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Abstract
Purpose – The purpose of this paper is to propose the generalized integral transform technique
(GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by
employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis.
Design/methodology/approach – The original nonlinear boundary condition coefficients in the
problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself
integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic
eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the
transformed ordinary differential system. The nonlinear eigenvalues computation may also be
accomplished by rewriting the corresponding transcendental equation as an ordinary differential
system for the eigenvalues, which is then simultaneously solved with the transformed potentials.
Findings – An application on one-dimensional transient diffusion with nonlinear boundary condition
coefficients is selected for illustrating some important computational aspects and the convergence
behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution
with a linear eigenvalue problem basis is also presented and implemented.
Originality/value – This novel approach can be further extended to various classes of nonlinear
convection-diffusion problems, either already solved by the GITT with a linear coefficients basis,
or new challenging applications with more involved nonlinearities.
Keywords Diffusion, Hybrid methods, Integral transforms, Eigenvalue problem,
Nonlinear boundary conditions, Nonlinear problems
Paper type Research paper

International Journal of Numerical
Methods for Heat & Fluid Flow

Vol. 26 No. 3/4, 2016
pp. 767-789

©Emerald Group Publishing Limited
0961-5539

DOI 10.1108/HFF-08-2015-0309

Received 3 August 2015
Revised 5 October 2015

Accepted 13 October 2015

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/0961-5539.htm

The authors would like to acknowledge the partial financial support provided by CNPq and
FAPERJ, sponsoring agencies in Brazil. The authors would also like to express their sincere
gratitude for the kind and honoring invitation by the Editor-in-Chief of the IJNMHFF, Professor
Roland Lewis, to participate in this special issue.

767

Nonlinear
eigenvalue
problem

D
ow

nl
oa

de
d 

by
 U

FR
J 

A
t 1

1:
14

 1
3 

M
ay

 2
01

9 
(P

T
)



Nomenclature
Bic Characteristic convective Biot

number, Equation (29e)
Bir Characteristic radiative Biot

number, Equation (29e)
Bi(T(1, t)) Nonlinear combined Biot

number, Equation (29e)
d(x) Dissipation operator coefficient,

Equations (1a) and (13a)
f(x) Initial condition, Equations (1a)

and (13a)
k(x) Diffusion operator coefficient,

Equations (1a) and (13a)
M Truncation order of the algebraic

eigenvalue problem
Ni Normalization integral of the

eigenvalue problem, Equations
(7) and (24)

P(x, t, T) Nonlinear source term appearing
in Equations (1a) and (13a)

T(x, t) Potential
TF(x, t) Filtering solution,

Equation (2).
t Time variable
x Space variable
x Position vector
w(x) Transient operator coefficient,

Equations (1a) and (13a)
α, β Coefficients for the boundary

condition, Equations (1c) and
(13c)

γ Parameter in radiative Biot
number, Equation (29e)

μi Eigenvalues of problems (5)
and (17)

ψi Eigenfunctions of problems (5)
and (17)

ϕ(x, t, T) Nonlinear source term appearing
in Equations (1c) and (13c)

1. Introduction
Nonlinear diffusion and convection-diffusion problems provide the mathematical
formulations of major interest for most applied research in transport phenomena.
The numerical solution of nonlinear problems in the realm of discrete approaches is
widely documented, and systematically compiled in different sources, for instance
(Minkowycz et al., 2006), through the use of well-established computational approaches
such as the best known finite differences, finite elements and finite volumes methods.
Nevertheless, it has always been desirable to obtain analytical solutions, even if just
approximate, for such a wide class of problems, either for verification of purely
numerical solutions or for the development of more robust, precise and cost effective
computational approaches. Hybrid numerical-analytical computational approaches for
nonlinear partial differential equations not only have been calling more attention in
recent years, for the reasons discussed above, but have also been pushed forward in
dealing with computationally intensive tasks, such as optimization, inverse problem
analysis and simulation under uncertainty. Then, the analytical framework can be
particularly beneficial in reducing overall computational costs, allowing in addition for
the direct mathematical manipulation of the deduced expressions, even if part of the
information for constructing the final solution is still obtained by numerical algorithms.
In this sense, the combined use of hybrid approaches with modern symbolic
computation platforms can be particularly symbiotic.

In this context, the hybrid numerical-analytical solution of nonlinear diffusion
problems through integral transforms has been proposed back in 1990 (Cotta, 1990),
by extending the ideas in the so called generalized integral transform technique (GITT),
as reviewed and compiled in different sources since then (Cotta, 1990, 1993, 1994, 1998;
Cotta and Mikhailov, 1997, 2006). The main idea behind the application of the GITT
to nonlinear problems (Cotta, 1990), afterwards progressively extended to various
classes of problems with nonlinear coefficients including the boundary layer and
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Navier-Stokes equations (Serfaty and Cotta, 1990, 1992; Cotta and Serfaty, 1991; Leiroz
and Cotta, 1993; Ribeiro and Cotta, 1995; Cotta and Ramos, 1998; Machado and Cotta,
1999; Leal et al., 2000; Macedo et al., 2000; Alves et al., 2001; Cotta et al., 2007; Pontedeiro
et al., 2007), is to first of all rewrite the problem formulation, grouping all of
the nonlinear information on the equation and boundary conditions operators, into the
corresponding source terms within the domain or at the boundary surfaces. Then, the
problem is reinterpreted as one of linear differential operators but with nonlinear
sources, which naturally leads to a choice of basis for the eigenfunction expansions
through the characteristic linear coefficients that were adopted to reformulate the
problem. Once the eigenvalue problem with linear coefficients is solved for, the integral
transformation procedure is analytically implemented to yield a coupled system of
nonlinear ordinary differential equations (ODEs) for the transformed potentials, which
is either an initial value problem for parabolic and parabolic-hyperbolic formulations,
or a boundary value problem for elliptic formulations. The transformed system, in the
case of a general nonlinear situation, is then numerically solved for the transformed
potentials, and the inverse formula is then recalled to complete the hybrid solution,
which remains analytical in all but one independent variable. Therefore, the major
numerical task in the solution, which consists of solving the ODE system for the
transformed potentials, is readily available in commercial or public libraries, in most
cases providing error controlled solutions and interpolated final results. This approach
has been proved very successful along the years, and has led to the establishment of a
general purpose algorithm made available in an open source code implemented with
symbolic-numerical computation resources, the Unified Integral Transforms (UNIT)
algorithm (Cotta et al., 2010, 2013, 2014; Sphaier et al., 2011).

