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When the state of things is such that an

infinitely small variation of the present

state will alter only by an infinitely small

quantity the state at some future time,

the condition of the system, whether at

rest or in motion, is said to be stable;

but when an infinitely small variation in

the present state may bring about a

finite difference in the state of the system

in a finite time, the condition of the

system is said to be unstable.

James Clerk Maxwell



RESUMO

Análise de estabilidade hidrodinâmica é um assunto estudado desde o século

XIX, dada sua importância em uma quantidade considerável de áreas da ciência

e engenharia. Estabilidade linear de soluções já conhecidas são exploradas usando

diferentes discretizações e métodos de solução para problemas de autovalores, com

o intuito de observar qual estratégia é a mais eficiente em termos de velocidade de

execução e acurácia. Um esquema de discretização local e outro global são aplicados

as equações do problema, e, após isso, o problema de autovalor generalizado é re-

solvido usando o algoritmo QZ e a iteração de Arnoldi. Ambos os métodos numéricos

anteriores foram aplicados com e sem uma transformação que reduz o tamanho do

problema. A análise realizada visa decidir a melhor estratégia de solução, de forma

que seja possível aplicar a mesma em problemas com geometrias mais complicadas

e escoamentos mais complicados no futuro.

Palavras-chave: Estabilidade hidrodinâmica. Problema de autovalor gener-

alizado. Métodos de discretização. Métodos numéricos. Arnoldi. Subespaços de

Krylov. Algoritmo QZ..



ABSTRACT

Hydrodynamic stability analysis has been studied since the nineteenth century,
due to it’s importance on a considerably ammount of fields of science and engineer-
ing. Linear stability of well known solutions on the literature are explored using
different discretizations and eigensolvers, with the aim to decide which strategy ap-
pears to be the most efficient in terms of execution time and accuracy. One local and
one global discretization schemes are applied over the problem’s equations, and later
on the associated generalized eigenvalue problem is solved using the QZ algorithm
and the Arnoldi iteration. Both of the previous methods were applied with and with-
out a transform that reduces the problem’s size. The analysis done aims to decide
which is the best solution strategy, such that it may be employed in more complicated
geometries and flows in the future.

Keywords: Hydrodynamic stability. Generalized eigenvalue problems. Dis-

cretization methods. Numerical methods. Arnoldi. Krylov Subspace. QZ algorithm.
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1 INTRODUCTION

Understanding what makes a flow turbulent and predicting when the transition

to such state occurs is one of the most important problems in the area of fluid

mechanics and aerodynamics. For example: if it is possible to delay the transition

of an airplane’s fuel maintaining it laminar on its wings, a considerable amount of

fuel will end up being saved [10]. Considering that a lot of factors may influence the

flow’s behavior, guessing if such transition will happen is not an easy task.

One of the methods used to investigate this phenomenon is linear stability analy-

sis. In order to be applied, a steady state solution of the velocity and pressure fields

(in other words, the base flow) is already known of the laminar flow of interest. The

instabilities appear because the forces (inertial, viscous and external) equilibrium is

perturbed. This perturbation may be written in terms of a normal mode expansion,

which results on a continuous (or discrete if the domain is discretized) generalized

eigenvalue problem (GEVP) to be solved.

Generalized eigenvalue problems [28], just like the common eigenvalue problems,

are of great importance to science and technology. They are found on different fields

such as signal/network analysis [32], graph theory and optimization [17], and more

recently machine learning [14]. In the context of the hydrodynamic stability, the

associated eigenvalues of the linearized perturbed Navier-Stokes equations dictate

if the flow is unstable (in other words, if a perturbation will grow indefinitely).

Before defining the linear hydrodynamic stability problem and its associated GEVP

problem, it is interesting to look a little more at some works that investigated

hydrodynamic stability.

1.1 HYDRODYNAMIC STABILITY: HISTORY AND MOTIVATION

Studies around hydrodynamic stability have a long history. Lord Kelvin on his

studies of instabilities and its relation to vortex flow, along with the Hermann von

Helmholtz defined a type of instability that took their name: the Kelvin-Helmholtz
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instability [5]. When two inviscid incompressible fluids flow together with different

velocities, the velocity field on the interface between them starts to rotate due to the

change between the velocities around it, something that originates vorticity and, as

time goes on, turn into a vortex (Figure 1a). This arises in a lot of real life situations,

even when we are looking at clouds in a beautiful sunny sky as in Figure 1b.

(a) The velocity field profiles changes

due to the Kelvin-Helmholtz instabil-

ity. https://communitycloudatlas.

files.wordpress.com/2015/04/

instability.png

(b) Kelvin-Helmholtz instability on

clouds. http://misturaurbana.

com/2013/07/o-mar-nas-nuvens/

Figure 1: Kelvin-Helmholtz instability effects.

Other classical situations where such transition occurs was observed by Osborne

Reynolds, on a experiment that took his own name: the Reynolds experiment. In

[26], he presents an experiment of three different tubes fitted with trumpet mouth-

pieces (allowing water to enter without disturbance) in a large glass of tank filled

with water. A sort of ink was also inserted in the tubes, as a means to highlight the

way the flow courses. He observed that:

• When velocities were low, the streak of color extended in a straight line.

• When the water was subjected to perturbations, the streak of ink would shift

about the tube, but it was not wave like.

• As the velocity increased more and more, at some point the ink inside would

https://communitycloudatlas.files.wordpress.com/2015/04/instability.png
https://communitycloudatlas.files.wordpress.com/2015/04/instability.png
https://communitycloudatlas.files.wordpress.com/2015/04/instability.png
http://misturaurbana.com/2013/07/o-mar-nas-nuvens/
http://misturaurbana.com/2013/07/o-mar-nas-nuvens/
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Figure 2: Reynolds experiment. https://www.learncax.com/component/k2/

introduction-to-turbulence-modelling

become “chaotic”, mixing up with the water surrounding it (Figure 2).

