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Abstract

We use robustly estimated spatial R-vine copula models to assess spatial dependen-

cies among extreme crop insurance claims. A truthful predictive model for simultaneous

extreme losses is derived based on the linear structure found between copula parameters

and distances between groups. Findings are compared to those from classical estimation

of pair-copulas. Univariate fits of the excess-losses are based on the Generalized Pareto

distribution. The dependence implied by the spatial component is captured by the Gumbel

copulas in Tree 1, whereas a few atypical points are handled by robust inference which

reveals that the influence of joint multivariate extreme outliers can not be neglected. Our

findings are useful for crop insurance firms as well as for local authorities trying to minimize

the effects of the natural disasters.

Key words: Natural disasters; Excess-claims; Insurance; Spatial pair-copulas; Robust statis-

tics; Extreme value models.

1 Introduction

Relevant players in the Brazilian crop insurance industry frequently face huge losses orig-

inated from natural catastrophic disasters occurring in the agricultural south region of

Brazil. Extremes are usually associated with loss of lives, property destruction, with re-

markable effects on insurance markets, sometimes interrupting the continuity of business.

The worst scenarios are expected when catastrophic events are correlated.

Typically, these extreme dependent losses are caused by the geographical concentration

of policies sold and the intrinsic features of a physical phenomenon: a number of claims

may arise at close locations due to a single natural disaster. The data in this study provide

an example where a collection of important spatially correlated losses originated from hail

were observed on two neighborhood coastal areas.

From the insurance standpoint is much more simple to deal with a large number of

independent losses following some well known pattern than with a small number of corre-

lated losses caused by some natural disaster. All the activities and numbers involved are

magnified, including the amount of financial resources to cover the losses, the settlement

of disputes under law, and so on. For example, the Hurricane Katrina, an extremely de-

structive storm hit the Goalf Coast of the US in 2005, and it was the costliest natural

1E-mail: beatriz@im.ufrj.br

1



disaster and one of the five deadliest hurricanes in the history of the US. Total property

damage was estimated at $108 billion (2005 USD), roughly four times the damage wrought

by Hurricane Andrew in 1992 (Source: Wikipedia). As a consequence, a major insurer, the

Allstate, exited several coastal states.

The effects of the global warming and climate changes can be detected everywhere, in

particular, on the crop insurance number and magnitude of claims. New records suggest

that the extreme tails of claims joint distributions may be changing, as well as the strength

of the (non-Gaussian) dependence structure. Therefore, in recent years, major crop insur-

ance companies in Brazil have identified the need of more sophisticated models for correctly

estimating the joint risks, a strategic tool for quantifying financial reserves (provisioning),

for pricing insurance premiums, and also for designing local alert systems.

In their simplest version, actuarial models assume independence among claim sizes.

Alternative (spatial) models usually assume elliptical distributions, in particular the mul-

tivariate Gaussian. However, this assumption implies that all margins are Gaussian and

that the only possible relationship among them is given by the linear correlation coeffi-

cient. This is a serious restriction since we are ruling out the worst scenarios based on tail

dependence between components.

In this study we investigate the spatial linear and non-linear (tail) dependence between

extreme crop insurance claims occurring at several locations in the south region of Brazil

(2005-2017) using pair-copula models. The major appealing characteristic of pair-copula

models is their flexibility since the multivariate distribution is constructed based just on

bivariate copulas. Moreover, the copula families and marginal distributions may vary freely

(see, for instance, Aas et al. (2009) and Dißmann et al. (2013)).

To minimize the influence of atypical data points on a low volume of multivariate

data we apply pair-copula robust estimation. We apply Weighted Maximum Likelihood

method (WMLE) proposed initially for bivariate copulas in Mendes et al. (2007). The

linear relationship between copula parameters and distances is assessed and used in a

prediction model for future locations.

We focus on the long right tail of the claims distribution, location of rare events. This

approach reduces the dimension of the relevant data and calls for univariate models with

strong theoretical support (Pickands (1975), Resnick (1987), de Haan and Ferreira (2006)).

Results from the Extreme Value Theory (EVT) demonstrate that the univariate models

for the excess-claims beyond a high threshold should be based on the Generalized Pareto

Distribution (GPD). We also consider the influence of covariates on the GPD parameters

(Coles (2001), Embrechts et al. (1997)).

The EVT approach to model (univariate) extremes is very popular. Bermudez et al.