The strategy of incorporating the problem nonlinearities within the source terms
may eventually require convergence enhancement techniques (Scofano Neto et al., 1990;
Almeida and Cotta, 1996; Gondim et al., 2007), such as the use of filtering solutions to
reduce the importance of these nonhomogeneities and/or the employment of a
posteriori integral balances so as to analytically improve the eigenfunction expansions
convergence rates. This aspect has been observed to be particularly relevant when
dealing with nonlinear boundary conditions (Ribeiro and Cotta, 1993; Mikhailov and
Cotta, 1998), when the presence of a nonlinear source term, even after filtering, may still
promote a slower convergence behavior on the eigenfunction expansions, especially in
the vicinity of the nonhomogeneous boundary surface. Nevertheless, the possibility of
adopting a nonlinear eigenfunction expansion basis that carries information on the
nonlinear coefficients of the originally proposed problem, has not been fully
disregarded in previous developments with the GITT. In fact, when dealing with
moving boundary problems in which the movement of the boundary is a priori
unknown (Diniz et al., 1990; Ruperti et al., 1992; Sias et al., 2009; Monteiro et al., 2011),
a nonlinear eigenvalue problem is actually employed, since the domain boundaries are
part of the solution and simultaneously coupled to the transformed potentials and to
the time-dependent eigenvalues and eigenfunctions.

Thus, the present work provides a novel integral transforms solution for nonlinear
convection-diffusion problems, with particular emphasis on the treatment of nonlinear
boundary condition coefficients. Instead of collapsing the nonlinearities of the
boundary conditions into the corresponding source term, which nevertheless may still
exist, the nonlinear coefficients are directly accounted for in the eigenvalue problem
formulation, thus yielding a nonlinear eigenfunction expansion basis. As in nonlinear
moving boundary problems (Diniz et al., 1990; Ruperti et al., 1992; Sias et al., 2009;
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Monteiro et al., 2011), a time-dependent eigenvalue problem then needs to be solved
simultaneously with the transformed ODE system. The expected advantage is that
convergence will be significantly improved, especially close to the boundaries with
nonlinear behavior, and the handling of the nonlinear eigenvalue problem will still lead
to mild computational effort, hopefully with some advantage over the traditional GITT
approach. Both formal solutions for the linear eigenvalue problem approach and for the
introduced nonlinear eigenvalue problem alternative are here described. The general
solutions of the related eigenvalue problems by the GITT itself are also briefly
provided. Finally, an application dealing with transient heat conduction in a slab
with nonlinear convection (Cotta et al., 2015) and/or radiation boundary conditions
(Mikhailov and Cotta, 1998) is more closely examined, to illustrate a few relevant
computational aspects and demonstrate the improved convergence behavior.
Two computational approaches were then tested, either by treating the transcendental
equations for the eigenvalues, together with the transformed ODE system, as a
differential-algebraic equations (DAEs) system, or by converting the transcendental
equations into a system of ODE’s for the eigenvalues, by taking the time derivative of the
transcendental equations. Different combinations of the governing parameters are then
chosen to illustrate the convergence behavior of the nonlinear eigenfunction expansions,
and allow for critical comparisons against the classical GITT solution without filtering
and a purely numerical solution based on the Method of Lines available in the routine
NDSolve of the Mathematica system (Wolfram Research Inc., 2016).

2. Formal solution – linear eigenvalue problem
Before introducing the use of a nonlinear eigenvalue problem for the integral
transformation process, the formal GITT solution for nonlinear convection-diffusion
problems is revisited. The usual procedure is to first reformulate the problem by
collapsing all the nonlinear information into the equation and boundary conditions
source terms, while adopting a linear eigenvalue problem for the expansion basis,
based on the choice of characteristic linear coefficients in the equation and boundary
condition operators. Thus, we consider the nonlinear convection-diffusion problem as
follows (Cotta, 1990, 1993):

w xð Þ@T x; tð Þ
@t

¼ rU k xð ÞrT x; tð Þ½ ��d xð ÞT x; tð ÞþP x; t;Tð Þ; xAV ; t40 (1a)

subjected to the following initial and boundary conditions:

T x; 0ð Þ ¼ f xð Þ; xAV (1b)

a xð ÞT x; tð Þþb xð Þk xð Þ@T x; tð Þ
@n

¼ f x; t;Tð Þ; xAS (1c)

The proposed problem is more general than it seems at first glance, since any sort of
nonlinearities in the equation and boundary condition coefficients can be moved to the
corresponding source terms, P(x, t, T) and ϕ(x, t, T), without loss of generality. In this
sense, the linear equation (w, k, d) and boundary condition (α, β) coefficients are
essentially characteristic expressions that are chosen so as to intrinsically formulate
the eigenvalue problem that shall be adopted as a basis for the eigenfunction expansion
solution to follow.
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However, before applying the integral transforms solution methodology, it is
recommended to reduce the importance of the source terms in the original equation and
the boundary conditions given by Equation (1a, c), since these terms are essentially
responsible for an eventual slower convergence behavior of the eigenfunction
expansions (Cotta and Mikhailov, 1997) This can be achieved by applying a filtering
scheme, such as in the general form given by:

T x; tð Þ ¼ Tn x; tð ÞþTF x; tð Þ (2)

where TF(x; t) is the proposed filter and T*(x, t) is the resulting filtered potential to be
determined. After introducing Equation (2) into Equation (1), it results:

w xð Þ@T
n x; tð Þ
@t

¼ rU k xð ÞrTn x; tð Þ� ��d xð ÞTn x; tð ÞþPn x; t;Tn
� �

; xAV ; t40 (3a)

Tn x; 0ð Þ ¼ f n xð Þ; xAV (3b)

a xð ÞTn x; tð Þþb xð Þk xð Þ@T
n x; tð Þ
@n

¼ fn x; t;Tn
� �

; xAS (3c)

where:

f n xð Þ � f xð Þ�TF x; 0ð Þ (4a)

Pn x; t;Tn
� � ¼ P x; t;Tð Þ�w xð Þ@TF x; tð Þ

@t
þrU k xð ÞrTF x; tð Þ½ ��d xð ÞTF x; tð Þ (4b)

fn x; t;Tn
� � ¼ f x; t;Tð Þ�a xð ÞTF x; tð Þ�b xð Þk xð Þ@TF x; tð Þ

@n
; xAS (4c)

As from Equation (2), an explicit filter, TF(x; t), can be chosen, with the inherently
filtered expressions for the initial conditions and source terms obtained from
Equation (4). In any case, it is in general desirable that the chosen filter at least
reduces the importance of the boundary condition source term in Equation (1c),
thus leading to a weaker filtered source term, ϕ*(x, t, T*). Implicit nonlinear filters have
also been proposed for specific cases of nonlinear boundary conditions (Ribeiro and
Cotta, 1993; Cotta et al., 2015; Matt, 2013), but may result too cumbersome for more
general formulations.