The parameter Re = ρUL
µ

, where ρ is the fluid’s density (kg/m3), U is the fluid

velocity (m/s), L is a characteristic linear dimension (m) is called the Reynolds

number and it is related to this experiment. It highlights that, beyond some thresh-

old value of Re, the laminar flow in a pipe changes completely to what is known as

a turbulent state. This is the essence of someone studying hydrodynamics stability

theory: to find if a given laminar flow is stable or unstable, and if so, what are the

mechanisms responsible for the shift from the initial behavior and to eventually the

turbulent behavior [20].

Flow instabilities is usually unwanted in real life applications. Besides the fuel

loss problem on airplanes, coating process that are of great importance to industry

require that the flow is laminar, bidimensional, and permanent while the fluid is

applied over the substrate [21]. Another different situation is concerning how good

blood flows in arteries and observing how different it may be when someone is in a

unhealthy condition suffering some disease like Atherosclerosis, where the geometry

inside the stenosed artery changes how the blood flows inside it [29]. These situations

and a lot of others are the main motivations of the hydrodynamic stability theory.

The present work will be only dedicated to linear hydrodynamic stability the-

https://www.learncax.com/component/k2/introduction-to-turbulence-modelling
https://www.learncax.com/component/k2/introduction-to-turbulence-modelling
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ory, but there are other ways to analyse. This form of analysis and its associated

generalized eigenvalue problem will be discussed in the next chapter. For now, it

is important to define what is a GEVP and later on how exactly it appears in this

context.

1.2 GENERALIZED EIGENVALUE PROBLEM

A generalized eigenvalue problem is a problem described in the following form:

Ax = λBx (1.1)

where A,B ∈ Cm×m, λ ∈ C. Essentially the objective is to find pairs (λ,x) such that

1.1 is satisfied. The number λ is called a generalized eigenvalue and its associated x

a generalized eigenvector. For simplicity, the term generalized will be dropped when

referring to any of those. One can easily notice that when B = I, it is essentially

an eigenvalue problem. Sometimes GEVP is called a linear matrix pencil in the

literature.

Similar to an EVP, by solving the characteristic polynomial p(λ) = det(A −

λB) = 0 and them solving a system of linear equations for each of its roots (eigen-

values) is a possibility. It is interesting look at an example:


3 4 −8

0 6 6

0 0 4



x1

x2

x3

 = λ


1 2 3

0 3 3

0 0 1



x1

x2

x3

 (1.2)

The charateristic polynomial is p(λ) = (3 − λ)(6 − 3λ)(4 − λ). The roots

(eigenvalues) in this case are easily obtained, being λ1 = 3, λ2 = 2, λ3 = 4.

Their (normalized) associated eigenvectors are , v1 = [1 0 0]T , v2 = [0 1 0]T ,

v3 = 1√
258

[−16 − 1 1]T .

The previous example was a simple one because of the structure behind the

matrices: both were upper triangular. An interesting fact is that this is one of
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the basic ideas behind how the most used numerical eigensolver for GEVP (the QZ

algorithm) finds the eigenvalues. This method iteratively tries to find two unitary

transforms Q,Z such that Ax = λBx is rewritten as

QTZ∗x = QSZ∗x (1.3)

where T and S are upper triangular matrices. In the literature, this is known as

the generalized Schur form. It can be shown that the problem Tx = λSx share the

same eigenvalues, something that can be used to find their associated eigenvectors

afterwards. This work willl not go into its theory, however [11] provides a good

theoretical and pratical overview.

It may seem a little odd not interpreting any GEVP as just a different way of

writing a EVP, since it appears that Ax = λBx could be rewritten as B−1Ax = λx.

If this happens to be the case, there would be no need to develop methods specific

to it (like the QZ method mentioned). On the previous example, this could be done

since B was an invertible matrix, but not on the following example:


10 10 −10

−10 20 20

10 20 0



x1

x2

x3

 = λ


2 0 0

0 −2 0

0 0 0



x1

x2

x3

 (1.4)

Since B is not an invertible matrix, it is not possible obtain an EVP in such man-

ner and it may seem that only computing the roots of the charateristic polynomial

is a possibility to find the eigenvalues. There are indeed ways of obtaining a corre-

sponding EVP, but it requires certain transforms on the problem. As for now, try

to guess what would happen to 1.1 when a x̃ ∈ Nullspace(B) and x̃ /∈ Nullspace(A)

is taked into account on the previous example. There would a non null vector on

the LHS of the equality and a null vector on the RHS of the equality multiplied by a

scalar λ. Interestingly, λ “tries” to maintain this equality by going towards infinity,

something that can be checked by doing the following:
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- Shift the Nullspace(B) by ε :

(B + εI)

- Assuming x̃ ∈ Nullspace(B), it can be verified that :

(B + εI)x̃ = Bx̃ + εIx̃ = 0 + εx̃ = εx̃, not a null vector anymore.

- Now, write the associated characteristic polynomial

p(λ) = det(A−λ(B + εI)) = 1000λ+ 12λ3ε− 180λ2ε+ 600λε+ 2000

- The (incredibly scary) solutions for p(λ) = 0 are:

λ1 =
15ε− 50

3 3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

+
5 3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

3ε
+ 5

λ2 =−
5i
(√

3− i
)

(3ε− 10)

6 3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

+
5i
(√

3 + i
)

3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

6ε
+ 5

λ3 =
5i
(√

3 + i
)

(3ε− 10)

6 3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

−
5i
(√

3− i
)

3

√√
ε3 (−27ε3 + 270ε2 + 3069ε+ 1000)− 63ε2

6ε
+ 5

Finally, by taking the following limits:

lim
ε→0

λ1 = −2, lim
ε→0

λ2 = +∞ i, lim
ε→0

λ3 = −∞ i

(1.5)

This shows that on the “limit of invertibility”, some of the eigenvalues are heading

towards infinity. These are the so called infinite eigenvalues. They are defined as:

Definition 1.1. Denoting λ(A,B + εI) as a eigenvalue of Ax = λ(B + εI)x, if

limε→0 λ(A,B + εI) = ±∞ or λ(A,B + εI) = ±∞ i then λ is an infinite eigenvalue

of Ax = λBx.

