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COMPARAÇÃO ENTRE TÉCNICAS DATA-DRIVEN E BASEADAS EM

REGRAS APLICADAS A ALGORITMOS DE PROCESSAMENTO DA

LINGUAGEM NATURAL PARA SÍNTESE DE VOZ EM PORTUGUÊS

BRASILEIRO

Luiz Felipe Santos Vecchietti
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Orientador: Fernando Gil Vianna Resende Junior
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Nos últimos anos, devido ao grande crescimento no uso de computadores, assis-

tentes pessoais e smartphones, o desenvolvimento de sistemas capazes de converter

texto em fala tem sido bastante demandado. O bloco de análise de texto, onde o

texto de entrada é convertido em especificações lingúısticas usadas para gerar a onda

sonora final é uma parte importante destes sistemas. O desempenho dos algoritmos

de Processamento de Linguagem Natural (NLP) presentes neste bloco são cruciais

para a qualidade dos sintetizadores de voz. Conversão Grafema-Fonema, separação

silábica e determinação da śılaba tônica são algumas das tarefas executadas por

estes algoritmos.

Para o Português Brasileiro (BP), os algoritmos baseados em regras têm sido o

foco na solução destes problemas. Estes algoritmos atingem boa performance para

o BP, contudo apresentam diversas desvantagens. Por outro lado, ainda não há

pesquisa no intuito de avaliar o desempenho de algoritmos data-driven, largamente

utilizados para ĺınguas complexas, como o inglês. Desta forma, expõe-se neste tra-

balho uma comparação entre diferentes técnicas data-driven e baseadas em regras

para algoritmos de NLP utilizados em um sintetizador de voz. Além disso, propõe-se

o uso de Sequence-to-Sequence models para a separação silábica e a determinação

da tonicidade.

Em suma, o presente trabalho demonstra que o uso de algoritmos data-driven

atinge o estado-da-arte na performance dos algoritmos de Processamento de Lin-

guagem Natural de um sintetizador de voz para o Português Brasileiro.
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Due to the exponential growth in the use of computers, personal digital assistants

and smartphones, the development of Text-to-Speech (TTS) systems have become

highly demanded during the last years. An important part of these systems is the

Text Analysis block, that converts the input text into linguistic specifications that

are going to be used to generate the final speech waveform. The Natural Language

Processing algorithms presented in this block are crucial to the quality of the speech

generated by synthesizers. These algorithms are responsible for important tasks such

as Grapheme-to-Phoneme Conversion, Syllabification and Stress Determination.

For Brazilian Portuguese (BP), solutions for the algorithms presented in the

Text Analysis block have been focused in rule-based approaches. These algorithms

perform well for BP but have many disadvantages. On the other hand, there is still

no research to evaluate and analyze the performance of data-driven approaches that

reach state-of-the-art results for complex languages, such as English. So, in this

work, we compare different data-driven approaches and rule-based approaches for

NLP algorithms presented in a TTS system. Moreover, we propose, as a novel ap-

plication, the use of Sequence-to-Sequence models as solution for the Syllabification

and Stress Determination problems.

As a brief summary of the results obtained, we show that data-driven algorithms

can achieve state-of-the-art performance for the NLP algorithms presented in the

Text Analysis block of a BP TTS system.
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Chapter 1

Introduction

1.1 Motivation

Due to the exponential growth in the use of computers, personal digital assistants

and smartphones, the development of Text-to-Speech (TTS) systems have become

highly demanded during the last years. TTS systems are able to convert a written

form of communication, text, in a spoken form of communication, speech. Some

important applications of these systems include spoken dialogue systems, GPS nav-

igation systems, reading aloud applications for people with vision impairments, au-

diobooks, communicative robots and speech-to-speech translation systems.

A TTS system is divided in two parts, a front-end part that consists in the Text

Analysis block and a back-end part that is the Speech Waveform generation block,

as can be seen in Figure 1.1. The Text Analysis block is the main focus of this dis-

sertation and is responsible for converting the input text inserted by the user to the

required linguistic specifications. These linguistic specifications are used as inputs

to the Speech Waveform generation part. To do this conversion the Text Analy-

sis block processes the input text through a series of Natural Language Processing

(NLP) algorithms. These algorithms are responsible for important tasks such as the

Grapheme-to-Phoneme conversion (G2P) , Syllabification and Stress Determination.

For Brazilian Portuguese (BP) many solutions for the algorithms presented in

the Text Analysis part of TTS systems have been proposed [1–8]. Because BP is

a language with shallow orthography the solutions have been focused in rule-based

approaches. These algorithms perform well for BP but have many disadvantages.

The rules must be designed by a linguistic specialist, which is really a time consuming

and expensive task. Also, it is hard to incorporate these rules to the new words

incorporated to the language as time goes by. So, for deep orthography languages,

such as English, new data-driven approaches have been developed, especially for the

G2P task, that is a really important part of Speech Recognition and Speech Synthesis
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Figure 1.1: Basic architecture of a TTS system.

systems. Data-driven algorithms are much less time-consuming to develop and can

easily adapt to the incorporation of new words to the desired language. Another

advantage of these systems is that they are language-independent, in other words,

the same algorithm can be used for different target languages. The performance

of these solutions have been improving drastically, especially with the increasing of

hardware power and the development of new Machine Learning and Deep Learning

algorithms.

Data-driven approaches, such as Joint Sequence Models [9], Weighted Finite-

State Transducers (WFSTs) [10] and Sequence-to-Sequence Models [11] reach the

state-of-the-art performance for English G2P conversion. On the other hand, for BP

there is still no research to evaluate and analyze the performance of these approaches

in comparison with rule-based algorithms already presented in the literature. As the

quality of synthesized speech is highly related to the efficiency of the Text Analysis

block, an analysis of different solutions for the NLP algorithms is needed.

Also, we use Sequence-to-Sequence Models [11] to propose richer feature sets as

explained in [12] to solve the G2P conversion task. The accuracy of the model is

then evaluated. Moreover, we also propose the use of Sequence-to-Sequence Models

to the Syllabification and the Stress Marking problems evaluating the performance

in comparison to the related rule-based algorithms.

As a brief summary of the results obtained, we show that data-driven algorithms

can achieve state-of-the-art performance for the NLP algorithms presented in the

Text Analysis block of a BP TTS system. The Sequence-to-Sequence Models achieve

the best accuracy for the G2P conversion with a mean Word Error Rate (WER) of

2.28%. We also show that a model that includes the stress information outperforms

the previous model achieving a mean WER of 1.91%. For the Syllabification and

the Stress Marking the proposed models achieved a mean WER of 1.70% and 0.45%

respectively. The rule-based algorithms achieve mean WER equal to 3.26% for G2P

Conversion, 4.15% for Syllabification and 0.03% for Stress Determination.

Given the motivation presented in this section, the objectives of this work are

presented below.
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1.2 Objectives

The proposal of this dissertation is to analyze and compare rule-based and data-

driven approaches to the implementation of Natural Language Processing algorithms

used in the development of TTS systems. So, the following specific goals are defined:

• Propose a new set of rules for Brazilian Portuguese based on the rule-based al-

gorithm showed in [6], and evaluate the performance compared to the previous

algorithm.

• The development of three lexicons composed of 33737 words extracted from

the Ispell [13] dictionary used for the training step of data-driven approaches.

The first lexicon has the G2P information, while the second one contains the

syllable information and the third one contains the stressed syllable informa-

tion.

• Propose a Sequence-to-Sequence Model approach [14] for the Syllabification

and the Stress Marking problems.

• Compare the performance of the new set of rules proposed and three data-

driven approaches for the G2P Conversion using k-fold cross validation [15].

• Compare the performance of the rule-based algorithms and the Sequence-to-

Sequence Model proposed for the Syllabification and Stress Marking tasks

using k-fold cross validation [15].

• Analyze the performance of the Sequence-to-Sequence Models for the G2P

Conversion using the stress marking information in the feature set of the model

compared with models that do not use this information.

• Analyze the influence of the training set size on the performance of Sequence-

to-Sequence Models for the G2P Conversion, Syllabification and Stress Deter-

mination.

3



1.3 Description

The rest of this dissertation is organized as follows.

Chapter 2 reviews the theoretical background of TTS systems and presents the

state-of-the-art techniques for the NLP algorithms used in this dissertation. The

main advantages and disadvantages of each method are pointed out.

In Chapter 3, a new set of rules for the BP G2P Conversion is proposed and its

accuracy is showed.

Chapter 4 presents the new Sequence-to-Sequence Models proposed in this dis-

sertation. The first model adds the stress marking information to the G2P Conver-

sion Model. The second and third model addresses the Syllabification and Stressed

Syllable information respectively.

The Chapter 5 describes the experiments for the comparison of rule-based ap-

proaches and data-driven approaches for the BP NLP algorithms.

Finally, Chapter 6 brings the conclusions of this work, a summary of the achieve-

ments and the research directions for future works.
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Chapter 2

Background

2.1 Introduction

This chapter aims to explain the theory behind TTS systems. First of all, it is

interesting to recapitulate the brief explanation from the Chapter 1 about the basic

idea of a TTS System. The objective of TTS systems is to generate speech given

a text input. The desire is to generate intelligible and natural-sounding speech.

It means, the user should clearly understand the sentence that was spoken by the

synthesizer and it should sound as natural(human-like) as possible. As can be seen

in [16] this conversion from words in written form into speech is nontrivial.

The TTS system is divided in two fundamental processes: Text Analysis (front-

end) and Speech Generation (back-end), as already mentioned in Chapter 1. It can

be explained using as an example the human task of reading a message aloud. This

task can be understood as a decoding-encoding problem [17]. If we see both speech

and writing/text as signals which encodes a message the task can be divided in two

parts. In the first part, the written signal is decoded into a message and then, in

the second part the message is then re-encoded into a speech signal.

During the last years, with the focus of the research projects towards the back-

end part we were able to advance drastically especially regarding the naturalness

of synthetic speech. Nevertheless, to keep the high intelligibility of these systems

and to allow the development of new applications, such as Expressive Synthesizers,

the development of reliably Text Analysis systems are crucial. Furthermore, we are

going to pass through the whole development process of a TTS system in the next

sections.

Thus, this chapter will present the background to understand a TTS system. It

will first introduce the Text Analysis block explaining the steps and the state-of-the-

art algorithms used in each part of the processing. The algorithms used to perform

the comparison in this dissertation will be explained in detail. Then, the state-of-

5



the-art solutions for the Speech Waveform generation block will be introduced.

2.2 Text Analysis

A TTS system should be able to accept any written input. After, the input inserted

by the user should be processed to create the labels that serves as the input message

for the speech signal generation. This processing is done by the Text Analysis block

and consists in many different steps showed in Figure 2.1. As you must be thinking,

the Text Analysis block is language-dependent, so, if you are developing a new

synthesizer this block should be specific for your target language. Despite of this

fact, many of the algorithms presented in the Text Processing part share the same

objectives between different languages.

Therefore, looking to Figure 2.1 we are going to analyze each step of the Text

Analysis block. The first step, before enter in the Normalization block, consists in

separate the input text inserted by the user in sentences and words. After that,

the new input is ready to enter a complex normalization step. This is necessary

because the input contain information that can be troublesome for the Speech Syn-

thesizer to read. For example, if the user inserted his birthday in date format as

input how the system should read a date? Due to these problematic inputs, this

step is responsible for normalizing numbers, dates, acronyms, initialisms and abbre-

viations. The numbers, dates and abbreviations should be expanded into full words.

For example “Dr.” should be expanded to “Doutor” (doctor) and “10” should be

expanded to “Dez” (ten). The initialisms and acronyms need to be dealt with two

different possibilities. The initialisms, called “Siglas” in BP, are read by spelling

one letter at a time. One example is how you read the abbreviations for the Federal

Universities in Brazil, such as “UFRJ”, read one letter at a time. On the other

hand, the acronyms, called “Acrônimos” in BP, are read as words. As an example

we can cite the “NASA”, National Aeronautics and Space Administration. After

finish this step, the output is inserted in the Text Processing block.