Following the steps in the integral transform approach (Cotta, 1990, 1993, 1994,
1998; Cotta and Mikhailov, 1997, 2006), we define an auxiliary eigenvalue problem,
which shall provide the basis for the eigenfunction expansions, in the form:

rU k xð Þrψi xð Þ� �þ m2i w xð Þ�d xð Þ� �
ψi xð Þ ¼ 0; xAV (5a)

a xð Þψi xð Þþb xð Þk xð Þ@ψi xð Þ
@n

¼ 0; xAS (5b)

The eigenvalue problem given by Equation (5) allows for the definition of the integral
transform pair as follows:

Ti tð Þ ¼
Z
V
w xð Þψi xð ÞTn x; tð ÞdV ; transform (6a)
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Tn x; tð Þ ¼
X1
i¼1

1
Ni

ψi xð ÞTi tð Þ; inverse (6b)

and the normalization integral:

Ni ¼
Z
V
w xð Þψ2

i xð ÞdV (7)

After application of the integral transformation procedure, through the operator
∫Vψi(x)(.)dV over Equation (3a), and ∫Vw(x)ψi(x)(.)dV over Equation (3b), the resulting
ODE system for the transformed potentials, Ti tð Þ, is written as:

dTi tð Þ
dt

þm2i Ti tð Þ ¼ gi t;T
� �

; t40; i; j ¼ 1; 2; . . . (8a)

with initial conditions:

Ti 0ð Þ ¼ f i (8b)

where:

gi t;T
� � ¼ Z

V
ψi xð ÞPn x; t;Tn

� �
dvþ

Z
S
fn x; t;Tn
� � ψi xð Þ�k xð Þ@ψi

@n

a xð Þþb xð Þ

 !
ds (8c)

f i ¼
Z
V
w xð Þψi xð Þf n xð Þdv (8d)

T ¼ T1 tð Þ;T2 tð Þ; :::
� �T

(8e)

System (8), after truncation to a sufficiently large finite order N, is numerically solved
through well-established initial value problem solvers, readily available in scientific
subroutines libraries, or directly as built-in function in mixed symbolic-numerical
platforms, such as the function NDSolve of the Mathematica platform, (Wolfram
Research Inc., 2016) which implement automatic relative error control schemes. The
desired final solution is then reconstructed as:

Τ x; tð Þ ¼
XN
i¼1

1
Ni

ψi xð ÞTi tð ÞþTF x; tð Þ (9)

The truncation order N may be adaptively chosen along the numerical integration
march, so as to always work with truncation orders that are just enough to satisfy the
user prescribed accuracy requirements, at selected positions (x) and time values (t).

The eigenvalue problem that provides the basis for the eigenfunction expansion can
be efficiently solved through the GITT itself, as proposed in (Cotta, 1993; Mikhailov
and Cotta, 1994) and successfully employed in various applications (Sphaier and Cotta,
2000; Naveira-Cotta et al., 2009; Knupp et al., 2013, 2015a, b). The idea is to employ the
GITT formalism to reduce the eigenvalue problem described by partial differential
equations into standard algebraic eigenvalue problems, which can be solved by
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existing routines for matrix eigensystem analysis. Therefore, the eigenfuctions of the
original auxiliary problem can be expressed by eigenfunction expansions based on a
simpler auxiliary eigenvalue problem, for which exact analytic solutions are available.

The solution of problem (5) is thus itself proposed as an eigenfunction expansion:

ψ i xð Þ ¼
X1
n¼1

~On xð Þψ i;n; inverse (10a)

ψ i;n ¼
Z
V
ŵ xð Þ ψ i xð Þ ~On xð Þdv; transform (10b)

where:

~On xð Þ ¼ On xð Þffiffiffiffiffiffiffiffiffi
NOn

p ;with NOn ¼
Z
V
ŵ xð ÞO2

n xð Þdv (10c, d)

in terms of a simpler auxiliary eigenvalue problem, given as:

r:k̂ xð ÞrOn xð Þþ l2nŵ xð Þ�d̂ xð Þ
	 


On xð Þ ¼ 0;xAV (11a)

with boundary conditions:

a xð ÞOn xð Þþb xð Þk̂ xð Þ@On xð Þ
@n

¼ 0; xAS (11b)

where the coefficients, ŵ xð Þ; k̂ xð Þ; and d̂ xð Þ; are simpler forms of the equation coefficients
chosen so as to allow for an analytical solution of the auxiliary problem. Thus, the
solution of problem (5), which needs to be known in terms of the eigenfunctionsΩn(x) and
related eigenvalues λn, offers a basis itself for the eigenfunction expansion of the original
eigenvalue problem (5). Equation (5a) is now operated on with

R
V
~Oi xð Þ Uð Þ dV , to yield the

transformed algebraic system:

AþCð Þ ψ
� � ¼ m2B ψ

� �
(12a)

with the elements of the M × M matrices given by:

Aij ¼
Z
S

~O i xð Þ�k̂ xð Þ@ ~O i xð Þ
@n

a xð Þþb xð Þ ds�
Z
S

k xð Þ�k̂ xð Þ
	 


~Oi xð Þ@
~Oj xð Þ
@n

ds

þ
Z
V

k xð Þ�k̂ xð Þ
	 


r ~Oi xð ÞUr ~Oj xð Þdvþ
Z
V

d xð Þ�d̂ xð Þ
	 


~O i xð Þ ~Oj xð Þdv (12b)

Cij ¼ l2i dij;Bij ¼
Z
V
w xð Þ ~Oi xð Þ ~Oj xð Þdv (12c,d)

where δij is the Kronecker operator.
Therefore, the eigenvalue problem given by Equation (5) is reduced to the

standard algebraic eigenvalue problem given by Equation (12), which can be solved
with existing software for matrix eigensystem analysis, yielding the eigenvalues μ,
whereas the corresponding calculated eigenvectors from this numerical solution, ψ i , are
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to be used in the inversion formula, given by Equation (10a), to find the desired
eigenfunction, while increasing the number of terms in the truncated expansion, M, to
meet the user prescribed accuracy.