For pratical purposes they are usually not important, but their presence poses a
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problem to eigensolvers due to how their iterations work. On chapter 4, computa-

tional methods to solve a GEVP with the presence of these are discussed.

1.3 OBJECTIVE, TECHNOLOGIES AND OUTLINES

The present work produces results on linear hydrodynamic stability already

present on the literature, but trying different strategies (some to our knowledge

have not been tried before) concerning the discretization and methods to solve the

GEVP. The aim is to try to refine what is the most coherent way of solving the

problem in known situations in order to be applied on more difficult and advanced

flows that arise in applications.

According to [20], the state of art methods are matrix-free methods that uses an

exponential time stepper (after removing the pressure field after some sort of pro-

jection method), with spectral elements discretization frameworks such as NEK5000

[9]. This strategy is not discussed in this work, the GEVP matrices are still used.

The used technologies were the following:

• Wolfram Mathematica 11[25] for symbolic computation and plotting of the

eigenspectrums.

• GNU Octave 4.0.1[8] for all numerical computations.

• LATEX for the present text format and TikZ for some graphical representations.

This introduction chapter exposed some of the ideas behind both the linear sta-

bility and the GEVP. Chapter 2 is concerned with presenting the base flows and

how to construct the stability equations. Chapter 3 presents methods to discretize

the domain, followed by chapter 4 focusing on strategies do solve the GEVP ob-

tained. Finally, chapter 5 presents the obtained results and chapter 6 discusses the

conclusions and possible future works. See Figure 3 for a diagram representation of

the described outline.
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Flow

Chapter 2

Perturbed Navier Stokes

Chapter 2

GEVP

(Large & Sparse)

Chapter 3

GEVP

(Small & Dense)

Chapter 3

Solution

Chapter 5

QZ
T.Valerio

Chapter 4

Arnoldi

Chapter 4

QR

Linear stability analysis

Local discretization

(FD)

Global discretization

(Chebyshev)

Figure 3: Diagram describing the outline of the present work.
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2 LINEAR STABILITY ANALYSIS AND BASE FLOWS

According to [20], hydrodynamic stability analysis can be divided in 4 groups.

Two of those concern instabilities that evolve according to time evolution: temporal

stability analysis and transient growth analysis. The former is dedicated to inves-

tigating the asymptotic time behaviour of perturbations, while the latter observes

in short-time dynamics how perturbations are amplified. Both theories have their

importance and may give insights about the underlying stability of the system. An

example of work that does both is [2]. The present work only concerns the linear

case of the temporal stability analysis.

2.1 PLANAR COUETTE AND POISEUILLE FLOWS

Simply put, base flow is a steady-state or periodic solution of the Navier-Stokes

equations. Steady-state solutions can be obtained by “dropping” the time derivative

terms of said equations, in other words, the flow is assumed to be permanent. As-

suming the fluid is incrompressible, the continuity and conservation of momentum

are respectively (on nondimensional form):


∇.u = 0

Re

(
�
�
�∂u

∂t
+ u.∇u

)
= −∇p+∇2u,

(2.1)

(2.2)

where u, p represent the velocity and pressurre fields respectively. The dimensionless

parameter Re is called the Reynolds number. It represents the ratio between inertial

forces and viscous forces. Flows with high velocity have preominant inertial forces,

and these are the ones which may cause a significant change on the velocity field’s

profile.

There are bidimensional flows that the velocity field essentially depends of only

of the spatial coordinates, these are called parallel flows. There are two famous

flows that results on linear stability are already present on the literature: the planar

Couette and Poiseuille flows.
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The planar bidimensional Couette flow happens when there is not a pressure

gradient across the boundary layer (∂p
∂y

= ∂p
∂x

= 0) , each velocity component does

not depend on the horizontal spatial coordinate (∂u
∂x

= ∂v
∂x

= 0)

and between two paralell plates, the velocity has the same magnitude and direction,

but oposite orientation. The following boundary conditions are then met:

u(1) = 1, u(−1) = −1, v(±1) = 0, where u = [u, v]T .

The analytical solution can be easily computed in this simple case. It is described

by ubase = [U = y, v = 0]T , p = pbase = 0 (even though any constant could be

used, this form will be assumed for simplicity). The graphical representation is in

Figure 4.

Figure 4: Planar Couette flow.

Similarly, the planar Poiseuille flow shares the same geometry and it is also

assumed that each velocity component depends only on the vertical position. On

the other hand, there happens to be a pressure gradient parallel to the flow itself,

one that is constant ( ∂p
∂x

= −G, ∂p
∂y

= 0). Also, the velocity is null on both parallel

plates. The following boundary conditions are then met:

u(±1) = 0, v(±1) = 0, where u = [u, v]T .

The analytical solution can also be easily computed in this simple case. It is de-

scribed by ubase = [U = 1−y2, 0]T , p = pbase = −Gx. Figure 6 shows the parabolic
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shape of this velocity field.

Figure 5: Planar Poiseuille flow.

Unlike the general case, these two flows are so simple that even have analytical

solutions, something that could indicate that they both do not hold much impor-

tance. This is not case because the ideas behind the linear hydrodynamics analysis

remain the same on more complex problems. Also there are some flows that may

be approximately written as one of these two [35].