The Text Processing block is the place where the NLP algorithms analyzed and

compared in this dissertation are located. The first one consists of the Homograph

Disambiguation algorithm. Homographs are pair of words that share the same text

form. The homographs become a problem for speech synthesis when they differ

in pronunciation, called “Homógrafos Heterófonos” in BP. For example the word

“jogo” that can be pronounced with the open vowel “j[O]go” and means the verb to

play when conjugated with the first person or can be pronounced as “j[o]go” with a

close vowel and means game as a noun. These words should be treated by a special

algorithm before the Grapheme-to-Phoneme Conversion step because they can insert

errors in the phonetic transcription. Moreover, the synthesizer will pronounce the

6



Figure 2.1: Details of the Text Analysis component.

word with the wrong phoneme during synthesis time and influences its intelligibility

and naturalness. Another ambiguity that is common for specific languages is the

syntactic ambiguity, that is when two sentences are written with the same text form

but can have two different interpretations. This ambiguity is not treated in the

development of TTS systems because of the need of complex semantic analysis and

its little influence to the phonetic transcription, despite of being an important issue

regarding prosodic aspects.

Another algorithm presented in the Text Processing block is the Stress Deter-

mination one. The algorithm will mark the syllable that contains the stress in a

word. The stress will influence the pronunciation and especially the prosody related

to the speech. The stress mark is highly correlated to the rise of the fundamental

frequency, intensity and duration of the vowels [6]. So, the insertion of the stress

information as one of the linguistic specifications that are used to generate speech

is important to enhance the naturalness of the system. In addition to, this informa-

tion will also be used on the rule-based G2P converters that will be presented in the

next section and in Chapter 3. It also will be inserted in the Sequence-to-Sequence

Models with a richer feature set proposed in Chapter 4 of this dissertation.

The Syllabification algorithm is another important step during Text Processing.

In this algorithm, given a word, the algorithm divides the word in smaller pieces

called syllables. These smaller pieces are considered the building blocks of a word

[18]. The syllable information with the stress marking especially influences the

rhythm and prosody of languages, and, consequently, of the speech synthesizers.

This influence is even more important for BP because of its tendency to sound as

a syllable-timed language. Then, for BP, the syllables directly affects the duration

and pronunciation of a word.

The most important task during the Text Processing is the Grapheme-to-

Phoneme Conversion. The G2P converter is responsible for guessing a word’s pro-

nunciation from its spelling [17]. It means, converting the word into their corre-

spondent phoneme forms. Note that errors in this conversion will directly affect

the intelligibility as the words will be pronounced wrongly by the synthesizer. It is
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important to mention that there can be more than one phoneme set for the same

language, so the most suitable one for your application can be chosen. Usually,

dictionary look-ups can be used to solve this problem. In this case, these dictionar-

ies are a list of many words and their respective phoneme sequences. Words that

are not presented in this dictionary need to be inferred using different solutions.

These solutions depends on the target language and the project requirements. For

deep orthography languages, such as English, where there is no correspondence be-

tween the graphemes and phonemes, even for experienced linguists, is hard to find

patterns that can be transformed in linguistic rules. So, the development of data-

driven approaches have become a need. On the other hand, for shallow orthography

languages, such as Spanish and BP, the strong correspondence between graphemes

and phonemes encouraged the use and the development of rule-based approaches by

linguists.

With the description of these components, in the next sections it is time to ex-

plore the solutions used to solve the Syllabification, the Stress Determination and the

G2P conversion algorithms. First, in Section 2.2.1, rule-based approaches that rep-

resents the state-of-the-art for BP will be presented. Then, Section 2.2.2 will present

the state-of-the-art solutions for these problems using data-driven approaches.

2.2.1 Rule-based approaches

Despite of the big growth in the development of data-driven strategies to solve Nat-

ural Language Processing problems recently, rule-based approaches are still widely

used in the production of NLP systems. Rule-based approaches have been the focus

on the solutions of NLP problems for BP. Because of the phonological regularity

of Brazilian Portuguese, rule-based approaches achieve good accuracy for problems

like the G2P conversion, Syllabification and Stress Determination. In addition to,

they can be more efficient computationally than data-driven approaches that require

complex training and decoding algorithms. The running time of these algorithms

can turn their use in real time for specific applications impossible. However, the

development cost of the rules by a linguistic expert usually is high, and is hard to

keep the rules updated to changes in the language or to create rules for foreign words

and proper names, so that, they need to be treated as exceptions. Also, after you

have hundreds of rules, they start to interact in complex ways turning even more

difficult to keep the system maintenance. Another important application of the rule-

based systems is accelerating the development of new corpora for the data-driven

approaches training presented in Chapter 5.

This chapter will introduce the rule-based algorithms that can be found in the

literature for BP. Moreover, the algorithms chosen to perform the experiments in
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Chapter 5 will be briefly described.

Stress Determination Algorithm

Beyond the importance of stress information for the prosodical features of BP, this

information is also used at the rule-based algorithms used for G2P conversion and

Syllabification. Therefore, the accuracy of the stress determination algorithm also

influences the accuracy of the other ones. Rule-based algorithms for BP are pre-

sented in [5, 6]. The algorithm used in this dissertation is briefly explained next and

is detailed in [6]. It will be used for the analysis in later chapters.

The algorithm consists in 19 subsequential rules. A important information for

the algorithm is the presence of accents in BP words. These accents are highly

correlated with the stress determination in a word. Because of that, the first rule

of the algorithm searches the presence of these accent markers. If the word has

more than one marker, a precedence rule is involved. Then, the word is analyzed

from the last to the first character. After a word is matched to a rule, the stress is

determined and the next word is evaluated. Some words, like prepositions, pronouns

and conjunctions do not have a stressed syllable. So, they need to be treated as

exceptions to the algorithm rules.

Syllabification Algorithm

A speech synthesizer, to achieve a good performance, also need to include the in-

formation of the characteristics of the desired language. One of this important

information for BP is the division of the word in syllables. The syllables influences

the rhythm of speech in BP. The addition of this information to the contextual

information of a speech synthesizer improves its naturalness. This problem have

been mainly approached using rule-based strategies for BP. In [5, 6] a rule-based

algorithm was proposed to the syllabification problem. A few modifications to this

algorithm were proposed in [7, 8]. These modifications consisted especially to addi-

tional rules to treat diphtongs and hyatus cases. In this dissertation, the analysis

showed in the next chapters will be based on a implementation of the algorithm

presented in [6]. The algorithm is explained succinctly subsequently.

The syllables of the BP language are formed around a vowel. So, at first, the

algorithm looks for the existing vowels in the word. Thereafter, each vowel is ana-

lyzed looking to its position inside the word and the characters located to its right

and to its left. With this information, the rules try to huddle together the vowel

with their neighbour characters to create a syllable based on eight possible cases.

After the vowel is matched to one of the 25 rules presented in the algorithm the syl-

lable is created and the next vowel can be evaluated. The rules first investigates the
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instances where the vowel is located at the beginning of the syllable, then the cases

where the vowel is located in the middle or at the end of the syllable are analyzed.

The detailed rules can be seen in [6].

Grapheme-to-Phoneme Conversion Algorithm

For the development of unrestricted TTS systems is important that there exists an

algorithm capable of derive the pronunciation for any input word. For languages

with shallow orthography, such as BP, a good option to solve this problem is using

rule-based algorithms. Using this strategy the Grapheme-to-Phoneme conversion

can be done by a series of rewrite rules. As mentioned earlier, these rules need

to be designed by linguistic experts and are context dependent [19]. One way of

representing the rules is given by the following form presented in [20]: A [B] C → D,

where A and C are surrounding contexts, B is the letter being converted and D is

the target phoneme. Rules can use another linguistic characteristics or outputs from

other Text Processing algorithms to increase the accuracy of the G2P conversion.

Some of these characteristics are stress markers, syllable boundaries and part-of-

speech tags.

An interesting point to mention is that even for the same language, we can have

more than one rule-based system with different characteristics. The first character-

istic to mention is the pronunciation. The pronunciations can vary from region to

region inside a country, so, different set of rules are created for different systems.

Another point is that different systems can also have different phonemic alphabets.

For example, a rule-based system designed to language learning can have distinct

sets compared to a system designed to a Computational Linguistics task, such as

the NLP block of Speech Recognition and Speech Synthesis systems.

The basic idea of rule-based G2P algorithms works as follows. The input word

is evaluated from left to right character by character. For each character, a set of

rules is evaluated until a rule is matched. The rules are applied in a specific order,

determined by a linguistic specialist. The first rules are the most specific ones,

and the last one is usually a generalization case. Every time a rule is matched, a

phoneme for that character is set and the search window is shifted the number of

characters established by the rule. After scan all the characters the correspondent

phoneme form for the word is found.

Rule-based algorithms for BP are presented in [2, 6, 21]. In [21] the rule-based

algorithm is used to develop a language learning system. Due to this fact, the

phonemic set is different from the one used in [2, 6]. The [2, 6] algorithms were

developed to the development of TTS and Computational Linguistics applications,

so, an implementation of [6] was chosen as the base algorithm for this dissertation.

After a performance analysis of this algorithm, it was verified that the accuracy
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could be enhanced with the addition of new rules. Thus, a new set of rules based on

[6] is proposed in Chapter 3. The proposed set of rules improves the performance of

the algorithm from 97.44% to 99.18% when evaluated regarding Phoneme Error Rate

and will be used to perform the comparison with data-driven solutions in Chapter 5.

2.2.2 Data-Driven approaches

Data-driven approaches had a big growth in the Natural Language Processing re-

search recently. The interest in the development of data-driven solutions can be

explained if we start to analyze the drawbacks of the rule-based systems that we

have presented in the last section. The need of linguistic experts to develop and

maintain the rules updated really increases the system cost. In addition to, for

some specific languages, like English, because of its deep orthography nature, it is

not easy to find rules and patterns, so rule-based systems are not a good choice. An-

other reason to think about is the language dependency of the rule-based systems.

If you need to develop a rule-based system for a new language for the first time you

need to develop all the rules from scratch. Considering that, there exists a big inter-

est in the last years for language independent data-driven solutions. So, to analyze

these solutions we will start understanding the idea of a data-driven approach.

The main idea behind the data-driven approach is to use a lexicon with many

examples to perform the training of a model for a specific task. During the training,

the system should be able to train a model purely by analyzing patterns on the data.

With the model trained, then, it should be able to predict the output of this task

for a previously unseen input. So, the system do not need to have any handcrafted

rules. It just need to have a lexicon with examples for that task. It is so much

easier for a native speaker to provide examples than to design linguistic rules [9].

Moreover, if just a lexicon is required, at first, we can deduce that independently of

the language it should work at a reasonably level. To achieve the desired accuracy

for a particular application, the lexicon provided should be representative of that

application domain. For example, if we want to design a GPS system, we should

provide as much examples as possible of sample phrases used to show directions,

give information and that contains the name of streets. For NLP algorithms, not

all of the data can be fit in exact patterns, and exceptions exists. So, a good

algorithm should also be able to handle exceptions implicitly. This fact will be

further analyzed during Chapter 5. As a summary of the problem, the objective of

a data-driven algorithm is to find a model that minimizes the error on seen data.

And using this model to achieve the desired accuracy for unseen data.

Before, we pointed out advantages of data-driven solutions compared to rule-

based approaches, especially focusing on the fact that it just need a lexicon for
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training. In addition to, its language independency is an important advantage of

these systems. But, it is also worthy noting that the data-driven solutions also have

disadvantages, especially regarding to its latency implementing TTS systems. These

approaches usually need a decoding algorithm that is computationally expensive

and needs to be evaluated before implementing real time applications. Also, the

training time depending on the strategy and the lexicon size used can vary from

minutes to days. [22] shows its concern and develop new algorithms that address the

latency problem when using Long Short Term Memory - Recurrent Neural Networks

(LSTM-RNNs) as the acoustic model of a TTS system. If the TTS system also

uses data-driven approaches in the Text Analysis block these concerns should be

expanded and further explored during the development step.