The convergence behavior of the eigenfunction expansion in Equation (9) is inherently
dependent on the importance of the filtered source terms that compose the transformed
source term gi t;T

� �
. The most frequently employed procedure is the adoption of a single

analytical filter (Cotta, 1993; Almeida and Cotta, 1996) which in general reproduces the
steady-state solution of the original problem or a quasi-steady behavior upon linearization.
In some cases, the single filter strategy might not be able to offer an effective and uniform
filtering over the whole time domain, and multiple successive filters may eventually be
required for further improvement of the final convergence rates (Cotta and Mikhailov, 1997;
Almeida and Cotta, 1996). One possibility is the use of available or easy to obtain
approximate transient solutions for the proposed problem, either in discrete or continuous
forms, as obtained from numerical or analytical solution methodologies. Besides, further
convergence improvement can be achieved through a posteriori enhancement techniques,
such as the integral balance approach (Scofano Neto et al., 1990; Almeida and Cotta, 1996),
or as more involved filtering approaches, such as local-instantaneous filtering (Gondim et al.,
2007) and implicit nonlinear filtering (Ribeiro and Cotta, 1993; Cotta et al., 2015; Matt 2013).

3. Formal solution – nonlinear eigenvalue problem
Next, it is here investigated the possibility of employing the original nonlinear
formulation in the boundary conditions, as represented by the corresponding nonlinear
eigenvalue problem, in the construction of the eigenfunction expansions. The aim is to
achieve improved convergence behavior, in comparison to the traditional approach
with a linear eigenvalue problem, especially for regions close to the nonlinear boundary
conditions. Thus, the nonlinear diffusion or convection-diffusion problem below is
considered, with no need of collapsing the nonlinear boundary condition coefficients
information into the nonlinear source terms, as previously presented:

w xð Þ@T x; tð Þ
@ t

¼ r:k xð ÞrT�d xð ÞTþP x; t;Tð Þ; in xAV ; t40 (13a)

with initial and boundary conditions:

T x; 0ð Þ ¼ f xð Þ; xAV (13b)

a x; t;Tð ÞTþb x; t;Tð Þk xð Þ@T
@n

¼ f x; t;Tð Þ; xAS; t40 (13c)

where α and β are the nonlinear boundary condition coefficients and n is the outward
drawn normal vector to surface S. All the boundary condition coefficients and source
terms are allowed to be nonlinear, besides being explicitly dependent also on the space
and time variables for the sake of generality.

The first step in application of the GITT is the proposition of a filtering solution,
which reduces the effects on convergence rates due to the equation and boundary
source terms. As before, this solution is here denoted by TF(x; t) and is considered a
filtering solution in the form of Equation (2). The resulting formulation for the filtered
potential, T*, then becomes:

w xð Þ@T
n x; tð Þ
@t

¼ r:k xð ÞrTn�d xð ÞTnþPn x; t;Tn
� �

; xAV ; t40 (14a)
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with initial and boundary conditions:

Tn x; 0ð Þ ¼ f n xð Þ;xAV (14b)

a x; t;Tð ÞTnþb x; t;Tð Þk xð Þ@T
n

@n
¼ fn x; t;Tn

� �
; xAS (14c)

where the filtered source terms and initial condition are given by:

Ρn x; t;Tð Þ ¼ Ρ x; t;Tð Þ� w xð Þ@TF x; tð Þ
@t

�r:k xð ÞrTFþd xð ÞTF

� �
(15a)

fn x; t;Tn
� � ¼ f x; t;Tð Þ� a x; t;Tð ÞTFþb x; t;Tð Þk xð Þ@TF

@n

� �
(15b)

f n xð Þ ¼ f xð Þ�TF x; 0ð Þ (15c)

In case the filtering solution satisfies identically the boundary conditions, the boundary
source term becomes zero, and only the filtered equation source term remains as
defined in Equation (15a).

At this point, it suffices to proceed with the integral transform solution for the
filtered potential, T*. Now, taking a different path from the usual formalism in the
GITT (Cotta, 1990, 1993, 1994, 1998; Cotta and Mikhailov, 1997, 2006), a nonlinear
eigenvalue problem that preserves the original boundary condition coefficients is
preferred instead of the one with linear characteristic coefficients, in the form:

r:k xð Þrψi x; tð Þþ m2i tð Þw xð Þ�d xð Þ� �
ψi x; tð Þ ¼ 0;xAV (16a)

with boundary conditions:

a x; t;Tð Þψi x; tð Þþb x; t;Tð Þk xð Þ@ψi x; tð Þ
@n

¼ 0;xAS (16b)

and the solution for the associated time-dependent eigenfunctions, ψi(x; t), and
eigenvalues, μi(t), is at this point assumed to be known.

Problem (16) allows for the definition of the following integral transform pair:

Ti tð Þ ¼
Z
V
w xð Þψi x; tð ÞΤn x; tð Þdv; transform (17a)

Τn x; tð Þ ¼
X1
i¼1

1
Ni tð Þ

ψi x; tð ÞTi tð Þ; inverse (17b)

and the normalization integrals:

Ni tð Þ ¼
Z
V
w xð Þψ2

i x; tð Þdv (18)

After application of the integral transformation procedure, the resulting ODE system
for the transformed potentials, Ti tð Þ, is written as:

dTi tð Þ
dt

þ
X1
j¼1

Ai;j t;T
� �

Tj tð Þ ¼ gi t;T
� �

; t40; i; j ¼ 1; 2; . . . (19a)
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with initial conditions:

Ti 0ð Þ ¼ f i (19b)

where,

Ai;j t;T
� � ¼ dijm

2
i tð ÞþAn

i;j t;T
� �

(19c)

and:

An

i;j t;T
� � ¼ � 1

Nj tð Þ
Z
V
w xð Þ @

@t
ψi x; tð Þ� �

ψj x; tð Þdv (19d)

gi t;T
� � ¼ Z

V
ψi x; tð ÞPn x; t;Tð Þdvþ

Z
S
fn x; t;Tð Þ ψi x; tð Þ�k xð Þ@ψi

@n

a x; t;Tð Þþb x; t;Tð Þ

 !
ds (19e)

f i ¼
Z
V
w xð Þ ~ψi x; 0ð Þf n xð Þdv (19f)

System (19) is again numerically solved through well-established initial value problem
solvers, such as the function NDSolve of the Mathematica platform (Wolfram Research
Inc., 2016). It should be recalled that the eigenvalue problem in Equation (16) has now to
be solved simultaneously with the transformed system given by Equation (19), yielding
the time variable eigenfunctions, eigenvalues and norms, as will be further discussed in
the next section. The desired final solution is then reconstructed by:

Τ x; tð Þ ¼
XN
i¼1

1
Ni tð Þ

ψi x; tð ÞTi tð ÞþTF x; tð Þ (20)

The GITT itself is now employed in the solution of the nonlinear eigenvalue problem,
Equation (16). The basic idea is to reduce the eigenvalue problem described by the
partial differential equation into a nonlinear algebraic eigenvalue problem, which can
be solved by known approaches for matrix nonlinear eigensystem analysis. Therefore,
the eigenfuctions of the original auxiliary problem can be expressed by eigenfunction
expansions based on a simpler auxiliary eigenvalue problem, with linear coefficients,
for which exact analytic solutions exist.