2.2 INTRODUCING A PERTURBATION

In order to decide if the previous base flow is stable, a known perturbation is

introduced in the previous steady state solution. It is assumed that the perturbed

solution are of the form:

u = ubase + εũ, ũ = [û, v̂]T

p = pbase + εp̃

0 < ε << 1, small perturbation

(2.3)

where ũ = û(y)eiαxeλt and p̃ = p̂(y)eiαxeλt. The fields ũ and p̃ are called

perturbed fields, both representing a wave (each having an amplitude, as well as

spatial and temporal dependency). An imposing condition to these perturbed fields
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is that û(±1) = 0, v̂(±1) = 0, since the previously boundary conditions should still

be satisfied by the new solution. The expressions themselves suggest that if the real

part of the scalar λ (denoted by <{λ}) is larger than 0, the perturbation will evolve

indefinitely. On the contrary, if it is less than 0 then the perturbation will disappear

as time passes, meaning that the flow will recover its base flow behavior. Note that

the imaginary part of λ (denoted by Im{λ}) does not matter for this form of analysis

(it only represents the shape of the wave’s oscillations, not if the perturbation grows

or decays).

Figure 6: Ball on a hill. The left ball represents a <{λ} < 0 and the

right one a <{λ} > 0 situation. https://commons.wikimedia.org/wiki/File:

Stable-unstable1.svg

At first, the new velocity and pressure fields are substituted back to the Navier-

Stokes equations (the full one, now accounting time derivatives as well). By using

the assumption that the perturbation’s magnitude is tiny, it seems reasonable to

drop terms of order O(ε2). Essentially this removes the non linear terms of the

system and results in the following:

− [Re(iαU)] û−
(
Re

dU

dy

)
v̂ − iαp̂+

d2û

dy2
− α2û = (Re) λû (2.4)

− [Re(iαU)] v̂ − dp̂

dy
+
d2v̂

dy2
− α2v̂ = (Re) λv̂ (2.5)

iαû+
dv̂

dy
= 0 (2.6)

The above continous problem has the following unknowns: û, v̂, p̂ (amplitudes),

and most importantly, λ. The parameters Re and α (wavenumber, the ratio of fre-

quency and speed of propagation) are defined previously in this form of analysis. In

https://commons.wikimedia.org/wiki/File:Stable-unstable1.svg
https://commons.wikimedia.org/wiki/File:Stable-unstable1.svg
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other words, for each pair of (Re, α), a different solution of the mentioned unknowns

is obtained. Due to the difficulty at solving this continous generalized eigenvalue

problem, a discretization method may be applied.

Historically, to study the stability of parallel flows was use the fact that every

bidimensional flow may be written in terms of a scalar streamfunction [18]:

ψ(y) = φ(y)eiαx+λt

ũ =
∂ψ

∂y
, ṽ = −∂ψ

∂x
→ û =

∂φ

∂y
, v̂ = iαφ(y)

(2.7)

The way û and v̂ are defined in 2.7 already satisfies 2.6. Using this fact, by

differentiating against y both sides of 2.4 and summing with equation 2.5 multiplied

by the factor −α i , the following equation is obtained:

(
d2

dy2
− α2

)2

φ− (Re iαU

[
d2φ

dy2
− α2φ

]
) + (Re iα)

d2U

dy2
= λRe

(
d2φ

dy2
− α2φ

)
φ(−1) = 0, φ(1) = 0, φ′(−1) = 0, φ′(1) = 0

(2.8)

This eigenvalue problem is named the Orr-Sommerfeld equation. Unlike the

primitive variable formulation (the problem written in terms of the velocity and

pressure fields), there is only one unknown field φ along with the eigenvalues. Also,

unlike the primitive variable formulation, the infinite eigenvalues are not present.

The focus of this work is not to work with such equation, since a streamfunction

does not even exist for complex flows and geometries. Considering that most works

dedicated to solving the linear stability for parallel flows end up using it, results

from [23] will be reproduced for benchmarking and comparison purposes.
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3 DISCRETIZATION METHODS

There is a diversity of methods to discretize system of differential equations.

Some of these can be considered a local discretization method or a global discretiza-

tion method (these are called spectral methods). The first group of methods ap-

proximates a function derivative locally using low order polynomials, some famous

examples are finite differences and finite element. The second group of methods

approximates a function using a high order polynomial that interpolates the whole

discretized domain, some famous examples are Chebyshev collocation method and

discrete Fourier transform. Regardless of the method, a resultant GEVP has to be

solved aftewards.

Local

discretization

methods

Perturbed Navier Stokes

Global

discretization

methods

Generalized
eigenvalue problem
Jc = λMc

Figure 7: Diagram describing the GEVP matrices construction.

The simple geometry on parallel flows allows methods of both groups to be

employed, but the presence of an unknown scalar field (pressure) and a vector filed

(velocity) has to be taken with some care depending on the chosen method. This

work uses a local discretization method (finite differences) and a global discretization

method (Chebyshev collocation method).
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3.1 FINITE DIFFERENCES METHOD

The finite differences method is usually presented as truncated formulas of the

Taylor series expansion of some unknown function f(x). Another interpretation

is the one previously mentioned: a local interpolation is performed using a low

order polynomial L(x). The second order central difference (assuming an uniformly

distributed grid) can be obtained at some point xj by using a polynomial that

interpolates the points (xj−1, f(xj−1)), (xj, f(xj)), and (xj+1, f(xj+1)):

Denoting f(xj) as fj and ∆x = xj+1 − xj :

L(x) = fj−1 lj−1(x) + fj lj(x) + fj+1 lj+1(x), where lj(x) =
∏
k 6=j

x− xk
xj − xk

L′(x) = fj−1l
′
j−1(x) + fjl

′
j(x) + fjl

′
j+1(x), where l′j(x) =

∑
k 6=j

1

xj − xk

∏
m6=(j,k)

x− xm
xj − xm

L′′(x) = fj−1l
′′
j−1(x) + fjl

′′
j (x) + fjl

′′
j+1(x), where l′′j (x) =

∑
l 6=j

1

xj − xl

∑
k 6=(j,l)

1

xj − xk

∏
m 6=(j,l,k)

x− xm
xj − xm

f ′j ≈ L′(xi) =
fj+1 − fj−1

2∆x
→ central difference (1st derivative)

f ′′j ≈ L′′(xi) =
fj−1 − 2fj + fj+1

∆x2
→ central difference (2nd derivative)

The theory assures an error of O(∆x2) for both approximations [4]. This local approxima-

tions assures a sparse matrix to describe the derivative of every node.