For BP there is a lack of references for Natural Language Processing algorithms

that uses data-driven approaches in the Text Analysis component showed in Chap-

ter 1. If we extend our research to European Portuguese (EP) we can find a few

works that explore the development of data-driven NLP algorithms. In [23] a Max-

imum Entropy probabilistic framework to the G2P conversion, Stress Marking and

Boundary Prediction is presented. A neural network based G2P to convert EP com-

mon and proper names is showed in [24]. Another Machine Learning solution for

EP G2P conversion is presented in [12]. This paper is interesting because it pro-

poses a richer featured set for G2P systems, a concept that we will further explore

in Chapter 5. At last, in [25] a G2P using Finite-State Transducers (FSTs) is im-

plemented. This system is compared with a rule-based approach and, moreover, a

hybrid approach linking both techniques is developed and evaluated. Therefore, an

analysis of the use of data-driven solutions for BP NLP algorithms is important,

especially data-driven solutions that are proven to achieve state-of-the-art results

for a complex language such as English.

The next subsections will, first of all, introduce the G2P conversion, Syllabifica-

tion and Stress Determination problems by a Machine Learning perspective. Then,

the theory behind the strategies chosen for the comparison with the rule-based al-

gorithms are explained and detailed.

Grapheme-to-Phoneme Problem

The G2P conversion is the most important problem between the ones we will present

in this dissertation. Therefore, there exists a lot of research and different data-driven

solutions proposed. The problem consists in predict the pronunciation of a word and

it can be seen as a mapping from graphemes to phonemes for the desired language.

In Figure 2.2 an example of the G2P conversion for the word “abacate” (avocado)

can be seen. In a “perfect” language, this mapping would be one-to-one, it means,

each grapheme would be the representation of one phone/sound of the language.
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Figure 2.2: Grapheme-to-Phoneme Conversion Example.

Figure 2.3: Alignment Example.

But, what happens in real is that this is not true, and this mapping is complex

and highly dependent on the language style. This task even become more complex

with the globalization and the insertion of foreign names and words in most of the

languages spoken in the world.

Approaching this problem by a Machine Learning perspective, this mapping can

be solved in different ways. For some strategies an alignment step is needed. In this

alignment step each grapheme is associated to zero or more phonemes. An example

of alignment for the word “Abacate” (avocado) is showed in Figure 2.3. The main

strategies to solve the G2P conversion can be divided in three classes, as pointed

out in [9], and briefly explained next:

Techniques based on local classification Usually this technique requires the

alignment step. Some recent solutions can overcome the need of the align-

ment step, as the Sequence-to-Sequence Models [11]. For these techniques

the decision is made one position at a time. For each word character, based

on its context, a phoneme is chosen from the desired language phoneme set.

Some examples of these type of solutions include neural networks [26–28] and

decision trees [29, 30].

Pronunciation by Analogy This technique scan the lexicon searching for parts of

words similar to the unknown word to be transcribed. The analogous parts are

then linked to form the unknown word, creating a lattice of possible candidates.

Then, the best path is determined to create the output pronunciation. In

[31, 32] different solutions for this strategy are presented.

Probabilistic approaches These strategies approach the G2P conversion by a

probabilistic perspective. In [33] a conditional maximum entropy model is

used for predicting the pronunciation. Another solution presented in [34] find

the conditional probability of a phoneme based on the current and previous

letter and phonemes using a 7-gram model and the Bayes’ Formula.

For this work, we chose three techniques that achieve a good performance to do

our comparison. These techniques will be explained in the next subsections.
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Joint-Sequence Models

The Joint-Sequence Model proposed by [9] is a probabilistic framework especially

designed for the Grapheme-to-Phoneme conversion. In this subsection we will ex-

plain the theory of this technique focused on the understanding of the G2P task by

a probabilistic perspective and the theory described in [9].

The G2P conversion task can be interpreted as a statistical problem. In this

case, for a given word g we want to infer its most likely pronunciation ϕ (phonemic

transcription). So, for a set of graphemes G and a set of phonemes P it can be

formalized by the Bayes’ decision rule as:

ϕ(g) = argmax
ϕ′∈P ∗

p(g, ϕ′) (2.1)

where g ∈ G∗ and ϕ ∈ P ∗. To solve this problem, the Equation 2.1 should be

optimized with respect to the Word Error, it means we are trying to increase the

probability of get a correct pronunciation given a word as an input.

The Joint-Sequence Models idea is that the mapping from the grapheme (input)

sequence to the phoneme sequence (output) can be done from a common sequence

of joint units which carry both input and output symbols. These joint units are

called “graphones”. The graphones are a pair q = (g, ϕ) ∈ Q ⊆ G∗ × P ∗. In

Figure 2.3 each block in the right side of the arrow can be considered a graphone

with one grapheme and one phoneme. This kind of graphone with no more than

one grapheme and one phoneme is called a singular graphone. So, it can be seen in

Figure 2.3 that the word “Abacate” (avocado) can be generated using seven singular

graphones. In the example, the size of the grapheme and phoneme sequences are

the same, but they can differ depending on the word transcribed. Graphones with

multiple inputs and multiple outputs are also used and are called joint multigram.

Thus, given a pair of input and output strings contained in the training lexicon,

the system should be able to segment that pair into a graphone sequence q. However,

as can be seen in [9], this segmentation may not be unique. Consequently, this pair

can be represented by more than one graphone sequences. Because of this fact, to

calculate the joint probability for the pair (g, ϕ) we need to sum the probabilities of

all the possible graphone sequences:

p(g, ϕ) =
∑

q∈S((g,ϕ))

p(q) (2.2)

where q ∈ Q∗ and S(g, ϕ) is the set of all the possible segmentations for the

pair (g, ϕ). Boundary symbols are inserted at the beginning and at the end of each

graphone q. For a specific q, the set S(g, ϕ) is given by:
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S(g, ϕ) :=

{
q ∈ Q∗

∣∣∣∣∣ gq1^· · ·^gqK = g

ϕq1^· · ·^ϕqK = ϕ

}
(2.3)

where K = |q| is the length of the graphone sequence and ^ means concate-

nation. With the joint probability distribution p(g, ϕ) and the set S(g, ϕ) defined

we can see that the calculation is reduced to find p(q) over all possible graphone

sequences q = q1, · · · , qK . This probability distribution can be modeled using a

standard M-gram approximation:

p(qK) ∼=
K+1∏
j=1

p(qj | qj−1, · · · , qj−M+1) (2.4)

With the model specified, we should analyze how to infer this model from the

training set. It is worthy noting that at this point the training set was not previously

segmented. So, the segmentation problem should be addressed during the model

estimation. The training set is a lexicon containing N words with their respective

pronunciations: ψ1, · · · , ψN = (g1, ϕ1), · · · , (gN, ϕN). Then, we can compute the

probability of any segmentation ς and define a joint sequence as:

p(g, ϕ, ς) = p(q) (2.5)

To calculate the log-likelihood of the training set we sum over all segmentations:

log L(ψ1, · · · , ψN) =
N∑
i=1

log L(ψi) =
N∑
i=1

log

 ∑
ς∈S(ψi)

p(ψi, ς)

 (2.6)

Because the training data is not segmented a priori, ς is a hidden variable.

The training of the joint-sequence model can be done using the Expectation-

Maximization (EM) algorithm as demonstrated in [35]. The re-estimation equations

for a M-gram model with parameters ϑ are the following ones:

p(q;ϑ) =

|q|∏
j=1

p(qj|hj;ϑ) (2.7)

e(q, h;ϑ) :=
N∑
i=1

∑
q∈S(gi,ϕi)

p(q|gi, ϕi;ϑ)ηq,h(q)

=
N∑
i=1

∑
q∈S(gi,ϕi)

p(q;ϑ)∑
q′∈S(gi,ϕi)

p(q′;ϑ)
ηq,h(q)

(2.8)
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p(q|h;ϑ′) =
e(q, h;ϑ)∑

q′
e(q′, h;ϑ)

(2.9)

where h is the sequence of preceding graphones hj = (qj−M+1, · · · , qj − 1),

ηq,h(q) define the number of occurrences of the M-gram qj−M+1, · · · , qj in q and

e(q, h;ϑ) is the expected number of occurrences of the graphone q in the training

sample under the current set of parameters ϑ. The Equation 2.8 is calculated using

a forward-backward procedure as described in [36].

The estimation done with the Equation 2.9 tend to have an overfitting problem.

It means that the model will have a low error after finish the model training but

when needed to predict unseen data the accuracy will be not good. To solve these

problems, [9] also proposes a smoothing and a trimming algorithm. It also shows

how the parameters must be initialized.

Finished the training, Equation 2.1 can be used to decode new words. To do

the G2P Conversion we approximate the sum of Equation 2.2 by the maximum

probability:

p(g, ϕ) ≈ max
q∈S((g,ϕ))

p(q) (2.10)

Therefore, given the input word, the most likely graphone sequence should be

calculated and the output should be the respective phoneme sequence:

ϕ(g) = ϕ

(
argmax

q∈Q∗|g(q)=g

p(q)

)
(2.11)

The joint-sequence modeling is considered the standard probabilistic technique

for the G2P conversion task. An important feature of this solution is the ability to

handle a training set without the need of previous alignment. [9] also shows that the

finite length characteristics of the joint sequence models allow their representation

by Finite-State Transducers. In the next subsection we will present a technique

that uses some of the Joint-Sequence Models ideas to present a modified approach

exploiting the alignment information and Weighted Finite-State Transducers.

WFST-based

The Finite-State Transducers are automata with a finite number of states. The

transitions between states are labeled with an input/output pair. Therefore, the

transducer path performs a mapping from an input symbol sequence to an output

symbol sequence [37]. The insertion of weights in the state transitions of the FSTs

is an important addition to these systems. The weights works as probabilities or

penalties between the possible paths of the transducer. So, you can calculate the
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Figure 2.4: A possible WFST to the G2P conversion of the word “gosto” in BP.

overall weight and the best possible path to the mapping. Hidden Markov Models

(HMMs), tree lexicons and N-gram language models can be represented as WFSTs

[37]. So, WFSTs are a flexible and computationally efficient way to solve problems

that can be translated into probabilistic finite-state models. A simple example of a

WFST model for the G2P conversion task can be seen in Figure 2.4.

The applicability of WFSTs to Grapheme-to-Phoneme conversion was first pro-

posed in [25]. It was justified by the flexibility of WFSTs and by the possibility of

integration between the information provided by other “Text Analysis” blocks and

the model [25]. WFSTs also make easier the development of hybrid approaches com-

bining data-driven and knowledge-based solutions. The first step of the WFST-based

G2P consists on the alignment of the training lexicon. After that, we have aligned

sequence pairs for each word in the training lexicon ψi = (g1, · · · , gn), (p1, · · · , pn).

These aligned sequence pairs are then converted to sequences of aligned pairs

ψi = (g1 : p1, · · · , gn : pn). This alignment can be multiple-to-multiple, it means

that multiple graphemes can be aligned with multiple phonemes. Techniques to

perform the alignment step are presented in [10, 38, 39].

Next to the alignment is the model training. In this dissertation, we explain

the approach presented in [10] where a joint M-gram formulation is used. From the

aligned pairs (g1 : p1, · · · , gn : pn) M-gram models will be trained. This model is

interpreted as the probability of a grapheme matching a particular phoneme based

on the previous (M-1) aligned pairs [25]. Then, the model is first converted to

a Weighted Finite-State Acceptor (WFSA) and then to a Weighted Finite-State

Transducer where each aligned pair is converted into an input/output label. The

inputs are the grapheme labels and the outputs are the phoneme labels. Thus,

terminating the model training.

To decode a new word we should compute the shortest path from a weighted

list of pronunciation hypothesis. First of all, the word inserted is compiled into

a Finite-State Acceptor (FSA) that provides a list of all the possible grapheme

subsequences. Then, a WFST is constructed from the joint G2P M-gram model.

The pronunciation hypothesis can then be calculated by operations using the FSA
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and the WFST constructed before. The shortest path is chosen as the best phonemic

transcription.

Sequence-to-Sequence Models

This subsection represents the first place where Sequence-to-Sequence Models are

presented in this dissertation. So, before explore the applicability of the models

to the Grapheme-to-Phoneme conversion, we will explore the theory behind this

approach. This will be useful when we propose this technique for the solution of the

Syllabification and Stress Determination tasks in Chapter 4.