Consider the following nonlinear eigenvalue problem defined in region V and
boundary surface S:

Lψ x; tð Þ ¼ m2 tð Þw xð Þψ x; tð Þ; xAV (21a)

Bψ x; tð Þ ¼ 0; xAS (21b)

where the operators L and B are given by:

L ¼ �rU k xð Þrð Þþd xð Þ (21c)
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B ¼ a x; t;Tð Þþb x; t;Tð Þk xð Þ @
@n

(21d)

and w(x), k(x), and d(x) are known linear functions in region V, while α(x, t, T), β(x, t, T)
are nonlinear functions on the boundary surface S.

The problem given by Equation (21a-d) can be rewritten as:

L̂ψ x; tð Þ ¼ L̂�L
	 


ψ x; tð Þþm2 tð Þw xð Þψ x; tð Þ; xAV (22a)

B̂ψ x; tð Þ ¼ B̂�B
	 


ψ x; tð Þ; xAS (22b)

where L̂ and B̂ are the simpler operators with linear coefficients, given by:

L̂ ¼ �rU k̂ xð Þr
	 


þ d̂ xð Þ (22c)

B̂ ¼ â xð Þþ b̂ xð Þk̂ xð Þ @
@n

(22d)

which are employed to select an auxiliary problem:

L̂O xð Þ ¼ l2ŵ xð ÞO xð Þ; xAV (23a)

B̂O xð Þ ¼ 0; xAS (23b)

where ŵ xð Þ, k̂ xð Þ, d̂ xð Þ, â xð Þ, and b̂ xð Þ are known coefficients in V and S,
properly chosen so that the eigenvalue problem given by Equation (23.a, b) allows
for a straightforward solution for the eigenvalues, λ, and corresponding eigenfunctions,
Ω(x).

Therefore, making use of the eigenfunctions orthogonality property, problem (23)
allows the definition of the following integral transform pair:

transform: ψ i tð Þ ¼
Z
V
ŵ xð Þ ~O i xð Þψ x; tð Þdv (24a)

inverse: ψ x; tð Þ ¼
X1
i¼1

~Oi xð Þψ i tð Þ (24b)

where:

~Oi xð Þ ¼ Oi xð Þffiffiffiffiffiffiffiffi
NOi

p ;with NOi ¼
Z
V
ŵ xð ÞO2

i xð Þdv (24c, d)

Equation (21a) is now operated on with
R
V
~O i xð Þ Uð Þdv, to yield the transformed

nonlinear algebraic system:

l2i ψ i tð Þ ¼
Z
S
gi B̂�B
	 


ψ x; tð Þdsþ
Z
V

~Oi xð Þ L̂�L
	 


ψ x; tð Þdvþ

þm2 tð Þ
Z
V

~Oi xð Þw xð Þψ x; tð Þdv; i ¼ 1; 2; ::: (25a)
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gi ¼
~O i xð Þ�k̂ xð Þ@ ~O i xð Þ

@n

â xð Þþ b̂ xð Þ
(25b)

After introducing the truncated to the Mth term inversion formula, Equation (24b),
into Equation (25a), the resulting system is written in matrix form as:

A tð ÞþCð Þ ψ tð Þ� � ¼ l2 tð ÞB tð Þ ψ tð Þ� �
(26a)

with the elements of the M×M matrices and vector μ2given by:

aij tð Þ ¼ �
Z
S
gi B̂�B
	 


~Oj xð Þds�
Z
V

~Oi xð Þ L̂�L
	 


~Oj xð Þdv (26b)

cij ¼ l2i dij (26c)

bij tð Þ ¼
Z
V
w xð Þ ~O i xð Þ ~Oj xð Þdv (26d)

l2 tð Þ ¼ m21 tð Þ;m22 tð Þ; :::; m2M tð Þ� �T
(26e)

By choosing to use the relation:Z
V

~O i xð ÞrU k̂ xð Þr ~Oj xð Þ
	 


dv ¼
Z
S
k̂ xð Þ ~Oi xð Þ@

~Oj xð Þ
@n

ds�
Z
V
k̂ xð Þr ~Oi xð ÞUr ~Oj xð Þdv

(27)

the elements of A can be calculated through the following working formula:

Z
S

~O i xð Þ�k̂ xð Þ@ ~O i xð Þ
@n

â xð Þþ b̂ xð Þ

"
a x; t;Tð Þ�â xð Þð Þ ~Oj xð Þ

þ b x; t;Tð Þk xð Þ�b̂ xð Þk̂ xð Þ
	 
@ ~Oj xð Þ

@n

#
ds�

Z
S

k xð Þ�k̂ xð Þ
	 


~Oi xð Þ@
~Oj xð Þ
@n

ds

þ
Z
V

k xð Þ�k̂ xð Þ
	 


r ~O i xð ÞUr ~Oj xð Þdvþþ
Z
V

d xð Þ�d̂ xð Þ
	 


~O i xð Þ ~Oj xð Þdv (28)

Therefore, the eigenvalue problem given by Equation (21a, b) is reduced to the
nonlinear algebraic eigenvalue problem given by Equation (26a), which can be solved
with existing methodologies for matrix eigensystem analysis, numerically yielding the
eigenvalues μ(t), whereas the corresponding calculated eigenvectors from this
numerical solution, ψ i tð Þ, are to be used in the inversion formula, given by Equation
(24b), to find the desired eigenfunction. By increasing the number of terms in the
truncated expansion, one can obtain the results with prescribed accuracy.