Back to the discretization of the primitive variables, one could assume that

both fields could be discretized in the same nodes (this is called a collocated grid).

Surprisingly, this is not the case. When such thing is done, non-physical pressure

oscilations may occur because the energy of the system is not conserved as it should

be. More details of the issues that arise by using a collocated grid are discussed in

[6]. One of the most common ways to solve this issue is to use a staggered grid. A

staggered grid is a discretization scheme such that pressure is discretized in between

two velocity nodes, as illustrated in Figure 8.
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Figure 8: Staggered grid: black nodes contains velocities and red (crossed) nodes

contains pressures.

Using a staggered grid, the momentum conservation equation 2.4 (horizontal

component) and 2.5 (vertical component) are discretized in the black nodes as

p̂(y
(black)
j ) ≈ pj + pj+1

2
d2û

dy2

∣∣∣∣
y
(black)
j

≈ uj−1 − 2uj + uj+1

∆y2
,

d2v̂

dy2

∣∣∣∣
y
(black)
j

≈ vj−1 − 2vj + vj+1

∆y2
,

dp̂

dy

∣∣∣∣
y
(black)
j

≈ pj+1 − pj
∆y

(3.1)

while the continuity equation 2.6 is discretized as

û(y
(red)
j ) ≈ uj + uj+1

2
dv̂

dy

∣∣∣∣
y
(red)
j

≈ vj+1 − vj
∆y

(3.2)

3.2 CHEBYSHEV COLLOCATION METHOD

Chebyshev collocation method is based on the idea of approximating the un-

known function f , but using a high order polynomial. One issue that arises by using

a uniformly distributed grid is the Runge-Phenomenon [27]. Fortunately, there is

way to circunvent this problem by doing the interpolation at another distribution

of nodes, one possibility being the Chebyshev nodes [30]. The distribution of the

Chebyshev nodes is the horizontal coordinate of equally spaced points in the unit

circle:

ChebyshevPointj = cos

(
jπ

N

)
, where N is the grid size. (3.3)
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.............
Figure 9: Chebyshev points. In constrast to an equidistant grid, more points are

near the boundaries.

The following theorem provides error bounds for the interpolation error in these

nodes, as well as the corresponding derivative approximations. The proof and more

details can be obtained in [30].

Theorem 3.1. Given a function f and a set of Chebyshev points {xj}N , define

φ(z) = 1
N

∑N
k=1 log |z − zk| (zk being the roots of the interpolant pN(x)) and φ̃ =

supx∈[−1,1] φ. If there’s a constant φf > φ̃ such that f is analytic throughout the

closed region {z ∈ C : φ(z) ≤ φf}, there exists a constant C > 0 such that for all

x ∈ [−1, 1] and all N :

|f(x)− pN(x)| ≤ C exp
(
−N

(
φf − φ̃

))
(3.4)

The same result holds for any kth derivative, only the constant C changes. This

means that Chebyshev interpolation (and the corresponding spectral derivative)

converges geometrically (in exact arithmetic). Such nice convergence properties

may suggest that global discretization methods are always superior to local ones,

but if the base flow solution has finite regularity or if the domain is irregular (a

possibility considering more complicated flows) the fast convergence is lost and may

end up being inferior than a local discretization. A combination of both strategies

(only assuming regularity locally and using a high order interpolant) is used in the

spectral elements method [15].

With this in mind, denoting f as some f(x) of interest evaluated at each Cheby-

shev node, it’s possible to define a spectral derivative matrix D such that f ′ = Df .

The (N + 1)× (N + 1) matrix is defined in [30] as:
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D(1, 1) =
2N2 + 1

6
, D(N + 1, N + 1) =

−2N2 + 1

6

D(j, j) =
−xj

2(1− x2j)
, j = 2, ..., N

D(i, j) =
θi
θj

(−1)i+j

(xi − xj)
, i, j = 1, ..., N + 1, i 6= j,

where

θi = 1, if 2 ≤ i ≤ N

θi = 2, otherwise

(3.5)

By definition, this makes the matrix D dense. This is clearly something that

makes a global discretization method distinct from a local one (which are charac-

terized by sparse matrices).

Back to the eigenvalue problem, the discretization of the system composed of

the perturbed Navier-Stokes equations (equations 2.4, 2.5 and 2.6) is done in a

collocated grid, which results in the issue previously mentioned, although it appears

to be less of an issue in global discretization methods. Even so, it’s possible to use

a staggered grid as detailed in [16].

By using the described schemes, as well the Chebyshev collocation discretization

over equation 2.8, the corresponding GEVP has the following structure (10):

(a) J VP,

Finite

Differences

(b) M VP,

Finite

Differences

(c) J VP,

Chebyshev

(d) M VP,

Chebyshev

(e) J Orr-

Sommerfeld,

Chebyshev

(f) M Orr-

Sommerfeld,

Chebyshev

Figure 10: Matrices of the resulting generalized eigenvalue problem Jc = λMc using

different discretizations. The existence of blocks is present on the primitive variables

formulation (VP) and matrices densities are associated with using a global or local

discretization method. Also, for a certain estabilished accuracy, local methods have

notably larger matrices compared to the global ones (e.g. 400 nodes on FD and 51

nodes on Chebyshev as in Figure 13).
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Solving the problem directly with the QZ algorithm without exploiting any of the

problem properties, using the same perturbation as in [33] (Re = 500 and α = 1.5)

results in the following Couette spectrum (Figure 13, points are eigenvalues with the

horizontal and vertical coordinates being the real and imaginary parts respectively):
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X Chebyshev Orr-Sommerfeld: 51 Nodes

✶ FE VP [Valerio]: 200 Elements

Im{λ}

Figure 11: Couette spectrum (18 eigenvalues) for different discretizations. Re = 500

and α = 1.5

Some noteworthy observations can be drawn from the results: first of all, all

methods result on the same spectrum as the one in [33] (the only exception being

the spectrum resulted by using finite differences with a collocated grid). Also, by

looking at <{λ} for all the computed eigenvalues, it is correct to say that the flow

is linearly stable (all eigenvalues have negative real part).