The Sequence-to-Sequence Models came to fill a gap in the Deep Neural Networks

(DNNs) research. The DNNs worked well for numerous kind of problems where large

training sets were available but could not map sequences to sequences. One of the

problems DNNs had to face to solve sequence mapping problems was the inability of

the architecture to handle variable size inputs and outputs. Therefore, the Sequence-

to-Sequence Models were proposed in [14] as a domain-independent method to solve

these types of problems. In [14] the method developed is applied to the Machine

Translation task, and outperforms mature strategies used to traditionally solve this

problem. Consequently, the use of this method for other challenging sequence-to-

sequence problems was suggested to also achieve good performance. This method

can be used in a variety of tasks that include Image Captioning Systems, Question

and Answering Systems and Grapheme-to-Phoneme conversion, that is our main

focus here.

To understand how the method works, first of all, a brief introduction of Re-

current Neural Networks is necessary. RNNs are a class of neural networks where

each unit is directed connected to every other unit, allowing information to per-

sist. So, they can use this connected structure to act like an internal memory to

process arbitrary sequences of inputs. This nature of RNNs is intimately related

to the concept of problems that consists of sequences and lists. The problem with

the basic architecture of RNNs is that they have a long-term dependency problem.

For tasks that requires memories of events that happened long time steps before it

doesn’t work properly. To solve this problem, a special kind of RNN called Long

Short-Term Memory [40] (LSTMs) were developed. The classic architecture of a

LSTM is presented in the Figure 2.5. The main idea of the LSTM architecture is

the existence of a cell state (a vector that can be modified or not in each time step)

controlled by gates that are able to carry information along [41]. If the actual state

have important information to be inserted in the cell state, the gates are active and

let information get through. The gates can also remove information from the cell

state that lost its relevance during the chain. The LSTM updating equations are

presented in Equation (2.12).
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Figure 2.5: LSTM chain [41].

Ct = σ(Wf .[ht−1, xt] + bf ) ∗ Ct−1 + σ(Wi.[ht−1, xt] + bi) ∗ tanh(WC .[ht−1, xt] + bc)

ht = σ(Wo.[ht−1, xt] + bo) ∗ tanh(Ct)

(2.12)

where the Wx are weight vectors, bx are bias vectors and σ is the sigmoid func-

tion. Another variations on the LSTM architecture that tackle the long-term depen-

dencies can also be used. Some of these variations include Gated Recurrent Units

(GRUs) [42] and Depth Gated LSTM [43], that achieve similar performances as the

architecture showed in Figure 2.5 [44].

The Sequence-to-Sequence Models acts like an encoder-decoder RNN. First, it

does a RNN chain with the input sequence, reading one time step at a time. The

input, for each time step, for example, is a word for a Machine Translation system

and a character to a Grapheme-to-Phoneme converter. To each possible input, an

index (positive integer) is assigned. Each possible index is converted to a dense

vector of a fixed size during the embedding step. This vector is used as the input

of the RNN architecture chosen. At the end of the encoder chain, a large fixed-

dimensional vector representation of the input data is obtained. Independently of

the size of the input sequence, this vector will have the same size. The second RNN

chain, with the output sequence, works like a language model, but its conditioned on

the vector that was the output of the inputs chain. A block diagram of this structure

can be seen in the Figure 2.6, where each block represents a RNN architecture block,

such as LSTMs or GRUs. A great power of this model is the possibility to insert

another feature information in the input chain without modify the architecture of

the network. This flexibility will be explored when we propose the insertion of stress

markers for the G2P conversion in Chapter 4.

The Sequence-to-Sequence Models were used successfully to the task of Machine
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Figure 2.6: Sequence-to-Sequence Model for the G2P conversion.

Translation as showed in [14]. However, we are interested in the G2P conversion.

So, in [11] it explores the applicability of Sequence-to-Sequence Models to the G2P

task. The input sequence in this case is the word to be converted. The input is

read one character at a time until its end to form the fixed-dimensional vector. The

output RNN is used to decode the phoneme sequence from this vector. This model

is showed in Figure 2.6 for the conversion of the word “casa” (house). In Figure 2.6

just one layer is presented, but the architecture also works with 2 or more layers

as a deep LSTM. During the model implementation, the input word is reversed to

introduce more short term dependencies, as showed in [14] this simple trick improves

the performance of the trained model. Thus, the word “casa” would be inserted in

the model as “asac”. The target sequence keeps the same order. The model can

then be trained using Backpropagation Through Time (BPTT) . [11] shows that

this model achieve state-of-the-art results when compared to other top performing

methods in the G2P task.

Another point that is worthy noting is that for languages like BP, where the

effect of co-articulation between words exists, data-driven approaches trained over a

lexicon with independent words can not model that effect. Because of the Sequence-

to-Sequence Models ability to successfully learn on data with long range temporal

dependencies, as showed in [14], possibly using a lexicon composed of sentences

with their respective phoneme translations can also model this effect. This can be

a future work on this theme.

Syllabification Problem

For a long time, rule-based approaches were assumed to be the best technique for

the Syllabification of words. With the development of data-driven approaches that

are able to outperform the rule-based algorithms to solve this task for the English

language changed this belief. Then, [45] shows that data-driven methods also surpass

the performance of rule-based approaches for low complexity languages, such as

Italian. These findings opened the door for a deeper analysis of these data-driven
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solutions in a wider range of languages and for the development of new models to

solve it.

The Syllabification problem presents additional challenges when compared to

the G2P conversion. The first thing to point out is that the definition of a syllable

is not clear. Here, we will define a syllable as the phonological “building block”

of words. They are usually constructed over a syllable nucleus (usually a vowel)

with additional elements in the nucleus margins (usually consonants). Another

important thing we need to mention before analyzing the problem we need to solve

is to know that there are two different domains for this problem. The spelling and

the pronunciation domains. As our main use case for these NLP algorithms is in the

development of TTS systems, we are more interested in the pronunciation/phonetic

syllabification of words, that influences directly the rhythm, prosody and stress

marking of the BP.

To analyze the Syllabification as a Machine Learning problem we are first going to

present the traditional view of this problem. The Syllabification problem consists in

determine the location of the syllable boundaries in a word. Between two characters

only two decisions are available. To insert a boundary in that position or to not

insert a boundary there. So, for every position, between two characters, we need

to infer if exists a syllable boundary or not. The collection of the decisions taken

for all the positions between characters solve the problem. This can be understood

as a structured classification problem [46]. To solve this problem, [46] evaluates

and compare the performance of five data-driven different solutions and concludes

that Syllabification by Analogy [31] and Hidden Markov Support Vector Machines

[47] provides the best performances. [45] compares a rule-based algorithm versus

data-driven methods for the Italian language. A Maximum-Entropy solution for the

European Portuguese Syllabification is showed in [23].

In this dissertation, we will propose Sequence-to-Sequence Models to solve the

Syllabification for BP. The technique is language-independent and can be easily

applied for other languages. The model will be presented in Chapter 4 and will

approach this task as a sequence mapping problem. The technique proposed will be

later evaluated against the rule-based algorithm presented in Section 2.2.1.

Stress Determination Problem

Rule-based approaches are the main technique for Stress Determination. For lan-

guages with shallow orthography they achieve a high accuracy level. Despite of being

an important information for the pronunciation modeling [48], there are not many

papers that addresses the stress determination problem directly using data-driven

algorithms.

By the Machine Learning perspective the problem consists in predicting the
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position of the stress in a word. For different languages the same word can have

more than one stress marker, determining a primary, secondary and sometimes a

tertiary stress. The problem also changes its complexity level depending on the

language type, as stress-timed ones tends to be harder than syllable-timed ones

regarding of accuracy. This problem can be defined as a structured classification

problem, the same way as the syllabification one. So, by this interpretation, the

same strategies showed to solve the Syllabification problem could be used to solve

the Stress Determination problem. In [23] the same Maximum-Entropy strategy

is used to solve both Syllabification and Stress Determination. A specific solution

for Stress Determination is proposed in [49]. It uses a ranking approach for stress

marking approaching it as a sequence mapping problem.

The proposal of this dissertation is to use Sequence-to-Sequence Models to model

the Stress Determination problem. As the Syllabification task, the model will try

to solve it as a sequence mapping problem. The proposed model is showed in

Chapter 4 and will be further evaluated with the rule-based algorithm presented in

Section 2.2.1.

2.3 Speech Waveform Generation

In this section we will give a brief explanation about the back-end part of the speech

synthesizers. The back-end is responsible to transform the linguistic specifications,

many of them explained in the sections before, in intelligible and natural-sounding

speech waveforms. For this step, unlike the Text Analysis part, the block is language-

independent. From the beginning of the research in Speech Synthesis until nowadays

the approaches to solve this problem changed from knowledge-based and rule-based

ones to data-driven ones. This is mainly because of the increase of the speech re-

sources, computer power and Machine Learning algorithms. The principal solutions

used nowadays are concatenative speech synthesis [50] and statistical parametric

speech synthesis, such as HMM-based speech synthesis [51] and DNN-based speech

synthesis [52].

The concatenative speech synthesis, also known as “unit selection” uses a large

speech database, and given the linguistic specification, choose the best match speech

units to generate synthetic speech. Other factors such as the lexical stress, pitch

accent and part-of-speech tags are also used as linguistic context in order to choose

the desired speech unit. This technique generate a high-quality natural sounding

synthetic speech and is usually used in the development of commercial systems.

Because the speech database is previously recorded by a professional speaker in a

studio, the speech generated by this technique will have the tendency to have the

same style as recorded. Resulting in a synthesizer with the same characteristics as
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the speaker and a reading-style prosody [50]. If we want to create speech with various

styles, emotions and different speaker characteristics is necessary to record large

speech databases containing these characteristics a priori, what is time-consuming

and cost inefficient [53].

To overcome these disadvantages, Statistical Parametric Speech Synthesis

(SPSS) techniques were developed. The main advantage of SPSS is the flexibility

to build new voices and new speaking styles [51]. In this approach, during training,

acoustic parameters are extracted and used to model speech as a time-series gen-

erative model. The most popular SPSS solutions use hidden Markov models [51]

or deep neural networks [52] as its generative model. These models represents the

acoustic parameters for the linguistic specifications and are used to drive a vocoder

in order to generate a speech waveform. HMM-based and DNN-based have been

an important topic in research and responsible for most of the papers published in

the Speech Processing conferences during the last years. According to the Blizzard

Challenge 2008, an annual competition between Speech Synthesis techniques, Sta-

tistical Parametric synthesizers are as intelligible as human speech [54]. Despite of

this fact, they still need to improve its naturalness, as because of the actual vocod-

ing techniques they sound “buzzy/robotic”. HMMs and DNNs are also used for

Automatic Speech Recognition and were responsible for a big improvement in the

area in the last few years [55, 56].
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Chapter 3

A new set of rules for Brazilian

Portuguese G2P Conversion

3.1 Introduction

For the Brazilian Portuguese language, some rule-based G2P converters have been

previously reported in [1–4]. For the comparison with other data-driven approaches

the algorithm proposed in [6] was chosen. However, after a specific analysis in the

algorithm performance it was verified that the accuracy could be enhanced with the

addition of new rules. These rules aims both to correct nasalization errors and to

improve the performance regarding the transcription for the graphemes <e> and

<o>. Other minor errors are also revised. The proposed new set of rules improve

the performance of the algorithm from 97.44% to 99.18%.

Therefore, this chapter will introduce a Grapheme-to-Phoneme algorithm with

a new set of rules developed specifically for this dissertation. The proposed rules

are described in detail and tests were performed to measure the accuracy of the

algorithm.

3.2 The rule-based algorithm

The symbols used in the G2P converter are presented in Table 3.1 and the Masculine

and Feminine pronouns for BP were previously defined.

3.2.1 The Phoneme Set

The phoneme set used by the converter is presented in Table 3.2 and is the same

as the one published in [2], consisting in 38 phonemes. It is represented by SAMPA

(Speech Assessment Methods Phonetic Alphabet) [57].
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Table 3.1: Symbols used for the rules.