(2009) carry on univariate analysis of spatial and temporal patterns of large fires in Por-

tugal using the GPD. Born and Viscusi (2006) examine how catastrophic events affect the

performance of the market of homeowners’ insurance through multiple linear regressions.

Working on spatial multivariate extremes pose very special and interesting difficulties.
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A compreensive review on different spatio-temporal modeling approaches is found in Cressie

and Wikle (2011). Gräler and Pebesma (2011) developed a spatial pair-copula based in-

terpolation method, deriving a convex combination of copulas based on two limit copulas

(perfect dependence and independence) for different distances.

Davison et al. (2012) review recent modeling strategies for spatial extremes, showing

that copulas and spatial max-stable processes are the most successful models (with an

application to a dataset on rainfall in Switzerland). Cooley et al. (2012) complement the

Davison et al. (2012) study and survey the current methodologies for analyzing spatial

extreme data, including copula approaches for modeling residual spatial dependence after

marginal fits. They review the steps for combining EVT models (Generalized Extreme

Value distribution) and copulas but does not use pair-copulas.

Erhardt et al. (2015) apply an extension of R-vine models to allow for spatial depen-

dencies. Jane et al. (2016) method for estimating the significant wave height at a coastal

location based upon spatial correlations combine EVT models and t-student and Gaussian

copulas.

The joint modeling of (crop) insurance excess-claims using GPD models and pair-

copulas estimated via the WMLE robust method are the novelties of this paper. At the

best of our knowledge, this paper is the first to apply robust estimation of pair-copulas

combined with the characterization of the tails of claims through GPD fits to investigate

the relationships among crop insurance extreme-claims reported at several locations. Using

the estimated spatial model we are able to obtain more accurate estimates of the (small)

probabilities associated with joint extreme risks. The findings of this paper will contribute

to local public sectors and insurance companies to design better local alert systems which

may help insurers to predict and extend their models to close locations adapting their poli-

cies to these catastrophic risks. At the event of unexpected catastrophes this can prevent

the exit of firms from the region. We recall that small size insurance firms are the most

adversely affected by extreme events.

In Section 2 we introduce the data and briefly review the models and estimation methods

used. In Section 3 we analyze the data and the results obtained through classical and robust

estimation. Section 4 discusses the findings.

2 Data and methodologies

2.1 Data

The data are composed by crop insurance claims related to natural disasters occurred in the

south region of Brazil from January/2005 through September/2017 and kindly provided by

provided by?? Figure 1 shows the study area ranging from latitude 22oS up to 32.56oS,

and longitude 57oE to 48oE.

Cropland areas represent 31.1% of Brazil’s total area. However, the vast majority of
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Figure 1: Map of the area under study (south of Brazil).

cultivated lands are geographically located at the bottom-half of the country. The main

products are sugarcane, coffe, corn, and soybeans. Permanent crops represent 2.7% of the

agricultural land. Although possessing an important role in Brazil’s economy and showing

an important contribution to the GDP, Agriculture in Brazil still faces many problems and

challenges.

Among these challenges we would highlight a better understanding of extreme climate

effects on neighboring croplands in order to set systematic monitoring and warning policies,

while gathering reliable relevant data set.

Information in the original data set include, among others, the claim value, two off-set

variables, and event type recorded at non-regularly spaced dates. There are 906 cities re-

porting the claims, identified by their geographical coordinates, latitude (La) and longitude

(Lo), spreaded over three states Paraná (PR), Santa Catariana (SC) and Rio Grande do

Sul (RS). There are nine event types: fire, waterspout, strong or cold wind, gale, hail,

heavy rain, drought, rime, flooding. The five largest claims came from hail or rime.

Due to the very large number of locations and the large sparcity of the data matrix, we

use the variables La and Lo to make a partition of the 906 cities into a smaller number of

groups using the k-means clustering technique which minimizes the within-cluster sum of

squares. Then, for fixed event e and date ti, we compute the aggregate process {Y
(e)

ti (Gk)}

for the location (Group) Gk, k = 1, · · · , 6, as the sum of claim values of cities in the group.

The decision for 6 groups was based on the rate of decrease of the within groups sum of

squares. Each group k is geographically identified by the coordinates of its centroid, see
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Figure 2: The 6 groups.

Figure 2. The four largest claims are due to rime (frost) and came from group 1, 4, and 5.