As for the Poiseuille flow, [7] informs that the flow is linearly unstable for Re >

5772, this value receiving the name of critical Reynolds number. The results for

Re = 5772, α = 1.02 and Re = 104, α = 1.02 are as follows:
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Figure 12: Poiseulli spectrum (18 eigenvalues) for different discretizations. Re =

5772 and α = 1.02. The leading eigenvalue is λFD = −0.00017757− 0.269285i,

λChebyshev = −4.30121× 10−7 − 0.269217i.
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Figure 13: Poiseulli spectrum for different discretizations. Re = 104 and α = 1.02.

The leading eigenvalue is λFD = 0.00304019− 0.244499i,

λChebyshev = 0.00328321− 0.244388i.

The results are in accordance to the literature, as the leading eigenvalue is present

in the fourth quadrant (positive real part), in others words, the unstable region

<{λ} > 0.

With the discretization methods resulting in coherent eigenvalues, the question

returns to how to solve the GEVP efficiently. “Blindly” applying the QZ is not the

best strategy, since as described in [3] it is costly and does not explore any underlying

special structure the problem may have (such as sparsity when a local discretization



31

method is used). The following chapter is dedicated to discussing strategies to solve

it in different ways.
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4 GENERALIZED EIGENVALUE PROBLEM: CONSIDERATIONS AND

METHODS

After the discretization process of the primitive variables formulation, a general-

ized eigenvalue problem of the form Jc = λMc , where J,M ∈ C(2Nv+Np)×(2Nv+Np)

(Nv, Np are the number of velocity and pressure nodes respectively), λ ∈ C and

c ∈ C(2Nv+Np), c being a vector containing both the grid’s unknown amplitudes of

the perturbed velocities and pressure fields. The scalar λ is associated with the

magnitude of the perturbation as already mentioned. The associated matrices have

the following properties:

• The matrix J will be a sparse matrix if a local discretization method was

employed, and J will be a dense matrix by using a global discretization method.

M is a diagonal matrix.

• The matrix J is ill-conditioned and non-hermitian, while M is a singular ma-

trix, in other words, there is a generalized non-hermitian eigenvalue prob-

lem (GNHEP). The second matrix is responsible for the presence of infinite

eigenvalues, where the associated eigenvectors are the vectors that belong to

Nullspace(M). Physically, they are related to the incompressibility of the flow.

• Since a system of three equations was discretized, the matrices J and M can

be divided in blocks accordingly:



Nv Nv Np

Nv J11 J12 J13

Nv J21 J22 J23

Np J31 J32 0





û

v̂

p̂


=λ



Nv Nv Np

Nv M11 0 0

Nv 0 M22 0

Np 0 0 0





û

v̂

p̂


As a means to solve the GEVP efficiently, the following techniques take into

account these characteristics. It is worth noting that they may be even used together,

possibly making the calculations even faster.
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4.1 SHIFT - INVERT

The GEVP of interest cannot be solved with a EVP solver directly. If M was

not singular, its inverse could be used to obtain a EVP with same eigenvalues and

eigenvectors as described in the introduction. An easy way to overcome this situation

is to introduce an arbitrary shift σ ∈ C in the spectrum. Assuming σ 6= λj∀j (it is

not equal to any of the unknown eigenvalues), the steps below may be employed:

Jc =λMc

Jc− σMc =λMc− σMc

(J − σM)c =(λ− σ)Mc

Bc =βc

where B = (J − σM)−1M and β = (λ − σ)−1. Since J is invertible, σ = 0 is a

consistent choice. This new EVP has a shifted version of the previous spectrum:

• λj such that |λj−σ| >> 1 are mapped near the origin, in other words, |βj| ≈ 0.

The infinite eigenvalues are turned into exactly zeros.

• λj such that |λj − σ| << 1 are mapped to a βj with high absolute value.

This new transformed problem can now be solved with EVP solvers, and later

on the relation between each βj with λj and σ may be used to obtain the eigenval-

ues. Most importantly, the shifted spectrum favors the inner workings of iterative

eigensolvers such as the Arnoldi iteration. The latter is often used to compute cer-

tain regions of the spectrum, these regions being related to the maginitude of the

eigenvalues. More about this method is presented subsequently.

4.2 ARNOLDI ITERATION

Since the objective is to detect if a there is a single λj such that <{λj} > 0, not

all of the eigenvalues are necessary, which in turn means that only a portion of the
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eigenvalues could be computed. Moreover, the idea of shifting the eigenvalues is a

interesting one when iterative methods such as the Arnoldi iteration are used. This

method constructs at each step a Krylov subspace. The latter is defined as:

Ks := span
{
c0, Bc0, B

2c0, ..., B
s−1c0

}
(4.1)

where c0 ∈ C(r×r) (for the sake of simplicity, the size will be denoted by r) is an

arbitrary initial vector. This subspace’s basis is composed of the powers of the

matrix B, similar to the Power iteration and Simultaneous iteration/QR iteration.

The underlying idea of using matrix powers is that the invariant subspace in each

iteration remains the same, while the eigenvalues are raised to a k − th power (at

the k− th step), highlighting the eigenvalues with the largest modulus. More details

are present in [11].