Symbol Meaning

... Any Character
V Vowel

V ton Stressed Vowel
V aton Vowel not stressed

C Consonant
C v Voiced Consonant

C uv Unvoiced Consonant
< xi > Grapheme xi
Pont Punctuation
[yi] Phone yi
[*] No Phone Transcribe
Ltr Letter

... < xi > ... Default case for grapheme xi
<W bgn xi > Grapheme xi comes in the beginning of the word
< x1, (x2, x3) > < x1x2 > or < x1x3 >

x atn x is not stressed
< θ − xi > The set θ excluding character xi

sp Blank Space
Prn M Masculine pronouns
Prn F Feminine pronouns

3.2.2 The set of rules

The proposed rules come to improve the performance of the algorithms presented

in [1, 2, 6]. As can be seen in [6], the nasalization errors and the errors of the

conversion for the graphemes <e> and <o> were responsible for the largest number

of occurrences. To solve the nasalization errors, the precedence of the rules for the

grapheme <a> is changed and one additional rule for the grapheme <u> is proposed

(Rule 2). For the graphemes <e> and <o>, the errors were due to a lack of rules

for words with the open vowel sound, like in the words “ferro” (iron) and “forte”

(strong). To decrease the number of errors for this case, 26 and 15 additional rules

were proposed for the graphemes <e> and <o>, respectively, when comparing to the

rules of [6]. The proposed rules were mostly conceived using termination patterns

for Brazilian Portuguese words. It was observed that the termination patterns can

be one strategy to approach the lack of rules for words that contain the sound of the

phones [E] and [O]. Furthermore, one rule for the grapheme <r> is also proposed

(Rule 4). This rule corrects the transcription of the word “honra” (honor), where

the grapheme <r> should be transcribed to the phone [R].
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Table 3.2: Phoneme set.

Phone Examples

Oral Vowels
[a] jatobá, capacete, cabeça, lua
[E] é, pajé, pele, ferro, velho
[e] capacete, resolver, respeito
[i] justiça, páıs, lápis, idiota, ele
[O] ópio, jogos, sozinho, forte
[o] jogo, golfinho, corpo
[u] raul, culpa, baú, cururu, logo

Voiced fricatives
[z] casa, coisa, quase, exato
[v] vovó, vamos, avião
[Z] geladeira, trovejar

Affricates
[tS] tia, pacote, constituinte
[dZ] dia, cidade, disco

Plosives
[b] barba, absinto
[d] dados, administrar
[t] pato, constituinte
[k] casca, quero, quanto

[g] guerra, gato, agüentar, agnóstico

[p] papai, psicólogo, apto

Nasal Vowels
[a˜] andar, tampar, canção
[e˜] então, tempo, bem, menos
[i˜] ninho, tinta, latina, importa
[o˜] onda, campeões, somos, homem
[u˜] um, muito, umbigo

Semi-Vowels
[w] fácil, voltar, eu, quase
[j] pai, foi, caracóis, micróbio

[w˜] não, cão
[j˜] muito, bem, parabéns, compõe

Liquids
[l] laranja, leitão
[L] calhar, colheita, melhor
[R] carro, rua, rato, carga, germe
[X] casar, certo, arpa, arco
[r] garoto, frango, por exemplo

Unvoiced fricatives
[f] festa, fanfarrão, afta, afluente
[s] sapo, caçar, crescer, sessão, lápis, excesso
[S] chá, xaveco, cachorro

Nasal consonants
[m] mamãe, emancipar
[n] nome, atenuar, encanação
[J] casinha, galinha
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The new set of rules can be seen in the Tables 3.3 to 3.12. For each grapheme,

the left column contains the algorithm for the rules and the right column contains

the correspondent phoneme to be transcribed and word examples for that rule. The

precedence of the rule is important during the conversion and must be followed.

When a word is inserted in the converter, the rules for each letter are verified until

one rule is matched. The last rule for each grapheme usually is a generalization case.

In some cases, two letters might be converted into a single phoneme. One example

of this case is in the word “sinto” (feel) where the graphemes <i> and <n> are

converted to just one phoneme according to the Rule 3 (<i>) of the Table 3.6, the

nasal vowel [i˜]. Another important case is for the grapheme <x>. The transcription

for the <x> follows basic rules, but there are exception cases when it appears in the

middle of words where this grapheme is transcribed as two phones: [k s] and [k z].

So, these words need to be treated as exceptions and are shown in Table 3.13.

Table 3.3: Rules for the grapheme <a, b, c, d>.

Rule Algorithm for the Grapheme <a> Phone Example
1 ...<an><Pont>... [a˜] Ivan, Itapoan
2 ...<am><Pont>... [a˜w˜] andam, cresçam
3 ...<a (m,n)><C-h>... [a˜] antena, ampola
4 ...<a(V ton)><m,n>... [a˜] cama, banho
5 ...<â (m,n)><C-h>... [a˜] lâmpada, cântico
6 ...<ão>... [a˜w˜] aviâo
7 ...<ã,â>... [a˜] amanhã, câmara
8 ...<á,à>... [a] Antártica, àquela
9 ...<a>... [a] aracnofobia

Rule Algorithm for the Grapheme <b> Phone Example
1 ...<b>... [b] abacate

Rule Algorithm for the Grapheme <c> Phone Example
1 ...<c><e,i>... [s] aceitar, jacinto
2 ...<ç>... [s] almoço
3 ...<c h>... [S] acho
4 ...<c>... [k] claro

Rule Algorithm for the Grapheme <d> Phone Example
1 ...<d><i,[i]>... [dZ] dia, tarde
2 ...<d><C-r,l>... [dZ] advogado
3 ...<d><Pont>... [dZ] Raid
4 ...<d>... [d] dote
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Table 3.4: Rules for the grapheme <e> - Part 1.

Rule Algorithm for the Grapheme <e> Phone Example

1 ...<en><Pont>... [e˜] h́ıfen, abdômen

2 ...<e(V ton)><l><C-h,Pont>... [E] papel, selva

3 ...<e(V aton)><l><C-h,Pont>... [e] senśıvel, selvagem

4 ...<õ,ã><e>... [j˜] mães, corações

5 ...<a><e>... [j] Caetano

6 ...<(Prn M) e (V ton)>.. [e] ele, este

7 ...<(Prn F) e (V ton)>.. [e] ela, esta

8 ...<e><rra><Pont>... [E] terra, guerra

9 ...<(W bgn)e><x><V>... [e] exato, existe

10 ...<(W bgn)e,ê><x,s><C>... [e] exceto, êxtase, estrada

11 ...<(W bgn)e><C-(m,n,x)>... [e] errado, elefante

12 ...<e><ne,me><Pont>... [e] creme, higiene

13 ...<e><la,lo><Pont>... [E]
vela, aquarela

Exceção: pela, pelo, modelo ([e])

14 ...<e><ss (a,o)><Pont>... [E] promessa, acesso

15 ...<e><sse><Pont>... [e] nascesse

16 ...<e><sa,so,za,sos><Pont>... [e] despesa, nobreza, preso, pesos

17 ...<e(V ton)><r><Pont>... [e] beber, ler

18 ...<e><st (a,e,o)><Pont>... [E] festa, modesto, soubeste

19 ...<e><ce,sce><Pont>... [E] conhece, cresce

20 ...<e><j(a,o,as,os,am)><Pont>... [e]
igreja, sertanejo, igrejas,

sertanejo, desejam

21 ...<e><da,do><Pont>... [e] alameda, medo

22 ...<e><sm(a,o,as,os)><Pont>... [e]
mesmo, mesma,
mesmos, mesmas

23 ...<e><lh(a,o,as,os)><Pont>... [e]

ajoelha, espelho,
abelhas, coelhos

Exceção: velho(s), velha(s) ([E])

24 ...<e><vo><Pont>... [e] escrevo

25 ...<e><ça,ço,ços><Pont>... [e] mereça, conheço, preços

26 ...<n><e><gr(a,o,as,os)><Pont>... [e]
negra, alvinegro,
negras, alvinegros

27 ...<e><s (as,es)><Pont>... [e] francesas, japoneses

28 ...<e><xt (o,a)><Pont>... [e] sexta, contexto

29 ...<e(V ton)><de><Pont>... [E] procede

30 ...<e><to,tos><Pont>... [E] secreto, objetos

31 ...<e><ram><Pont>... [e] sofreram, morreram

32 ...<e(V ton)><ta,tas><Pont>... [E] atleta, poetas

33 ...<e(V ton)><te><Pont>... [E] basquete, promete

34 ...<ê (m,n)><C-h>... [e˜] ciência

35 ...<e (m,n)><C-h>... [e˜] embora, entoação
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Table 3.5: Rules for the grapheme <e> - Part 2.

Rule
Algorithm for the
Grapheme <e> Phone Example

36 ...<e(V ton)><m,n>... [e˜] tema, cena

37 ...<e(V ton)><r><C>... [E] aberto, conversa

38 ...<(e,é,ê)m><Pont>... [e˜j˜] contém, têm, ontem

39 ...<ê>... [e] bebê

40 ...<é>... [E] época

41 ...<e><s><Pont>... [i] frases

42 ...<e(V ton)i>... [e j] areia, fiquei

43 ...<e(V ton)><u><Pont,Ltr>... [e] museu

44 ...<e(V ton)><z><Pont>... [e] xadrez

45 ...<u><e(V ton)><ta><Pont>... [e] plaqueta

46 ...<t><e(V ton)><ve><Pont>... [e] manteve

47 ...<e><Ltr><V ton>... [e] semestre

48 ...<Pont><e><Pont>... [e] o João e a Ana

49 ...<e><Pont>... [i] ı́ndice

50 ...<e(V ton)>... [E] nega

51 ...<e(V aton)>... [e] secreto

Table 3.6: Rules for the graphemes <f, g, h, i>.

Rule Algorithm for the Grapheme <f> Phone Example

1 ...<f>... [f] faca

Rule Algorithm for the Grapheme <g> Phone Example

1 ...<g><e,i>... [Z] gelo

2 ...<g u><e,i>... [g] guindaste

3 ...<g>... [g] garoto

Rule Algorithm for the Grapheme <h> Phone Example

1 ...<h>... [*] hoje

Rule Algorithm for the Grapheme <i> Phone Example

1 ...<u V ton><i><t>... [j˜] muito

2 ...<i e><Pont>... [i] superf́ıcie, plańıcie, cárie

3 ...<i,́ı (m,n)><C-h,Pont>... [i˜] sinto, śımbolo, fim

4 ...<i><m,n><V,h>... [i˜] inoperante, imaginar, ninho

5 ...<V-i><i>... [j] coisa, sai, queixa

6 ...<i,́ı>... [i] ĺıquido, sáı
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Table 3.7: Rules for the graphemes <j, k, l, m, n>.

Rule Algorithm for the Grapheme <j> Phone Example
1 ...<j>... [Z] jambo

Rule Algorithm for the Grapheme <k> Phone Example
1 ...<k>... [k] kelvin

Rule Algorithm for the Grapheme <l> Phone Example
1 ...<l><V>... [l] ala
2 ...<l h>... [L] alho
3 ...<l>... [w] vogal

Rule Algorithm for the Grapheme <m> Phone Example
1 ...<e,é,ê,i><m><sp><V>... [J] Alguém usou, Quem está
2 ...<m>... [m] mameluco

Rule Algorithm for the Grapheme <n> Phone Example
1 ...<n h>... [J] ganho
2 ...<n>... [n] nata

Table 3.8: Rules for the grapheme <o> - Part 1.

