the wall according to the model of D&H [3]
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Fig. 20 Evolution of ls and lu with flow injection at the wall according to the model of D&H [3]

To all of the above three experimental conditions, the predictions provided by the Orell
model always gave lower results than those provided by the model of D&H. However, it
must be noticed that as Qg increases, results given by both models become very close.

For flows with Ql = 2.85 m3h−1 and injection rate v++
wi = 0.001, three different values of

Qg were tested: 1.45, 1.90 and 2.54 m3h−1 (Fig. 18). The distinction in predictions between
the models of D&H and Orell is very small. Both models underestimate the experimental
data by 25 %, 23 % and 18 % as Qg increases.

The effects of flow injection on Vt are shown in Fig. 19a–b according to predictions of
the extended D&H model. The increase of the mixture velocity in the flow axial direction
provokes an increase in Vt for all flow conditions. Experimental results of Vt are shown
in Fig. 19a for x = 7 m. The values of Vt furnished by the D&H model underpredict the
measured data by 3 %, 6 % and 4 % for Qg = 1.60, 1.81 and 2.06 m3h−1, respectively.

The overall behavior of ls and lu is shown in Fig. 20a–b. The wall addition of mass
always increases ls . The behavior of lu through the model of D&H, however, varies with
the gas flow rate. For the lowest gas flow rate lu increases with position, but for the highest
flow rate lu does not vary significantly along the length of the pipe.

6 Conclusions

The present work has studied the behavior of single- and two-phase flows in horizontal pipes
with fluid injection at the wall. Nine new experimental data sets are presented. In particular,
the work discusses the mechanics of bubble break up by turbulence and the resulting effects
on changes in the translational velocity, film length and the passage frequency of unit cells.

For single-phase flow, the results show that Eq. (14) furnishes pressure drop predictions
that are good with an accuracy of about 3 %.

All two-phase flow experimental data are compared with extended versions of the theo-
ries of Dukler and Hubbard [3] and Orell [4]. Emphasis has been placed on the prediction
of pressure distribution, but results for other properties including the translational velocity
and characteristic lengths are discussed. The unit cell models are shown to furnish pressure
distribution predictions about 20 % below the experimental data.
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The corrections on the friction coefficient were observed to impact as much as 11 % on
predictions of the total pressure loss, although in average changes were of the order of 4 %.
The acceleration corrections impacted the results in average on 12.5 %, with peak values of
14 %.
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