The largest losses from the coast groups 3 and 6 are due to hail.

2.2 Methodologies

In summary, the multivariate dependence among the 6 groups resulting from natural catas-

trophic events will be modeled using spatial pair-copulas. Initially, we select a high thresh-

old for the claim values at each location, estimate the marginal distributions of the excesses

using results from the EVT, and obtain the copula multivariate data. The pair-copula

model is estimated and inference at locations not present in the data will be assessed based

on the spatial information.

More formally, let Xk with unconditional cumulative distribution function (cdf) Fk

represent the claim size for group Gk, k = 1, · · · , 6. Assume that Fk is in the max-

domain of attraction (MDA) of one of the three extreme value distributions Hξ, that is,

Fk ∈MDA(Hξ), ξ ∈ < (de Haan, 1984). Since we focus on the tails of claims’ distributions,

consider a high threshold uk in margin k and the excess claims Yk = (Xk − uk)I(Xk>uk),

where I(·) is the indicator function.

Pickands (1975) established the adequacy of the Generalized Pareto distribution (GPD)

as the asymptotic distribution of positive excesses above a high threshold. The tail of the
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conditional distribution of Yk, F̄uk
(y) = P (Xk − uk > y|Xk > uk), may be modeled by the

GPD. The result holds also for non-i.i.d. processes, see proof in Leadbetter et al. (1983).

The standard GPD distribution function Pξ is given by

Pξ(y) =

{
1 − (1 + ξy)−1/ξ, if ξ 6= 0

1 − e−y, if ξ = 0
(1)

where y ≥ 0 if ξ ≥ 0, and 0 ≤ y ≤ −1/ξ if ξ < 0. The scale family is obtained by

introducing the scale parameter ψ, which depends on the threshold. For most applications

in Actuarial Science the shape parameter is positive.

Focusing on the tail of the claim size distribution allows one to accurately estimate

claim values associated with very small probabilities of occurrence, or much more precisely

estimate the probability of occurrence of an extreme claim value. This follow from

F̄uk
(y) = P (Xk − uk > y|Xk > uk) =

P (Xk > y + uk)

P (Xk > uk)
. (2)

For instance, let α = P (Xk > y+ uk) = F̄k(y+ uk) be a very small exceedance probability,

and let the observed proportion p∗ of data above uk be an estimate of F̄k(uk). Then, for

α < p∗ the extreme claim size (y + uk) with risk α is estimated using

α = F̄uk
(y) ∗ p∗ . (3)

It is clear from (3) that more accurate estimates are obtained from the GPD fit, F̄uk
(y).

For details see Embrechts, Klüppelberg and Mikosch (1997).

The GPD is the only continuous POT-stable distribution. The shape parameter ξ does

not depend on the threshold, a property of great interest in Actuarial Science. There is

a trade-off when choosing the threshold, which should be as high as possible to follow

the theoretical assumptions and at the same time low enough to provide enough data for

estimation. Several graphical and analytical proposals for choosing uk are available in

the literature (Pickands (1994), Smith (1987), among many others). Here we use a high

percentile of the series, chosen such that the empirical distribution of the excesses indicate

the strictly decreasing shape of the GPD, along with goodness of fit tests.

Estimation usually applies either the maximum likelihood method or the probability

weighted moments (Hosking and Wallis, 1987). As suggested in Coles (2001), covariates

may be incorporated in the GPD model.

We model the spatial dependence between the different locations Gk using pair-copula

models. Copulas have been widely used in Actuarial Sciences, and one of the reasons

for this popularity is the inadequacy of the multivariate normal distribution for the vast

majority of data sets.

We briefly review the definitions, and to simplify the notation, assume k = 2. Let

(Y1, Y2) be a continuous random variable (rv) in <2 with joint cdf H and margins Gk,
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k = 1, 2. Consider the probability integral transformation of Y1 and Y2 to uniformly

distributed rvs on [0, 1], that is, (U1, U2) = (G1(Y1), G2(Y2)). The copula C corresponding to

H is the joint cdf of (U1, U2) (Nelsen (2006), Joe (1997)). As multivariate distributions with

Uniform [0, 1] margins, copulas provide very convenient models for studying dependence

structure with tools that are scale-free.