Rule Algorithm for the Grapheme <o> Phone Example

1 ...<o(V ton)><l><C-h,Pont>... [O]
sol, girassol, futebol
Exceção: gol ([o])

2 ...<o(V aton)><l><C-h,Pont>... [o] soldadura, soltar

3 ...<ou>... [ow] ouvir, couve, estou

4 ...<o(V ton)><a><Pont,Ltr>... [o] pessoa, canoa

5 ...<o><so><Pont>... [o] saudoso, virtuoso

6 ...<o><s (a,as,os)><Pont>... [O] saudosa, virtuosas, caprichosos

7 ...<o,ô (m,n)><C-h,Pont>... [o˜] compositor, gôndola

8 ...<o(V ton)><m,n>... [o˜] soma, risonho

9 ...<o><r><Pont>... [o]

compor, amor, dor
Exceção: maior(es), menor(es),

pior(es), suor(es) ([O])

10 ...<o><z><Pont>... [O]
voz, algoz

Exceção: arroz ([o])

11 ...<o><rre><Pont>... [O] corre, morre

12 ...<o><res><Pont>... [o] cores, leitores

13 ...<o><b (re,ra)><Pont>... [O] nobre, redobra

14 ...<o><s (sa,se,so)><Pont>... [O] nossa, posse, vosso

15 ...<o(V ton)><la><Pont>... [O] bola, cartola

16 ...<o(V ton)><te><Pont>... [O] mascote, filhote

17 ...<o><rno><Pont>... [o] forno, transtorno

18 ...<o><rro><Pont>... [o] recorro, cachorro

19 ...<o><ço><Pont>... [o] almoço, pescoço

20 ...<d,r,ss><o><r(a,as)><Pont>... [o]
professora, metralhadora,

pintora

21 ...<o(V ton)><r><C-h>... [O] sorte, reforma
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Table 3.9: Rules for the grapheme <o> - Part 2.

Rule Algorithm for the Grapheme <o> Phone Example

22 ...<ô>... [o] vovô

23 ...<ó>... [O] vovó

24 ...<õ>... [o˜] corações

25 ...<o(V ton)><i>... [o] oito

26 ...<(W bgn)c><o><Pont>... [o] co-produção

27 ...<a><o><C,Pont>... [w] ao, caos

28 ...<o><Ltr><V ton>... [o] opor

29 ...<o><Pont>... [u] músico

30 ...<o><s><Pont>... [u] carros

31 ...<o><lh (a,o)><Pont>... [o] repolho, folha

32 ...<o><sto><Pont>... [o] imposto, rosto

33 ...<o(V ton)>... [O] mole, logo

34 ...<o(V aton)>... [o] começa

Table 3.10: Rules for the graphemes <p, q, r>.

Rule Algorithm for the Grapheme <p> Phone Example
1 ...<ph>... [f] Philipe
2 ...<p>... [p] pato

Rule Algorithm for the Grapheme <q> Phone Example
1 ...<qu><i,e,o>... [k] quito, quente, quota

2 ...<q><ü,ua>... [k] cinqüenta, quase

Rule Algorithm for the Grapheme <r> Phone Example
1 ...<rr>... [R] carro
2 ...<r sp r>... [R] Um pomar rodeado de flores.
3 ...<(W bgn)r>... [R] A rua foi interditada.
4 ...<n><r><V>... [R] honra, Henrique
5 ...<r><V>... [r] ratoeira
6 ...<r><sp><V,h>... [r] Falta acertar apenas uma.
7 ...<r><sp><C uv>... [X] Pecar pelo meio do caminho.
8 ...<r><sp><C v>... [R] Injetar grãos de arroz.
9 ...<r><C uv>... [X] perco
10 ...<r><C v>... [R] carga
11 ...<r>... [X] Ela irá se lascar.
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Table 3.11: Rules for the grapheme <s, t, u, v, w, x>.

Rule Algorithm for the Grapheme <s> Phone Example

1 ...<tr(a,â)n><s><V>... [z] transação, trânsito

2 ...<ob><s><équio>... [z] obséquio

3 ...<ã><s><Pont>... [j˜s] fãs, maçãs

4 ...<V ton><s><Pont>... [j s] mas, gás, atrás

5 ...<sh>... [S] shiatsu

6 ...<(W bgn)s>... [s] O sapato está lustrado.

7 ...<V><s><V>... [z] asa

8 ...<s><C v>... [z] transgredir

9 ...<ss>... [s] assar

10 ...<sc><e,i>... [s] crescer

11 ...<sç>... [s] cresçam

12 ...<s sp j>... [Z] Eles jogaram bola.

13 ...<s><sp><V,C v,h>... [z] Os aros são cromados.

14 ...<s>... [s] Eles receberam o prêmio.

Rule Algorithm for the Grapheme <t> Phone Example

1 ...<th><Pont>... [tS] Ruth

2 ...<th>... [t] Arthur

3 ...<t><C-r,l>... [tS] algoritmo

4 ...<t><i,[i]>... [tS] tia, mete

5 ...<t><Pont>... [tS] Aquele set foi dif́ıcil.

6 ...<t>... [t] tato

Rule Algorithm for the Grapheme <u> Phone Example

1 ...<ü>... [w] lingüistica

2 ...<u,ú (m,n)><C-h,Pont>... [u˜] abundante, atum

3 ...<u><m,n>... [u˜] uma, unha

4 ...<u,ú>... [u] acústica

Rule Algorithm for the Grapheme <v> Phone Example

1 ...<v>... [v] voando

Rule Algorithm for the Grapheme <w> Phone Example

1 ...<w>... [w] watt

Rule Algorithm for the Grapheme <x> Phone Example

1 ...<(W bgn)e><x><V,C v>... [z] execrar

2 ...<(W bgn)e,ê><x><C uv>... [s] excêntrico

3 ...<(W bgn)e,ê><x><Pont><V,C v>... [z] ex-amigo

4 ...<(W bgn)e,ê><x><Pont><C uv>... [s] ex-presidente

5 ...<x><Pont>... [k s] Marx

6 ...<V-e><x><V>... [exception] Check Table 3.13

7 ...<x>... [S] faxina
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Table 3.12: Rules for the graphemes <y, z>.

Rule Algorithm for the Grapheme <y> Phone Example

1 ...<y><C>... [i] Yguaçu

2 ...<y>... [j] Yanomami

Rule Algorithm for the Grapheme <z> Phone Example

1 ...<z><sp><C uv>... [s] Ferraz furou o ferro.

2 ...<z><sp><C v,V,h>... [z] Faz anos que não o vemos.

4 ...<V ton><z><Pont>... [j s] faz

5 ...<z><Pont>... [s] O que José fez?

6 ...<z>... [z] zumbido

Table 3.13: Exceptions for the grapheme <x>.

Grapheme-to-Phone mapping % Partial List of Words

<x> [k s]

ox́ıtono, ox́ıtona, ox́ıtonos, ox́ıtonas, oxidas
oxidação, complexo, anexar, oxigênio, oxiúro
oxalado, úxer, uxoricida, axila, axiologia, ı́xia

táxi, sintaxe, axioma, complexo, conexo, convexão
convexo, crucifixo, fixo, fixar, fixação

fluxo, galáxia, indexação, léxico
maximizar, marxismo, nexo, paradoxo, parox́ıtono

perplexo, prefixo, saxofone, prolixo

<x> [k z]
ixofagia, ixomielite, ixolite, ixômetro, ixora,

ixoscopia, ox-acético

3.2.3 Experimental Results

The proposed rules were implemented and tested using a list of words from the Ispell

dictionary [13] containing a total of 33737 words divided in 11 test sets to perform K-

Fold Cross Validation [15]. Each set contained 3067 words. The phonemes generated

by the algorithm were automatically checked using Levenshtein Distance [58] and

99.18%± 0.07% were correctly converted (Phoneme Error Rate).

The highest number of errors comes from the conversion of the graphemes <e>

and <o>, which are complex in terms of their conversion variability, and, moreover,

their occurrences are high in the BP language. Foreign words, acronyms and proper

names are another source of errors during the transcription. This problem should

be considered, but because of the difficult approach to solve them in a rule-based

way, the frequent words incorporated to the spoken Brazilian Portuguese could be

inserted in a dictionary with their respective phoneme transcriptions. The foreign

words present additional problems as they acquire many different pronunciations

after incorporated to another language.
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For the development of text-to-speech systems another important analysis is

the percentage of words that present conversion error (Word Error Rate). The

words with a G2P error will be pronounced wrongly by the synthesizer and will

affect directly its intelligibility and its naturalness. Moreover, these errors can also

affect the training of the acoustic models. The experimental results show that

3.26%± 0.14% of the words are converted with some associated error. This proves

the importance of the G2P step during the development of a TTS system and a

need for high accuracy levels for the G2P algorithms.

Comparisons with the results of the algorithm presented in [6] show that the

additional rules proposed in this chapter solved the high number of nasalization

errors and improved the general performance of the G2P converter from 97.44%

to 99.18%. Informal subjective tests realized with an HMM-based text-to-speech

system that was trained and tested using the set of proposed rules also showed an

improvement on the naturalness of the generated speech when comparing to the

G2P of [6].

34



Chapter 4

Proposal of Sequence-to-Sequence

Models for G2P with a richer

feature set, Syllabification and

Stress Determination

4.1 Introduction

Sequence-to-Sequence Models, proposed in [14], presents a generalized solution to

solve sequence to sequence problems. The basic idea consists in encode an input

sequence into a fixed-dimensional vector using a RNN chain. Then, use a second

RNN chain to decode the output sequence conditioned to the vector generated. The

second RNN chain works essentially as a language model conditioned on the input

sequence [14]. Recently, this framework have been applied to several tasks with

promising results. Some of these applications include Machine Translation [14],

Image Captioning [59] and Grapheme-to-Phoneme Conversion [11].

In Chapter 2 we already explored the applicability of the Sequence-to-Sequence

Models to the BP G2P conversion. Now, in this chapter we will propose a model

to the G2P Conversion using a richer feature set. In addition to, we will model

the Syllabification and Stress Determination tasks as sequence mapping problems.

These tasks also share some of the characteristics of the G2P problem, where the

lexicon is relatively small and the use of plain n-gram models are supposed to perform

well. So, Sequence-to-Sequence Models for these tasks are proposed. The proposed

models will be evaluated and the results showed in Chapter 5.
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4.2 G2P Model using a richer feature set

In Chapter 2 it was already described a Sequence-to-Sequence Model to solve the

G2P conversion proposed in [11]. In the model, the word is the input and its respec-

tive phonemic transcription is the output. The model is able to infer the phoneme

sequence using just the grapheme information, working in the same way as a basic

language model. However, if we analyze a rule-based G2P algorithm, besides of

the grapheme information, additional information is used to design the rules. For

example, in the rule-based algorithm presented in Chapter 3, the stress information

is required for many rules, especially regarding the transcription of the BP vow-

els. This information directly influences the algorithm performance and shows that

some of the language patterns cannot be deduced just by the grapheme sequence

information. The information from the other Text Analysis parts might embody

valuable information for deducing the word pronunciation. So, it raises a question:

can the use of a richer feature set in the model improve the G2P conversion? Other

researchers tried to answer this question before. In [12] the syllable information was

inserted to the model of a G2P converter for the Portuguese spoken in Portugal.

It showed that the results improved in general and the difference was significant

statistically. [60] also tried to insert the syllable information to a G2P system for

English. As he used the output of a Syllabification by Analogy system that in-

cluded errors, he could not achieve a big difference in performance with the addition

of the syllable information. Although, he shows that including good quality sylla-

ble information can enhance the performance of the pronunciation systems used in

text-to-speech. Then, [61] presents a G2P system using morphology information for

German. This additional information improved significantly the performance of the

converter. Thereupon, we propose the insertion of the stress information in the en-

coding block of the Sequence-to-Sequence Models for the G2P task. The proposed

model will be further compared with the model that does not contain the stress

information and the results are showed in Chapter 5.

The power of the Sequence-to-Sequence Models are clear when we think in how

to add the stress information to it. The important information is the location of the

stress marker between the graphemes of the input sequence. It is not necessary for

the network to understand the meaning of that symbol before training. Thus, we

should choose a character that will represent the stress information, here we chose

the character “’”, and insert it in their input word position. This can be seen in

Figure 4.1. So, now the input word has one extra character that represents the stress

marker and will be included in the encoding RNN chain. Figure 4.2 represents the

model used for training. It is worthy noting that this extra character is encoded

exactly like the other ones not affecting the training procedure.
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Figure 4.1: G2P with Stress information Example.

Figure 4.2: Sequence-to-Sequence Model for G2P with Stress information.