4. Application
The proposed nonlinear eigenfunction expansion procedure is now considered in more
details in an application of transient heat conduction across a slab with nonlinear
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boundary condition coefficients, as typical of natural convection (air in the present
application) (Cotta et al., 2015), radiation (Mikhailov and Cotta, 1998) or combined
convection-radiation heat exchange at the surface. The mathematical formulation of the
problem here considered, in dimensionless form, is given by:

@T x; tð Þ
@t

¼ @ 2T x; tð Þ
@x2

; 0oxo1; t40 (29a)

with initial and boundary conditions given, respectively, by:

T x; 0ð Þ ¼ 1; 0pxp1 (29b)

@T 0; tð Þ
@x

¼ 0;
@T 1; tð Þ

@x
þBi T 1; tð Þð ÞT 1; tð Þ ¼ 0; t40 (29c, d)

and for the present application the non-linear function Bi(T) is taken as:

Bi T 1; tð Þð Þ ¼ BicT
1=3 1; tð ÞþBir 1þgT 1; tð Þþg2

2
T2 1; tð Þ


 �

1þg

2
T 1; tð Þ

�� �
(29e)

where:

T ¼ T̂�T̂1
T̂0�T̂1

; x ¼ x̂
L
; t ¼ ast̂

L2 ;Bic ¼
hcL
ks

;Bir ¼
hrL
ks

; hr ¼ 4esT̂
3
1; g ¼ T̂0�T̂1

T̂1
(29f-l)

where ^ denotes the dimensional variables (temperature, time and position) in the
original formulation. The correspondence between the above formulation and the
general one provided in Equation (13) is given by the following relations:

w xð Þ ¼ 1; k xð Þ ¼ 1; d xð Þ ¼ 0;P x; t;Tð Þ ¼ 0; f xð Þ ¼ 1 (30a-e)

and for the boundary conditions:

for x ¼ 0: a 0; t;Tð Þ ¼ 0;b 0; t;Tð Þ ¼ 1;f 0; t;Tð Þ ¼ 0

for x ¼ 1: a 1; t;Tð Þ ¼ Bi T 1; tð Þð Þ;b 1; t;Tð Þ ¼ 1;f 1; t;Tð Þ ¼ 0 (31a-f)

The nonlinear problem (29) was first directly solved through the traditional GITT
without considering the nonlinear coefficient in the eigenvalue problem, according to
Section 2, without filtering and adopting a linearized boundary coefficient:

a 1ð Þ ¼ Bief ¼ BicþBir 1þgþg2

2


 �

1þg

2

�� �
(32a)

The above characteristic linear boundary condition coefficient choice then yields the
following nonlinear source term, in the nonlinear boundary condition (1c):

f 1; t;Tð Þ ¼ Bief�Bi T 1; tð Þð Þ� �
T 1; tð Þ (32b)

Then, the novel approach with nonlinear eigenvalue problem has been considered
through the appropriate choice of the auxiliary eigenvalue problem for the integral
transformation of the original one. Except for α(1, t, T), all of the other coefficients are
linear and remain the same in both eigenvalue problems. The only differing choice is in
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fact for the boundary condition coefficient, _a 1ð Þ ¼ Bi0. The nonlinear eigenvalue
problem is written as:

@ 2ψ x; tð Þ
@x2

þm2 tð Þψ x; tð Þ ¼ 0; 0oxo1 (33a)

@ψ 0; tð Þ
@x

¼ 0;
@ψ 1; tð Þ

@x
þBi T 1; tð Þð Þψ 1; tð Þ ¼ 0 (33b, c)

which is readily solved as:

ψ x; tð Þ ¼ cos m tð Þx½ � (34)

yielding the following transcendental equation for the eigenvalues:

�m tð Þ sin m tð Þ½ �þBi T 1; tð Þð Þ cos m tð Þ½ � ¼ 0 (35a)

where:

Τ 1; tð Þ ¼
X1
i¼1

1
Ni tð Þ

cos mi tð ÞTi tð Þ (35b)

Ni tð Þ ¼
Z 1

0
cos mi tð Þx
� �� �2dx ¼ 1

4
2þ sin 2mi tð Þ

� �
mi tð Þ


 �
(35c)

The transformed system is then obtained from Equation (19a), where the related
coefficients are given by:

An

i;j t;T
� � ¼ 1

Nj tð Þ
dmi tð Þ
dt

Z 1

0
x cos mj tð Þx

� �
sin mi tð Þx
� �

dx (36a)

gi t;T
� � ¼ 0 (36b)

f i ¼
1

mi 0ð Þ sin mi 0ð Þ� �
(36c)

Equations (19a) and (36a-c), together with the transcendental Equation (35a), form a
nonlinear system of DAEs, upon truncation to a sufficiently large finite order N, which
can be numerically solved to provide the transformed potentials and the time-variable
eigenvalues, under user prescribed accuracy control (Wolfram Research Inc., 2016).
Generally, a system of DAEs can be converted to a system of ODEs by differentiating it
with respect to the independent variable t. The index of a DAE is the number of times
needed to differentiate the DAEs to get a system of ODEs. The DAE solver methods
built into NDSolve work with index-1 systems, so for higher-index systems an index
reduction may be necessary to get a solution. There are a variety of solution methods
built into NDSolve for solving DAEs. Two methods work with the general
residual form of index-1 DAEs, F(t, y, y′)¼ 0. In particular, the IDA method
(Implicit Differential-Algebraic solver from the SUNDIALS package), (Wolfram Research
Inc., 2016) is based on backward differentiation formulas which are more appropriate
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for dealing with potentially stiff systems, which are common when working with
eigenfunction expansion approaches (Cotta, 1993).

Alternatively, the transcendental Equation (35a) can be differentiated with respect
to time, and thus a priori generate ODEs for the eigenvalues, that can be
simultaneously solved with the transformed potentials, as previously implemented in
the context of moving boundary problems (Ruperti et al., 1992). Therefore:

�dm tð Þ
dt

sin m tð Þ½ ��m tð Þ cos m tð Þ½ �dm tð Þ
dt

þdBi T 1; tð Þð Þ
dt

cos m tð Þ½ ��Bi T 1; tð Þð Þ sin m tð Þ½ �dm tð Þ
dt

¼ 0 (37a)

and since:

dBi T 1; tð Þð Þ
dt

¼ dBi T 1; tð Þð Þ
dT 1; tð Þ :

@T 1; tð Þ
@t

(37b)

then:

dmi tð Þ
dt

� sin mi tð Þ��mi tð Þ cos mi tð Þ
� ��Bi T 1; tð Þð Þ sin mi tð Þ

� �� �þ�
þdBi T 1; tð Þð Þ

dT 1; tð Þ cos mi tð Þ
� �@T 1; tð Þ

@t
¼ 0 (37c)

with initial conditions obtained from the transcendental equations system as follows:

�mi 0ð Þ sin mi 0ð Þ� �þBi T 1; 0ð Þð Þ cos mi 0ð Þ� � ¼ 0; i ¼ 1; 2; 3; ::: (37d)

where:

Τ 1; 0ð Þ ¼
X1
j¼1

1
Nj 0ð Þ cos mj 0ð ÞTj 0ð Þ ¼

X1
j¼1

1
Nj 0ð Þ cos mj 0ð Þf j (37e)

Equation (37c) are then written for the first N eigenvalues and simultaneously solved
with Equation (19), forming a system of 2×N ODE’s, to yield the transformed
potentials and eigenvalues as a function of time. Then, the inverse formula (20) can be
directly employed to provide the desired original potential.