From Sklar’s theorem (Sklar, 1959) we know that for continuous rvs, there exists a

unique 2-dimensional copula C such that for all (y1, y2) ∈ [−∞,∞]2,

H(y1, y2) = C(G1(y1), G2(y2)). (4)

The Sklar theorem allows one to construct multivariate distributions by simply choosing a

copula family and marginal distributions.

To measure monotone dependence, one may use the population version of the measure

of association known as Kendall’s τ . Kendall’s τ does not depend upon the marginal

distributions and is given in terms of the copula. However, the (Pearson) product-moment

(linear) correlation coefficient ρ is not a copula based measure.

To measure upper tail dependence one may use the upper tail dependence coefficient

λU which also may be expressed using the copula corresponding to H:

λU = lim
u↑1

C̄(u, u)

1 − u
,where C̄(u1, u2) = P{U1 > u1, U2 > u2}, and λL = lim

u↓0

C(u, u)

u
, (5)

if these limits exist. The measures λU ∈ (0, 1] (or λL ∈ (0, 1]) quantify the amount of

extremal dependence within the class of asymptotically dependent distributions. If λU = 0

(λL = 0) the two variables Y1 and Y2 are said to be asymptotically independent in the

upper (lower) tail.

More flexibility may be gained by considering pair-copulas models. Pair-copulas is

an hierarquichal decomposition of a d-dimensional copula into a cascade of d(d − 1)/2

potentially different bivariate copulas. It was originally proposed by Joe (1997), and later

discussed in detail by Bedford and Cooke (2001, 2002), Kurowicka and Cooke (2006) and

Aas, Czado, Frigessi, and Bakken (2007). The method of construction is hierarchical, and

variables are sequentially incorporated into the conditioning sets as one moves from level

1 (Tree 1, denoted by T1) to tree d − 1. The composing bivariate copulas may vary freely,

with respect to choice of the parametric families and parameter values. Therefore, all types

and strengths of pair-wise dependence can be captured.

Consider the d-dimensional joint distribution cdf H and density h of the co-excesses

with strictly continuous marginal cdf’s G1, · · · , Gd with densities gk. The multivariate

density function may be uniquely decomposed as

h(y1, ..., yd) = gd(yd) · g(yd−1|yd) · g(yd−2|yd−1, yd) · · · g(y1|y2, ..., yd). (6)

The conditional densities in Equation (6) may be written as functions of the corresponding

copula densities. That is, for every j

g(y | v1, v2, · · · , vd) = cyvj |v−j
(G(y | v−j), G(vj | v−j)) · g(y | v−j), (7)
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where v−j denotes the d-dimensional vector v excluding the jth component. Note that

cyvj |v−j
(·, ·) is a bivariate marginal copula density.

Decomposition (6) together with (7) was described in Czado:2010 and in Aas et al.

(2009). Expressing all conditional densities in Equation (6) by means of Equation (7), we

derive a decomposition for h(y1, · · · , yd) that consists of only univariate marginal distri-

butions and bivariate copulas. Then, a factorization of the d-dimensional copula density

c(G1(x1), · · · , Gd(xd)) is obtained based only in bivariate copulas, the pair-copula decompo-

sition. This is a very flexible and natural way of constructing a higher dimensional copula.

Note that, given a specific factorization, there are many possible reparametrizations.

For large d, the number of possible pair-copula constructions is very large. Bedford

and Cooke (2001) introduced a systematic way to obtain the decompositions, the so called

regular vines (R-vines). These graphical models help understanding the conditional specifi-

cations made for the joint distribution. Two special cases are the canonical vines (C-vines)

and the D-vines. C-vines (D-vines) possess star (path) structures in their tree sequence.

Given a parametric copula family, to estimate the copula parameter δ (it may be a

vector), in this paper we use the sequential approach proposed in Aas et al. (2009) and

applied in AasBerg:2009 in which the estimates from the previous tree are used to transform

the data in the current tree. Precise recursions for sequential estimation in C-vine models

were given in Czado et al. (2012). The MLE is the classical estimation method.

Bayesian methods have also been applied to pair-copulas. In Dalla Valle (2009), Bayesian

inference based on MCMC is proposed for multivariate elliptical copulas using the inverse

Wishart distribution as the prior distribution for the correlation matrix. Min and Czado

(2010) also developed a Markov chain Monte Carlo algorithm that provides credibility

intervals. Turkman et al. (2010) model Portuguese wildfires using Bayesian hierarchical

models. In Czado et al. (2012), a very interesting data driven sequential selection proce-

dure is proposed or jointly choosing the C-vine structure and the pair-copula families. A

sequential estimation procedure for copula parameters in a previously specified C-vine was

also developed and implemented.