4.3 Syllabification Model

In Chapter 2 we presented different data-driven techniques to solve the Syllabifica-

tion problem. The idea was to identify the existence of syllable boundaries between

graphemes. Only two options were available, the existence or the non-existence

of the boundary between two graphemes. Here, however, the interpretation will

be different. Our objective is to design the Syllabification task using Sequence-to-

Sequence Models. So, model this task as a mapping sequence problem. To do this

we will keep using the word as the input, inserted one character at a time. Remind

that the word is inserted in reverse other as [14]. The modifications are related to the

mapping on the output side of the model. The output chosen is the word with the

syllable boundaries in the right position. The syllable boundaries are represented

by an extra character. In our case, we chose the character “-”, but any character

outside the alphabet symbols for the target language can be used. An example for

the new line of the lexicon is showed in Figure 4.3. In Figure 4.3, we show that the

graphemes in the right part are exactly the same as the ones in the left part for the

input word. Nevertheless, this does not mean that they will be encoded the same

way by the model. This relation between the input and output graphemes forming

the same word should be learned by the network during training. The problem, in

the end, can be seen as a generative model that inserts an extra character represent-

ing the boundaries in their expected position. If we think about that in Figure 4.4

when we input the grapheme “A” at the decoding part of the model, it can be in-

terpreted as the following question: Should I insert the boundary character “-” as

the next symbol having the information that the input word is “casa” and I already

generated “CA”? In this case, the network should have a higher probability for the

character “-” being generated than for any other possible character. The Figure 4.4
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Figure 4.3: Syllabification Example.

Figure 4.4: Sequence-to-Sequence Model for Syllabification.

represents the model used for training.

4.4 Stress Determination Model

The same idea of turning the structured classification problem into a mapping se-

quence problem used for Syllabification is also used for Stress Determination. The

idea now is to identify the existence of stress markers between graphemes. To do this

we will keep using the unmodified word as input. The input word is time-reversed

[14]. One more time, the modifications are made in the decoding side of the model.

The output chosen is the word with the stress markers in their right position. The

stress marker is represented by the character “’”. The new lexicon line is presented

in Figure 4.5. As in the Syllabification task presented in the last subsection, the

problem can be seen as predicting the next character generated, where the prediction

of the character “’” indicates the presence of stress. The stress corresponds to the

grapheme generated previously by the decoding LSTM chain. For example, if the

stress marker is generated after the vowel “A”, it means that this vowel is stressed.

For example, in Figure 4.6 the question that arises for the network after generate the

character “A” in the decoding RNN chain is: Should I insert the stress marker “’”

as the next symbol knowing that the input word is “casa” and I already generated

“CA”? This probability should be maximized in comparison with the probability of

generating the other possible characters. The Figure 4.6 represents the model used

for training.

Figure 4.5: Stress Determination Example.
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Figure 4.6: Sequence-to-Sequence Model for Stress Marking.
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Chapter 5

Experiments and Results

5.1 Datasets and Performance Metrics

The lack of open source standardized datasets for BP is a problem. So, in order

to perform the experiments of this chapter three datasets for Brazilian Portuguese

were created. One for G2P conversion, one for Syllabification and one for Stress

Determination.

First of all, to develop the datasets, a list of all the words contained in the Ispell

Dictionary [13] was created. In this list, some foreign language material and words

that contained simple orthographic errors were discarded. The final version of the

list then contained 33737 words. This is also the length of the datasets created.

A histogram that shows the length of the lexicon words is presented in Figure 5.1.

These words were then put into the rule-based algorithms described in Chapter 2 to

create a first version of the datasets. These versions that contained errors inserted

by the rule-based approaches were then manually corrected to generate the final

versions used for training.

The G2P dataset contains orthographic words with their phonetic transcription.

The SAMPA phonetic alphabet for BP [57] was used in the transcription. The homo-

graphs were excluded, it means that just one possible pronunciation of these words

are presented in the dataset. Co-articulation effects were also excluded. An alterna-

tive version of this dataset with the stress information included in the orthographic

form of the word was also created. To the evaluation of the G2P Conversion Word

Error Rate (WER) and Phoneme Error Rate (PER) calculated using Levenshtein

Distance [58] were used. The WER calculates the percentage of words transcribed

correctly. The Levenshtein distance calculates the number of insertions, deletions

and substitutions necessary to transform the predicted transcription in the correct

transcription and then this number is divided by the total number of phonemes in

the set to acquire the PER. For the Syllabification dataset the orthographic word

40



Figure 5.1: Histogram to show the number of words for each word length in the
datasets created.

with their transcription separated by a syllable boundary character were used. This

is the same model used in Chapter 4. The evaluation was made regarding the

WER. In the Stress Determination dataset the orthographic word was followed by

the transcription including a character representing the primary stress location, like

the model proposed in Chapter 4. WER was also used for evaluation.

As the Syllabification and Stress Determination datasets were created to the

training of the Sequence-to-Sequence Models proposed in Chapter 4, the use of

these datasets for other data-driven approaches might need adaptation scripts.

The evaluation is performed using k -fold cross validation [15]. The datasets were

randomly organized and splitted in k folds. The k models were trained independently

on k-1/k-th of the dataset and evaluated on the remaining k-th. Error rates, in this

case, are computed over the union of the k test sets. The standard deviation and

standard error [62] are calculated as follows:

SD =

√√√√ 1

k − 1

k∑
i=1

(xi − x̄)2 (5.1)

SE =
SD√
k

(5.2)

where x̄ is the mean value of the observations. Considering a normal distribution

for the mean error, the three sigma rule [63] shows that 95% of the values lies within

1.96 standard errors away from the mean. So, for 95% confidence intervals, our

results will be:

x̄± (1.96× SE) (5.3)
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5.2 Experiments

The experiments described in the next sections were simulated in an environment

consisting of a Linux platform using the distribution Ubuntu 14.04, a Intel Core i3

2.4GHz x 4 processor with 3Gb of RAM memory.

5.2.1 Comparison between Rule-based and Data-Driven ap-

proaches for G2P

The first experiment consisted in the comparison between rule-based and data-driven

solutions for the Grapheme-to-Phoneme Conversion. The rule-based algorithm pre-

sented in Chapter 3 was compared with three data-driven approaches explained in

Chapter 2. To perform the evaluation 11-fold cross validation was used. The order

of the words in the G2P dataset were randomly permuted and used to create the 11

sets for simulations.

Because it is a knowledge-based solution, the rule-based algorithm did not require

a training step. So, just the evaluation of the algorithm performance for the test

sets was needed. The exceptions lists were turned off during evaluation. For the

WFST-based approach, the implementation of [64] was used. The training model

consisted of a 7-gram trained using the mitlm toolkit [65]. The decoding of the test

set used the default decoder that calculates the shortest path through the phoneme

lattice created by the model. In the Joint-Sequence Model approach, [66] was used

to train the model and decode the test set. The model was trained using a 7-

gram language model. For the decoding step, first-best search was used [9]. The

Sequence-to-Sequence Models implementation used is the one presented in [67]. The

architecture chosen was a deep network with 2 layers of 64 GRU units. Ten percent

of the training set was used as the validation set. The learning rate started in 0.5

with a decay factor of 0.99. The gradients were clipped to a maximum value of

5. Batches of 64 words were used for training. Then, the test set decoding was

performed using a greedy search decoder.

Before analyzing the results it is interesting to also compare the data-driven

approaches used in the comparison regarding their latency. Because the comparison

is performed using 11-fold cross validation the training step need to be repeated

many times so it turns that this in an important factor. For example, for the

comparison presented in this section, for each data-driven approach is necessary the

training of 11 different models and the decoding of 11 test sets. We are going to

present the training time for each data-driven approach in orders of magnitude that

are divided in the following categories: minutes, hours and days. This division is

made mainly because the training time depends on the size of each dataset, number
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of parameters, and for the neural network approaches the training design regarding

convergence and number of epochs. So, for the data-driven approaches chosen in

this dissertation the fastest algorithm consists in the WFST-based strategy. The

training time for this algorithm is in the order of ‘minutes’ and [10] shows that

this algorithm is designed to achieve faster training times when compared with

other data-driven approaches. For our dataset, the training time was completed

in approximately thirty minutes. The Joint-Sequence Models takes the order of

‘hours’ to complete the training step. In our case, the training of our dataset took

approximately four hours. The slowest approach regarding of training time was the

Sequence-to-Sequence Models. Because it uses a deep neural network architecture,

this technique takes an order of magnitude of ‘days’ to achieve the convergence of

the model performing the training using BPTT. Using the G2P dataset created,

the training time took approximately two days. Regarding the decoding time, the

WFST-based approach achieves the best latency, and the Sequence-to-Sequence

Model strategy is the slowest one, especially because it needs to load the network

parameters before start decoding. An important observation to the training times

presented before is that the simulation environment consisted in a CPU with limited

processing power. With the utilization of powerful GPUs or Super Computers this

training time can be reduced by a relevant factor. Primary tests using a GeForce

GTX 1070 GPU reduced the training time by more than ninety percent. Therefore,

the available hardware needs to be considered during the development of projects

that uses data-driven approaches.

Table 5.1: Comparison between rule-based and data-driven approaches for G2P
Method PER (%) WER(%)

Rule-Based 0.82± 0.07 3.26± 0.14
WFST-based [64] 0.73± 0.05 4.05± 0.15
Joint Sequence Models [66] 0.67± 0.06 4.02± 0.20
Sequence-to-Sequence Models [67] 0.52± 0.05 2.28± 0.13

Thus, we report results for the rule-based and data-driven approaches for G2P

conversion in Table 5.1. The first conclusion that can be taken from the table is

the ability of the data-driven approaches to yield similar or outperform the G2P

rule-based algorithm. The three data-driven algorithms chosen were able to present

better Phoneme Error Rate than the rule-based algorithm, with the Sequence-to-

Sequence Models achieving the best rate overall with PER equal to 0.52 ± 0.05%.

These results can also be seen in Figure 5.2. For the Word Error Rate, the rule-based

algorithm showed better results than two data-driven algorithms, but was outper-

formed by Sequence-to-Sequence Models that presented WER equal to 2.28±0.13%.

The Figure 5.3 shows these results graphically. So, this shows that the data-driven

algorithms can be used successfully to the G2P task for a shallow ortography lan-
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Figure 5.2: PER Comparison.

Figure 5.3: WER Comparison.

guage, such as BP, and the technique based in a Deep Neural Network architecture

using Gated Recurrent Units showed the best performance both at PER and WER.

In Table 5.1 we showed that a Sequence-to-Sequence Model architecture with 2

layers of 64 units achieve the best performance for the BP conversion when compared

with a rule-based algorithm and other two data-driven algorithms. Now, we are go-

ing to analyze how this architecture compare to the similar architecture presented

in [11] for the G2P task used to evaluate the performance for English. For a deep

orthography language, such as English, the G2P is more complex than for a shallow

orthography language, such as BP. To prove this fact we will compare the architec-

tures and WER of both languages using a encoder-decoder Sequence-to-Sequence

model. For BP, using 2 layers of 64 units was enough to achieve state-of-the-art per-

formance with a WER equal to 2.28±0.13% and outperform a rule-based algorithm
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Figure 5.4: PER -Maximum, Minimum and Average values per each approach.

and other two data-driven approaches. However, for English, the same architecture

achieves a WER of 32.03% trained in the CMUDict dataset [68], where the state-of-

the-art baseline is 24.40%, as showed in [67]. To achieve a similar performance with

the baseline, the network architecture need to change the number of units from 64

to 512 units, achieving, then, a WER equal to 24.23% [67]. The result of this change

is a significant increase on the number of parameters on the network architecture.

We started this chapter talking about the lack of standardized datasets for the

tasks presented in this dissertation for BP. However, why a standard training and

test set is important when comparing these algorithms? What is the importance of

performing cross validation for the comparison of the values obtained? To answer

this question we need to analyze how the performance metrics can vary depending

on the training and test set used for development. Because we used a 11-fold cross

validation in our results for this comparison we have, for each technique, eleven

different values for WER and PER. So, we could list the minimum, maximum and

average values to analyze the variance of the performance metrics. Figure 5.4 shows

these values for the Phoneme Error Rate. It can be seen that the worst value

for the Sequence-to-Sequence Models, the technique with the best performance in

our comparison, is really close to the best accuracies obtained for the other three

approaches. For example, if the best value of the rule-based approach coincides with

the worst value of the Sequence-to-Sequence Model for a specific dataset, it could

be misunderstood that both techniques presents similar accuracy. In Figure 5.5 the

variation for the WER is showed. The variance of the values can again be verified.