5. Results and discussion
The application in the previous section was implemented in the Mathematica platform
version 10. As the ordinary differential system solver, we have employed the NDSolve
function in the Mathematica system, in the DAE mode (DAEs). The software responds
with an interpolating function that provides a continuous representation of the potentials
and the eigenvalues along the time domain. The problem was thus solved through integral
transforms, first with the classical approach with a linear eigenvalue problem, collapsing
the nonlinearities in the boundary condition source term. Then, the solution through the
nonlinear eigenvalue problem of Equation (21) was implemented, when the nonlinearities
are directly accounted for in the eigenvalue problem, with different number of terms in the
eigenfunction expansion so as to inspect for the convergence behavior.

Tables I and II provide a brief convergence analysis of both the traditional GITT
with linear eigenvalue problem of Section 2, and the presently introduced approach
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(a)a

T(x¼ 0.2,t¼ 0.1) T(x¼ 0.8,t¼ 0.1) T(x¼ 1.0,t¼ 0.1)
N Nonlinear

eig.probl.
Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

1 0.967554 0.972346 0.367690 0.351195 0.072600 0.0478759
5 0.934230 0.932317 0.416487 0.418872 0.0841374 0.0617875

10 0.934227 0.933313 0.416496 0.412839 0.0841284 0.0673294
15 0.934226 0.933626 0.416495 0.415385 0.084127 0.0708148
20 0.934226 0.933763 0.416496 0.414085 0.0841266 0.0730425
25 0.934226 0.933834 0.416496 0.414837 0.0841265 0.0745414
30 0.934226 0.933874 0.416496 0.414361 0.0841264 0.0756033
Num.c 0.934223 0.416494 0.0841299

(b)b

T(x¼ 0.2,t¼ 0.5) T(x¼ 0.8,t¼ 0.5) T(x¼ 1.0,t¼ 0.5)
N Nonlinear

eig.probl.
Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

1 0.39419 0.395303 0.150352 0.142777 0.0303365 0.0194637
5 0.394198 0.392250 0.150334 0.150577 0.0303307 0.0217978

10 0.394198 0.392614 0.150335 0.148351 0.0303302 0.0238440
15 0.394198 0.392730 0.150335 0.149295 0.0303301 0.0251356
20 0.394198 0.392781 0.150335 0.148813 0.0303301 0.0259619
25 0.394198 0.392807 0.150335 0.149091 0.0303301 0.0265180
30 0.394198 0.392822 0.150335 0.148915 0.0303301 0.0269121
Num.c 0.394199 0.150339 0.0303349
Notes: aBic¼ 1, Bir¼ 1, γ¼ 1/3, t¼ 0.1; bBic¼ 1, Bir¼ 1, γ¼ 1/3, t¼ 0.1; cNDSolve routine –Mathematica
system (Wolfram Research Inc., 2016)

Table II.
Potential
convergence
behavior as obtained
from the nonlinear
eigenvalue problem
and the traditional
GITT approaches

(a)a

T(x¼ 0.2,t¼ 0.1) T(x¼ 0.8,t¼ 0.1) T(x¼ 1.0,t¼ 0.1)
N Nonlinear

eig.probl.
Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

1 1.01966 1.03587 0.670233 0.640969 0.480618 0.429363
5 0.976123 0.974836 0.727676 0.730316 0.531293 0.519378

10 0.976108 0.975809 0.727709 0.727208 0.531246 0.525529
15 0.976107 0.975981 0.727707 0.727967 0.531242 0.527504
20 0.976107 0.97604 0.727708 0.727645 0.531241 0.528473
25 0.976107 0.976067 0.727708 0.727819 0.531240 0.529048
30 0.976107 0.976081 0.727708 0.727711 0.531240 0.529429
Num.c 0.976107 0.727710 0.531245

(b)b

T(x¼ 0.2,t¼ 0.5) T(x¼ 0.8,t¼ 0.5) T(x¼ 1.0,t¼ 0.5)
N Nonlinear

eig.probl.
Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

Nonlinear
eig.probl.

Linear
eig.probl.

1 0.638206 0.655539 0.433928 0.405630 0.322272 0.271717
5 0.639165 0.637994 0.432577 0.434801 0.320907 0.310043
10 0.639162 0.638872 0.432583 0.432001 0.320899 0.315579
15 0.639162 0.639026 0.432582 0.432684 0.320898 0.317353
20 0.639162 0.639079 0.432582 0.432395 0.320898 0.318224
25 0.639162 0.639103 0.432582 0.432551 0.320898 0.318740
30 0.639162 0.639116 0.432582 0.432454 0.320898 0.319082
Num.c 0.639166 0.43259 0.320906
Notes: aBic¼ 1, Bir¼ 1, γ¼ 1/3, t¼ 0.1; bBic¼ 1, Bir¼ 1, γ¼ 1/3, t¼ 0.1; cNDSolve routine –Mathematica
system (Wolfram Research Inc., 2016)