However, occasional atypical points may be present and they may corrupt the classical

estimates of the dependence structure. In this paper we apply the Weighted Minimum

Distance (WMDE) and the Weighted Maximum Likelihood (WMLE) robust estimates

proposed in Mendes, Nelsen and Melo (2009). They are based on either a redescending

weight function or on a hard rejection rule applied to one or several outliers occurring

anywhere in the data.

The WMLE result from a two-step procedure. In the first step, outlying data points are

identified by a robust covariance estimator and receive zero weights, and in the second step

the copula MLE are computed for the reduced data. In the first step we are not concerned

with efficiency. The goal is to identify outlying points by computing the Mahalanobis

distance with as a cutoff point the 0.975 quantile of a chi-square distribution with one degree

of freedom. There are many high breakdown point estimators of multivariate location and
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scatter that could be used in this preliminary phase. We use the robust Stahel-Donoho (SD)

estimator based on projections (Stahel, 1981 and Donoho, 1982) which is implemented in

the free R software. For every copula family thre is a specific weighted minimum distance

estimator able to downweight the influence of contaminating points which does not depend

on the sample size. For details about the robust estimates see also Mendes and Acciolly

(2011).

The WMDE minimize some selected goodness of fit statistics. Copula measures of

goodness of fit may be obtained by computing some distance between the empirical copula

C̃ and the parametric copula Ĉ = Cbδ fitted to the data. The WMDE estimate for δ is the

solution δ∗ which minimizes over all δ in ∆, the selected empirical copula based goodness

of fit statistics.

Many discrete norms may be defined. For each copula family there is a WMDE as

good as the MLE under no contamination as measured by by the mean squared error.

In summary, under no contamination the WMDE and the MLE are equivalent. Under

contaminations best solutions are provided by the WMLE and the WMDE. In this paper

we compute and compare the classical and the robust estimates of the pair-copula models

applied to the extreme crop claims.

3 Empirical analyses

3.1 Univariate excess-data

We start by taking a look at the behavior of the extreme claims at each location. For each

group k we collect the excess-data based on threshold values selected as a high percentile

(94%) of the series of size 5731, resulting in 344 observations in each margin. In Table

1 we provide some descriptive statistics of the excess-data: their minimum, medium, and

maximum values along with the group center coordinates La(k) and Lo(k) and threshold

values. All series showed a long right tail characteristic of the Pareto distribution with

positive shape parameter. All excess data came from the natural events hail, heavy rain,

drought, and rime.

After checking for and not finding any short, long, or seasonal serial dependence in

the excess-data we proceed fitting by maximum likelihood the GPD model. There exist

many exogenous risk factors besides climate and geographical variables, that may affect

the outcomes of crop insurance claims’ size and number. To eliminate the impact of the

variables not included in the model but influencing the results, the actuarial modelers

usually make use of some measure of exposure, an offset variable. The exposure might

be the number of people who contract the insurer, insured area, value insured, and so on.

Here we allow both the the scale parameter ψ and the shape parameter ξ to depend on a

covariate (insured value) correcting for exposure through a linear model.

All maximum likelihood estimates are statistically significant and a goodness of fit
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Figure 3: PP-plot and QQ-plot from the GPD fit for Group 1.

test accepted the null for all groups. Figure 3 shows the pp-plot and qq-plot for Group

1. Estimates(standard errors) of the shape parameter are 0.7937(0.0806), 0.6616(0.0756),

0.8893(0.0903), 0.5764(0.0708), 0.7030(0.0788), and 0.9064(0.0903), respectively for groups

1, · · · , 6. All groups have finite mean and infinite variance.

3.2 Exploring close neighborhoods

The proportion of common exceedances (denoted by π) between two groups is an interesting

empirical measure of dependence. Here, for two independent groups this proportion would

be estimated as (344/5731)2 = 0.0036, but we found π greater than that for all pairs. The

smallest value, 0.0037, was observed for the pair composed by the up-country group 5 and

Table 1: Descriptive statistics of the excess-data: their minimum, medium, and maximum values

along with the group center coordinates La(k) and Lo(k) and threshold values.