So, to perform the comparison of two techniques is important the employment of the

same standardized set, and, in addition to, the statistical validation of the results.
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Figure 5.5: WER -Maximum, Minimum and Average values per each approach.

5.2.2 Sequence-to-Sequence Models for G2P with and with-

out the stress information

The use of a richer feature set have already been proven useful for the G2P task [12].

So, in this experiment we insert the stress information in a Sequence-to-Sequence

Model, as proposed in Chapter 4, and compare this model with the one that pre-

sented the best performance in the last section. Considering that the stress infor-

mation is used in the design of the rule-based algorithm from Chapter 3 is expected

that the insertion of this information decreases the error rate on the performance

metrics.

This experiment also uses a 11-fold cross validation in the created dataset and

the same variables from the last section are used for the training of the proposed

Sequence-to-Sequence Model. With respect to training time of the network, the in-

sertion of stress information turns the convergence more difficult. Thus, the training

time increased by a factor of 1.5 to 2 times in comparison with the simulation of a

model without stress information.

The Table 5.2 shows that the expected improvement in performance after the

addition of stress information is confirmed. The value for the average PER is im-

proved by 0.08% and the average WER is improved by 0.37%. Therefore, the best

performance for G2P conversion is achieved with the proposed model that contains

the stress information. This model achieve a PER of 0.44 ± 0.05% and a WER of

1.91± 0.14%.

These results shows that a model that includes information from the Text Anal-

ysis blocks that are relevant for the G2P conversion can increase the performance of
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these systems and consequently the accuracy of TTS systems. By virtue of the flex-

ibility and encoder-decoder architecture of Sequence-to-Sequence Models the mod-

eling of different NLP algorithms in just one chain can be seen as a future work that

can increase even more the performance of these tasks. Another possibility is the

modeling of multiple chains, that contains the information from multiple blocks, in

parallel and the use of this multi-parallel-chain to generate the output sequence.

Table 5.2: Comparison between rule-based and data-driven approaches for G2P
Method PER (%) WER(%)

Sequence-to-Sequence Models without stress
information

0.52± 0.05 2.28± 0.13

Sequence-to-Sequence Models with stress in-
formation

0.44± 0.05 1.91± 0.14

5.2.3 Syllabification using Sequence-to-Sequence Models

In this experiment, a data-driven model for Syllabification proposed in Chapter 4

is compared with a rule-based algorithm presented in [6]. For this experiment, a

5-fold cross validation was used. To turn the dataset size divisible for 5, two one-

letter words from the dataset were excluded. Thus, the dataset used for training

had 33735 words. The environment was similar to the one used to do the training

and testing of the other experiments that used Sequence-to-Sequence Models.

The results obtained after the simulations can be seen in Table 5.3. First of all,

we should explain that for this experiment just WER is used as a performance metric

because the PER using Levenshtein distance has no meaning for the proposed model.

For this model, a new performance metric regarding the right positioning of the

syllable boundaries should be proposed and implemented. So, analyzing the results

we can see that the proposed model clearly outperforms the rule-based algorithm.

The proposed Sequence-to-Sequence Model achieve a WER of 1.70± 0.32% against

4.15± 0.18% from the rule-based algorithm.

Table 5.3: Comparison between the proposed data-driven approach and a rule-based
approach for Syllabification

Method WER(%)

Sequence-to-Sequence Models 1.70± 0.32
Rule-based 4.15± 0.18
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5.2.4 Stress Determination using Sequence-to-Sequence

Models

This experiment also compare the proposed data-driven model for Stress Determi-

nation proposed in the last chapter with the respective rule-based algorithm from

[6]. 5-fold cross validation was used to analyze the results with two one-letter words

being excluded from the created dataset to turn its size divisible for 5. The train-

ing set, then, contained 33735 words. The environment was the same as the other

Sequence-to-Sequence Models experiments.

It is important to mention that the interpretation will be different from the last

experiments. This is mainly because of the difficulty in the development of the Stress

Determination dataset and the good performance of the rule-based algorithm. The

dataset was created by the rule-based algorithm presented in [6] and then manually

corrected. In [6] is showed that the rule-based performance achieve a WER of

approximately 0.1% when discarded proper names, foreign words, acronyms and

initialisms. The main reason for this good performance is the presence of accent

markers in BP, as they are highly correlated with stress patterns. As can be seen in

Table 5.4, the number of mistakes corrected is really low, so, the author considered

the dataset being representative of the rule-based algorithm. Therefore, the results

in this experiment will be interpreted as the competence of the proposed model to fit

the patterns for the Stress Determination task described in the rule-based algorithm.

The results in Table 5.4 shows that only 0.03% of the words contained in the

dataset were corrected in comparison with the rule-based algorithm performance.

The proposed model, then, achieved a WER of 0.45 ± 0.13%. This result indicate

that the model has the ability to detect the stress patterns of the BP language.

Nevertheless, is necessary a collaborative work between BP linguistic experts on

the creation of a standardized dataset for this task to perform reliably comparisons

between different approaches.

Table 5.4: Comparison between the proposed data-driven approach and a rule-based
approach for Stress Determination

Method WER(%)

Sequence-to-Sequence Models 0.45± 0.13
Rule-based 0.03± 0.02

5.2.5 Sequence-to-Sequence Models trained with datasets

of different sizes

At last, this experiment will analyze the influence of the training set size in the

performance of Sequence-to-Sequence Models for the applications presented in earlier
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Figure 5.6: G2P model trained with datasets of different sizes.

sections. For each task, the datasets were divided in subsets containing 1000, 5000,

10000, 20000 and 30000 words. Each subset was further separated in a training set

(85%), validation set (10%) and test set (5%). The other parameters were the same

as the simulations detailed before.

The results for G2P conversion are showed in Figure 5.6. It can be seen that for

datasets containing less than 5000 words, the model is not able to have a good per-

formance. For a set containing more than 10000 words, it starts to have an accuracy

similar to other data-driven and rule-based approaches described in Section 5.2.1.

For 30000 words it achieves a WER of 2.3%. In Figures 5.7 and 5.8 results for the

Syllabification and Stress Determination tasks are presented. Similarly to the G2P

Conversion, the curve steepness starts to be reduced after 10000 words. The WER

for Syllabification at 30000 words is equal to 1.7%. Then, for Stress Determination,

the WER achieves the lowest value of 0.4% for the set with 30000 words.

As a conclusion, we can see clearly that the training set size have a strong

influence on the final performance of a Sequence-to-Sequence Model architecture.

This pattern is repeated for other data-driven approaches. It can be seen that if a

training set with 10000 words were used, the model would not be able to outperform

the rule-based algorithm for the G2P conversion. This reinforces the need of broad

and quality datasets for the use of data-driven approaches to solve Natural Language

Processing problems.
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Figure 5.7: Syllabification model trained with datasets of different sizes.

Figure 5.8: Stress Determination model trained with datasets of different sizes.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This dissertation was dedicated to exploring the use of data-driven solutions and

compare their performances with rule-based approaches in the Natural Language

Processing algorithms of Brazilian Portuguese Text-to-Speech systems.

First of all, Chapter 2 discussed the theoretical background of TTS systems. The

Text Analysis block was detailed and rule-based algorithms for BP presented. The

data-driven approaches for the NLP algorithms were also described, and three solu-

tions were chosen to perform the comparison for the G2P conversion task: Weight

Finite-State Tranducers [10], Joint-Sequence Models [9] and Sequence-to-Sequence

Models [11]. The theory behind these solutions were explained in detail. Finally,

the traditional approaches to solve the Speech Waveform generation block were de-

scribed.

Following, in Chapter 3 a new rule-based algorithm for the BP G2P conversion

is proposed. The proposed rules are based on the algorithm described in [6] and aim

mainly to solve the nasalization and the errors in the conversion of the graphemes

<e> and<o>. Comparisons with the results of the previous algorithm show that the

additional rules proposed improved the general performance of the G2P converter

from 97.44% to 99.18%. Informal subjective tests realized with an HMM-based TTS

system that was trained and tested using the set of proposed rules also showed an

improvement on the naturalness of the generated speech.

In Chapter 4 we explore the flexibility of the Sequence-to-Sequence architec-

ture to propose three models. The first model insert the stress information to the

Sequence-to-Sequence Model used to the G2P conversion. It is expected that the

performance of the data-driven converter improves as this information is also used

in the rule design of knowledge-based converters. The other two proposed mod-

els explores the applicability of Sequence-to-Sequence Models to the Syllabification
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and the Stress Determination problems. For the Syllabification, syllable bound-

aries characters are embedded in the decoding chain and the task is modeled as

a sequence-mapping problem. In the Stress Determination model, stress marker

characters are included in the decoding chain and the problem is also modeled as a

sequence-mapping problem.

Lastly, in Chapter 5 the datasets created and the experiments performed were

presented. For this work, three datasets containing 33737 words extracted from

the Ispell dictionary [13] were created. One for each of the following tasks: G2P

conversion, Syllabification and Stress Determination. With these datasets, four ex-

periments were implemented. The first experiment was the comparison between

three data-driven techniques and a rule-based algorithm proposed in Chapter 3 for

the G2P problem. This experiment showed that data-driven algorithms are able to

outperform the rule-based algorithm for the G2P conversion. The best rates were

observed for the Sequence-to-Sequence Models. They achieved a PER of 0.52%

and a WER of 2.28%. In comparison to these numbers, the rule-based algorithm

achieved PER and WER equal to 0.82% and 3.26% respectively. The other two

data-driven algorithms yield results similar to the rule-based algorithm. The results

were calculated using 11-fold cross validation. The second experiment compared

the Sequence-to-Sequence Model, that achieved the best performance in the first

experiment, with a similar model proposed that included the stress information.

The results showed that the model with the stress information outperformed the

one without this information for the G2P conversion. The proposed model achieved

a PER of 0.44% and a WER of 1.91% using 11-fold cross validation. The third

experiment explored the comparison between the proposed Sequence-to-Sequence

Model and the rule-based algorithm [6] for Syllabification. It is showed that the

proposed model achieved a WER of 1.70% against 4.15% from the rule-based ap-

proach. The comparison was performed using 5-fold cross validation. Finally, the

fourth experiment compared the proposed data-driven model and the rule-based al-

gorithm [6] for Stress Determination. The results showed that the proposed model is

not able to outperform the rule-based algorithm for this task. The proposed model

achieved WER equal to 0.45% againt 0.03% of the rule-based solution using 5-fold

cross validation.

As a general conclusion, this dissertation showed that data-driven solutions are

able to achieve state-of-the-art results on the Natural Language Processing algo-

rithms presented in a Brazilian Portuguese Text-to-Speech system. Also, the pro-

posed data-driven models outperformed rule-based algorithms for the G2P conver-

sion and Syllabification problems.
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6.2 Future Works

It is interesting to observe that the results obtained with the Sequence-to-Sequence

Models in this dissertation can still be improved. [11] achieved the best performance

for English with a different architecture that used the alignment information. In our

case, results were obtained in a simple encoder-decoder architecture with 2 layers of

64 units. So, as a future work a detailed analysis on the disparity in performance

for different architectures and distinct parameters is important.

Another interesting work could be the implementation of a Text Analysis block

that uses the data-driven approaches presented in this dissertation. Also, multiple

information can be used to create models with richer feature sets. For example,

the stress and syllable information could be used together in the G2P model with a

multitask architecture, as proposed in [69].

To spread the research using data-driven approaches for these tasks the release

of the datasets created with an open source license, such as the one used by the

CMUdict [68], is crucial. The release can disseminate the collaboration between

linguistic specialists in BP to increase the size and the quality of the datasets. The

release will also stimulate other researchers will to try and develop new algorithms

in this area.

At last, the creation of a new dataset with sentence-level structures that com-

prise the co-articulation effects and the homograph disambiguation can be used to

train new Sequence-to-Sequence Models. These models can be trained with small

modifications to the prevailing model and can provide an important feature that

will be important during the development of TTS systems.
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<https://code.google.com/p/phonetisaurus/>.

[65] “MIT Language Model Open Source code”. Dispońıvel em: <https://github.
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