The way Arnoldi iteration constructsKs is not as straightforward as the definition

above suggests. The set of vectors of later iterations have nearly converged to the

eigenvector of the eigenvalue with largest modulus (essentially the same idea as the

Power method), which numerically poses ill conditioning caused by the floating point

arithmetic failing to preserve the linear indepedence in the set. Given this issue, the

following preposition from [34] provides a path to construct a well-behaved basis for

Ks:

Proposition 4.1. For B ∈ Cr×r and nonzero c ∈ Cr, there is an unitary matrix

Q ∈ Cr×r such that Qe1 = γc for some γ 6= 0 and H = Q∗BQ is upper Hessenberg.

A matrix is defined as upper Hessenberg if hij = 0 ∀i, j such that i > j + 1 (a

structure almost identical to that of an upper triangular matrix).

The proposition above states that every matrix has a Hessenberg matrix with

the exactly same eigenvalues, with the corresponding eigenvectors related by a linear

transform (one that essentially changes the coordinate system). This can be checked

by doing:
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B = QHQ∗

Supposing vj is an eigenvector ofB associated with eigenvalue λj

Bvj = QHQ∗vj

λjvj = QHQ∗v

λjQ
∗vj = HQ∗v

Denoting wj = Q∗vj

λjwj = Hwj

same eigenvalues, wj and vj are related.

(4.2)

Once again using the proposition 4.1, B = QHQ∗ → BQ = HQ for some

upper Hessenberg matrix H ∈ Cr×r. Considering only the first s columns (s < r),

this equation is obtained:

BQs = Qs+1H̃s (4.3)

where Qs ∈ Cm×s, Qs+1 ∈ Cm×(s+1) and H̃s ∈ C(s+1)×s. A recursion process is

defined based on the last column of equation 4.3:

B


| ... |

q1 ... qs

| ... |

 =


| ... | |

q1 ... qs qs+1

| ... | |





× × × ... × h1s

× × × ... × h2s

0 × × ... × h3s

0 0 × ... × h4s

... ... ... ... ...

0 0 0 ... × hss

0 0 0 ... 0 h(s+1)s


,

Bqs = h1sq1 + h2sq2 + ...+ hssqs + h(s+1)sqs+1

qs+1 =
Bqs −

∑s
j=1 hjsqj

h(s+1)s

, where h(s+1)s = ||Bqs −
s∑
j=1

hjsqj||

⇒ The recursion starts with an arbitrary unit vector q1.
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The subspace span {q1,q2,q3, ...,qs+1} is the same asKs, only written in terms of

an orthonormal set of vectors. This new basis’s construction is an iterative process,

depending only of the matrix-vector product Bqj and a Gram-Schmidt orthogo-

nalizaton process. Compared to the previous basis, it is more numerically stable

because of the orthogonality between the qj as well as their normalization as unit

vectors (in floating arithmetic, loss of significance could happen).

How the eigenvalues are computed still needs to be discussed. As described in

equation 4.2, the full matrices B and H share the same spectrum, while the same

cannot be said for B and H̃ (the latter is not even a square matrix). By doing

analogous steps, it is possible to construct a square matrix Hs as outlined below:

BQs = Qs+1H̃s

Q∗sBQs = Q∗sQs+1H̃s

Q∗sBQs = Q∗sQs+1H̃s

Q∗sBQs = Ĩ H̃s

↓

Hs = Q∗sBQs

(4.4)

which is basically H̃s without its last line. This matrix can be interpreted as the

orthogonal projection of B in the Krylov subspace Ks with respect to the basis

{q1, ...,qs} [31]. The eigenvalues of H are estimates of some of the eigenvalues of B

(these are named the Ritz values). They can be obtained with the QR algorithm and

using that H is upper Hessenberg to obtain O(s2) FLOPS per iteration (employing

Givens rotations in each QR factorization and noting that the upper Hessenberg

structure is preserved along the iterations [34]).

If necessary, it is also possible to obtain eigenvector estimates (Ritz vectors) after

computing the eigenvectors tj of Hs. Using the same arguments as in equation 4.2,

the approximated eigenvector vj of B is obtained by doing vj = Qstj.

Using a simple implementation over the previous Coeutte problem for Krylov

subspaces sizes s = 18, 30, 47 and σ = 0.1 (shift), it is possible to visualize the
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convergence of some Ritz value:
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(c) Arnoldi (FD) s = 47 × Valerio [33] (FE)

Figure 14: Comparison of the spectrum using Arnoldi iteration (with shift invert

transform after FD discretization) and Valerio [33] (QZ after FE discretization).

Even with different discretizations and eigensolvers, visually both are in accor-

dance when s = 47. The largest absolute difference between the eigenvalues on

Figure 14 was exactly 0.000392586. It is worth noting that instead of solving an

EVP for a matrix of size 3269 × 3269, a much smaller matrix of size 47 × 47 was

constructed and then its eigenvalues were computed, on the other hand the shift

σ = 0.1 was chosen based on previous knowledge of this particular flow’s spectrum.
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The convergence properties of the method is not yet fully understood, in [13]

some of the recent results are summarized. On the other hand, it is known that

the method solves at each iteration a minimization problem (for more details see

appendix A).

4.3 VALÉRIO TRANSFORM

Another method that aims to reduce the GEVP problem size removing the infi-

nite eigenvalues from the GEVP is presented in [33]. A transformation was developed

by looking at the observable blocked structure of the matrices, as well as assuming

that Np = Nv − 1 (such as the case of FD with a staggered grid).