Excess claims

Group Latitude Longitude Threshold Minimum Medium Maximum

Group 1 -27.64692 -52.43124 59181 51 97226 23871328

Group 2 -25.01310 -53.23867 209712 551 259651 14031941

Group 3 -27.35435 -49.82260 155416 131 280601 20591557

Group 4 -28.54984 -54.48945 129409 241 205916 28818966

Group 5 -23.64538 -51.33528 220994 798 265568 33783266

Group 6 -29.87321 -52.16852 108980 27 153933 20664311
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the south-coast group 6, and the largest one, 0.0234, came from group 5 and its closest

neighbor country group 2 (see Figure 2).

This measure π may be used to define the ordering of the unconditional copulas com-

posing the T1 in a D-vine. The groups’ ordering with the highest numbers of common

exceedances is: 5-2-1-4-6-3. As we will see in the next subsection, this ordering agrees with

the one suggested by the Kendall’s monotone correlation coefficient τ computed on the

6-dimensional space of the pair-copula.

It is worth investigating whether or not there is a relationship between π and the

distance D, the usual geostatistical approach for spatial modeling. A least squares fit of a

linear model having π as explanatory variable and D a response resulted in estimates 1%

statistically significant and a R2 of 70% (negative slope). On the left hand side of Figure 4

we observe that the two groups 5 (up-country) and 6 (south-coastal) providing the smallest

π also provided the largest D.

Figure 4: On the left hand side the observed relation between groups distances D and proportions

of pair-wise common exceedances π along with the least squares fit. On the right hand side the

observed relation between groups distances D and the correlation coefficient τ .

3.3 Spatial pair-copulas

Once the marginal effects have been accounted for and the univariate series have been

transformed to be Uniform[0, 1] through the probability integral transform applied to the

GPD fit, we model the spatial dependence between the different locations Gk using pair-

copula models. As stressed in several papers the success of the copula approach and of
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course of the predictions made relies on the correct specification of the marginal models.

Goodness of fit tests were carried on and confirmed the good quality of the GPD fits.

Several regular vines may be fitted. The D-vine modeling starts with the specification

of the ordering of groups in T1. The ordering defined by τ is 5− 2 − 4 − 1 − 6− 3, and for

this data set it coincides with the one implied by the linear correlation coefficient ρ. Figure

5 shows the support set of the empirical copulas in T1. Table 2 provides the τ values.

Figure 5: The support set of the empirical copulas in Tree 1.

The bivariate copulas chosen to compose the D-vine are: Gaussian, T-student, Gumbel,

Clayton, Galambos, bb7, Frank, product and Tawn. They cover all types of extremal

dependence and include the asymmetric case. The Akaike criterion is used to choose the

best copula fit at each bivariate building block. The maximum likelihood estimates based

on the sequential approach were computed using the SPlus and the R packages. Our final

model is a D-vine, although the R package also found a R-vine specification as good as the

D-vine chosen.

All five copulas in T1 are Gumbel, an extreme value copula. The Gaussian and Frank

copulas compose the following trees. Upper tail dependence is only observed in T1, with

weaker (non-tail) dependencies captured on the remaining trees which showed correlations

varying between −0.17 and +0.12.

Classical estimation provided a total log-likelihood of 30.3293, whereas the robust

WMLE estimation provided a larger value (33.5963) even though a smaller data set was

used (two outliers were detected by the robust procedure). Stronger dependence was cap-

tured by the robust estimation resulting in larger tail dependence coefficients (λU ). Table 2

also shows the classical and robust estimates (standard errors) of the copulas’ parameters in

T1 along with the corresponding λU . Although the GOF test accepted the null, we observe

large standard errors, probably explained by the very small data set (only 30 6-dimensional

joint observations).
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As expected, the inspection of the support set of the empirical copulas for all fifteen

pairs showed stronger dependence between locations which are close to each other. A linear

regression between τ and the distances D provided both estimates statistically significant

(less than 1%), an adjusted R2 of 38%, and a negative slope coefficient (-0.0865). For

example, groups 5 and 6 showed negative dependence (−0.0184) and the highest distance

(6.2833). The right hand side of Figure 4 shows the linear relationship between τ and D.

The functional relation between τ and D suggests that it is worth to assess the spatial

dependence between groups by exploring the relationship between the copula parameters

and the log(D). Recall that for each copula family there is a specific functional relationship

between the copula parameter δ and τ and also λU . In the case of the Gumbel copula we

have

λU = gU(δ) = 2 − 21/δ and τ = gτ (δ) =
δ − 1

δ
.