Table I.
Potential
convergence
behavior as obtained
from the nonlinear
eigenvalue problem
and the traditional
GITT approaches
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with a nonlinear eigenvalue problem, Section 3. A total truncation order of N¼ 30
terms in the eigenfunction expansions has been considered in both cases, and results
for dimensionless temperatures at specific positions (x¼ 0.1, 0.8 and 1.0) and times
(t¼ 0.1 and 0.5) are presented for increasing truncation orders, N¼ 1,5,10,15,20,25 and
30. In addition, the last row provides the numerical results achieved by the routine
NDSolve with the Method of Lines for numerically solving the original partial
differential problem. In the first set (Table I) a combined convection-radiation situation
is considered with Bic¼ 1; Bir¼ 1; γ¼ 1/3. From the columns for increasing truncation
orders, for the two values of time considered (t¼ 0.1 and 0.5), one can already observe
the excellent convergence behavior of the novel nonlinear eigenvalue problem
approach, with six fully converged significant digits in all positions, and at least a five
digits agreement with the numerical solution of NDSolve with a refined mesh. It can
also be noticed that the proposed solution is not sensitive to the positions closer to the
nonlinear boundaries, with a fairly uniform convergence behavior throughout
the domain. As for the traditional GITT, the solution is fully converged to four digits at
the innermost positions, and only to three significant digits at the boundary position,
within this range of truncation orders. Thus, deviations at the third significant digit can
already be observed, in comparison to the proposed nonlinear GITT and the NDSolve
results, at this same boundary position. Once a purely radiative boundary condition
with a higher characteristic Biot number is considered, as shown in Table II for the case
Bic¼ 0; Bir¼ 20; γ¼ 1/3, the slower convergence behavior of the traditional GITT
approach at the boundary position, propagating toward the interior of the slab, is more
clearly observable. Again, the nonlinear eigenvalue problem approach is fully
converged to all six significant digits presented, and even already converged at
truncation orders as low as N¼ 10. The agreement with the NDSolve numerical results
is also within four to five significant digits throughout the range of space coordinate
and time variable. On the other hand, the traditional solution is still not yet converged
even at the second significant digit in the worst situation, which occurs at the boundary
position. However, at the innermost position, convergence to four significant digits can
still be observed, with an agreement to at most three digits with the NDSolve and the
new GITT solutions. Nevertheless, to the graph scale, very little deviation is observable
among the three sets of numerical results, as shown in Figure 1(a, b) for the temperature
distribution across the slab at t¼ 0.3, respectively, for the cases Bic¼ 1; Bir¼ 1; γ¼ 1/3
and Bic¼ 0; Bir¼ 20; γ¼ 1/3. Figures 2(a, b) illustrate the transient behavior of the first
nonlinear eigenvalue and the corresponding nonlinear eigenfunction evaluated at the
boundary x¼ 1, for the case Bic¼ 1; Bir¼ 1; γ¼ 1/3, which clearly demonstrates that
the variations due to the time variable surface temperature are in fact of relevance to
the nonlinear eigenvalue problem behavior. Figures 3(a, b) provide again the first
eigenvalue and its corresponding eigenfunction at the boundary, but now for the purely
radiative case Bic¼ 0; Bir¼ 20; γ¼ 1/3. Clearly in this case, the transient is
approaching a steady-state behavior within the elapsed dimensionless time of t¼ 0.5.
Finally, Table III illustrates the excellent adherence between the two GITT
solutions with nonlinear eigenvalue problem, either by considering the DAEs system
(DAE solution) or the derivation of an ODE system for the eigenvalues, as obtained
from the transcendental equations. Also shown is the numerical solution obtained from
the Method of Lines with the NDSolve solution. It can be seen that the two GITT
solutions are equivalent, as expected, and agree in all six signficant digits provided in
the table, and have at least four digits agreement with the numerical solution, for the
worst situation at the nonlinear boundary x¼ 1.
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6. Conclusions
A nonlinear eigenvalue problem approach for the integral transform solution of
convection-diffusion problems with nonlinear boundary condition coefficients has been
here proposed. The approach is based on the integral transformation of the original
eigenvalue problem itself, yielding a nonlinear algebraic eigenvalue problem coupled to
the ordinary differential system for the transformed potentials. An example of diffusion
with nonlinear boundary conditions is examined more closely, and the approach is
demonstrated by handling both the general nonlinear eigenvalue problem approach
and the traditional GITT solution with a linear eigenvalue problem. The algorithm can
be implemented either as a DAEs system formed by the transformed system
and the transcendental equations for the nonlinear eigenvalues or, alternatively, as an
ODE system which involves the differentiation in time of the eigenvalues
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(b)

Notes: Dotted: NDSolve/Mathematica; dotted-dashed: GITT with
nonlinear eigenvalue problem; dashed: GITT with linear eigenvalue
problem

Figure 1.
Results for the
potential distribution
with: (a) Bic¼ 1,
Bic¼ 1 and g¼ 1/3;
(b) Bic¼ 0, Bir¼ 20
and g¼ 1/3
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transcendental equations, yielding a simultaneous system of ODEs for both the time-
dependent eigenvalues and the transformed potentials. The excellent convergence
behavior of the proposed nonlinear eigenfunction expansions was then illustrated
and the approach was numerically verified, by comparing against a numerical solution
through the Method of Lines with refined mesh, as available in the NDSolve
routine (Wolfram Research Inc., 2016), and the traditional GITT solution with a linear

0.0 0.1 0.2 0.3 0.4 0.5
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(a)

(b)

Note: Case: Bic=1, Bir=1 and �=1/3

Figure 2.
Transient behavior

of: (a) first
eigenvalue; (b) first

eigenfunction
at x¼ 1
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Figure 3.
Transient behavior
of: (a) first
eigenvalue; (b) first
eigenfunction at
x¼ 1

T(x,t¼ 0.3)
x Numericala NDSolve ODEs eig.probl. Dev. (%) DAEs eig.probl. Dev. (%)

0 0.645277 0.645279 0.0001834 0.645279 0.0001651
0.1 0.638131 0.638132 0.0001755 0.638132 0.0001580
0.2 0.616835 0.616836 0.0001516 0.616836 0.0001364
0.3 0.581824 0.581824 0.0001072 0.581824 0.0000954
0.4 0.533816 0.533816 0.0000359 0.533816 0.0000284
0.5 0.473817 0.473816 0.0000769 0.473816 0.0000798
0.6 0.403108 0.403107 0.0002560 0.403107 0.0002548
0.7 0.323232 0.323230 0.0005594 0.323230 0.0005557
0.8 0.235965 0.235963 0.0011315 0.235963 0.0011290
0.9 0.143284 0.143281 0.0025180 0.143281 0.0025260
1.0 0.0473142 0.0473096 0.0096640 0.0473096 0.0097402
Notes: Bic¼ 0; Bir¼ 20; γ ¼ 1/3; t¼ 0.3. aNDSolve routine – Mathematica system (Wolfram Research
Inc., 2016)

Table III.
Comparison of the
numerical solution
(NDSolve), against
the nonlinear GITT
solutions with ODEs
or DAEs for the
eigenvalues
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eigenvalue problem. This novel approach can be further extended to various classes of
nonlinear convection-diffusion problems, either already solved by the GITT with
a linear coefficients basis, or new challenging applications with more involved
nonlinearities.
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