Figure 6 shows the scatter plot of log-distances (and distances) and the δ robust esti-

mates for T1 along with the robust line (MM-estimator). As expected, a negative slope.

This structure may used for predicting crop claims at unobserved locations (or missing

data) based on the spatial variable:

δij = β0 + β1log(Dij) + ε (8)

for all pairs of groups i, j in T1. This spatial model may also be used to predict the strength

of tail dependence λU as well as the correlation τ between a new group and any other one

from the original 6 groups. Whenever a new group is defined and data are not available,

it should be allocated as a new leaf in T1 joined to the group providing the smallest D

value, and the model (8) is used to predict δ. Erhardt et al. (2015) used a similar but more

complex relationship to reduce the number of parameters of a regular vine.

We optimize the full likelihood of the R-vine using as starting values those provided

by the robust regression (MM-estimates). The final solutions and (standard errors) are

(β0, β1) = (1.78(0.0356),−0.37(0.0307)).

In summary, the results show that the association between crop insurance claims from

groups spatially spreaded over the south region of Brazil might be modeled by a spatial

Table 2: Some results for T1: The pairs of groups, the distance between them, and corresponding

τ . The classical and robust estimates (standard errors), and λU .

Classical Fit Robust Fit

Pair Distance τ Copula Estimate λU Copula Estimate λU

52 2.34 0.22 Gumbel 1.34(0.17) 0.32 Gumbel 1.39(0.19) 0.35

24 3.75 0.18 Gumbel 1.31(0.16) 0.30 Gumbel 1.30(0.17) 0.29

41 2.25 0.24 Gumbel 1.60(0.24) 0.46 Gumbel 1.61(0.25) 0.46

16 2.24 0.50 Gumbel 2.16(0.32) 0.62 Gumbel 2.22(0.34) 0.63

63 3.44 0.33 Gumbel 1.48(0.21) 0.40 Gumbel 1.63(0.24) 0.47
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Figure 6: Robust line representing the association between (log)-distances and Gumbel-δ robust

estimates for Tree 1.

R-vine model where all unconditional copulas are Gumbel with parameter δ following a

linear model having the log-distance as regressor.

The model may be simulated to estimate with accuracy any quantity of interest such

as extreme joint claim sizes associated with very small exceedances probabilities α of oc-

currence. To illustrate, consider the 0.95 quantile of the claim size (in each margin) which

is computed as the 0.1667 quantile of the GPD distribution (see 3), since the threshold

represents 6% of data. Under independence the joint probability of the six groups jointly

exceed these claim values is 0.056 = 0.000000015625. This joint probability estimated via

simulations of the spatial pair-copula model is 0.0252!

4 Discussions

Insurance companies are usually prepared for huge losses. Even though, whenever a col-

lection of important spatially correlated losses arise from close locations, there is a chance

of a complete or partial interruption of the continuity of their businesses. Natural events

frequently give rise to dependent losses. Note that a single natural catastrophic event may

result in huge correlated losses.

The global warming has exacerbated all numbers related to extreme events: strength,

speed, coverage, duration, volume, frequency, and so on. This calls for more sophisticated

models for correctly estimating the joint risks and for quantifying financial reserves, pricing

insurance premiums, and also for designing local alert systems.

The data analyzed in this paper are losses caused by natural extreme events. We

modeled the spatial linear and non-linear dependence between extreme crop insurance

claims occurring at several locations in the south region of Brazil using a spatial D-vine
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model where all unconditional copulas in tree 1 are Gumbel. The strenght of dependence

between two groups may be measured by the value of the parameter of the corresponding

Gumbel copula. We found a linear relationship between the copula parameter and the

geographical distance between two locations. This structure allows for predicting the degree

of dependence between the original groups and any new one and estimate the dependence

coefficients.

Results from the classical estimation was compared to the robust ones. Stronger depen-

dence was captured by the robust estimates resulting in larger tail dependence coefficients.

The model was simulated to estimate with accuracy quantities of interest such as extreme

joint claim sizes associated with very small exceedances probabilities of occurrence.

It is very difficult to get assess to insurance data. It requires confidentiality, and usually

just part of the data is released. In a further extension when more data are avalilable we

intend to separate the claims according to the event type and proceed with the multivariate

spatial analysis of the dependence structure.
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