Nv Nv Nv−1

Nv J11 J12 J13

Nv J21 J22 J23

Nv−1 J31 J32 0





u′

v′

p′


=λ



Nv Nv Nv−1

Nv M11 0 0

Nv 0 M22 0

Nv−1 0 0 0





u′

v′

p′


⇓

Removing the 4 boundary conditions, this results in



Nv−1 Nv−3 Nv−1

Nv−1 J11 J12 J13

Nv−3 J21 J22 J23

Nv−1 J31 J32 0





u′

v′

p′


=λ



N−1 Nv−3 N−1

Nv−1 M11 0 0

Nv−3 0 M22 0

Nv−1 0 0 0





u′

v′

p′


(4.5)

The removal of the boundary counditions not only slightly reduces the GEVP

size, but also makes the blocks J31 and J13 square matrices. This will be necessary

for the transformation matrices construction afterwards.

Even though it is not a algorithmic strategy to solve the GEVP, computing
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the roots of the charateristic polynomial defined by the derterminant of the matrix

A(λ) = J − λM is a possibility:



Nv−1 Nv−3 Nv−1

Nv−1 A11(λ) = J11 − λM11 A12 = J12 A13 = J13

Nv−3 A21 = J21 A22(λ) = J22 − λM22 A23 = J23

Nv−1 A31 = J31 A32 = J32 0





u′

v′

p′


=



0

0

0


(4.6)

A(λ) c = 0 (4.7)

The idea is to apply two elementary transforms which are essentially a blocked

two sided Gaussian elimination. Assuming J31 and J13 are invertible, the transform

TL is applied from the left to introduce zeros in A23 and TR from the right to

introduce zeros in A32:

A(λ) c = 0

TL A(λ) TR d = 0, where d = TR
−1c,∀c (4.8)

Ã(λ) d = 0 (4.9)

where TL =


I[m] 0 0

−J23J−113 I[2n−m−b] 0

0 0 I[m]

 , TR =


I[m] −J−131 J32 0

0 I[2n−m−b] 0

0 0 I[m]


⇓

Ã(λ) =


Ã11(λ) Ã12(λ) Ã13

Ã21(λ) Ã22(λ) 0

Ã31 0 0

 (4.10)

The reason of the previous two steps still may not be clear, but the calculation of

the eigenvalues just turned out to be considerably easier. As previously mentioned,
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these are the roots of the charateristic polynomial p(λ) = det
(
Ã(λ)

)
. Considering

that permutations only change the determinant’s sign and that the determinant of

a triangular block matrix is the product of the determinants of each block along the

diagonal [24]:

FÃ(λ) =


Ã31 0 0

Ã21(λ) Ã22(λ) 0

Ã11(λ) Ã12(λ) Ã13


p(λ) = ± det

(
FÃ(λ)

)
= ± det(Ã31)× det

(
Ã22(λ)

)
× det(Ã13)

= τ det
(
Ã22(λ)

)
, τ ∈ C (4.11)

Surprisingly the expression shows that only the block Ã22(λ) is associated with

the polynomial roots, that is, it is the only block that is related to the finite eigenval-

ues. This results shows that a reduction from 3Nv−5 to the problem size to Nv−3.

In pratice, the matrix Ã(λ) and its characteristic polynomial are not constructed.

Instead, the elementary transforms TL and TR are applied to J and M (after the

boundary conditions are removed from the system).

Ã(λ)d = 0

TL A(λ) TR d = 0

TL (J − λM) TR d = 0

TL J TR d = TL λM TR d

J̃d = λM̃d (4.12)

⇓

J̃22d2 = λM̃22d2 (4.13)

J̃22 = J22 + (−J23J−113 J12) + (−J23J−113 J11 + J21)(J
−1
31 J32) (4.14)

M̃22 = M22 + (−J23J−113 M11 + J21)(J
−1
31 J32) (4.15)
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The matrices J̃22 and M̃22 are now dense and inversible matrices. It is now

possible to solve an EVP M̃−1
22 J̃22d2 = λd2 or J̃−122 M̃22d2 = λ−1d2 and then use

QR iteration (as done in [33]) or even use Arnoldi on the reduced problem (con-

sidering that certain regions of the finite spectrum are not very interesting to be

computed) as this work does. This makes Valerio transform quite similar to the

Orr-Sommerfeld operator, but while the former assumes certain properties of the

flow, the latter requires that certain matrix sizes inside each 3× 3 block are met.

Independent of the method of choice, the eigenvectors of the original problem

can be obtained from equation 4.9:

Ã(λ)d = 0

↓

Ã11(λ)d1 + Ã12(λ)d2 + Ã13d3 = 0

Ã21(λ)d1 + Ã22(λ)d2 = 0

Ã31d1 = 0

(4.16)

Essentially the linear system 4.16 has to be solved. As Ã31 is invertible, d1 = 0. From

that, Ã22(λ)d2 = 0 is obtained after substitution on the above equation. This is

essentially the new reduced GEVP problem, and d2 will be the eigenvector associated

with the λ in question. Finally, it is possible to conclude that d3 = −Ã−113 Ã12(λ)d2

by substitution of both d2 and d1. The full eigenvector d is then equal to

d =


0

d2

d3 = −Ã−113 Ã12(λ)d2


Nv − 1

Nv − 3

Nv − 1

(4.17)

Even so, d is not an eigenvector of the original problem. This is quickly handled

by using the relation 4.8 previously set, requiring only the following matrix-vector

product: c = TR d.

After discussing the strategies alternatives to the GEVP, their results (separately

and even together) to both Couette and Poiseulli are discussed in the next chapter.
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5 RESULTS

All the tests were done using Octave 4.0.1, with a Intel Core 2 Quad Q9400(6M

Cache, 2.66 GHz, 1333 MHz FSB) and 4GB RAM memory desktop. The methods

comparison was only done with FD discretization, due to the fact that Np = Nv − 1

(a requirement of Valério transform) and the sparsity structure can be explored.

The results were obtained by the following 5 procedures:

• Execute the QZ algorithm to the original GEVP Jc = λMc.

• Use Valerio transform and then execute QZ algorithm to the reduced problem

J̃22d = λM̃22d.

• Use Valerio transform and then execute QR algorithm over the EVP

J̃−122 M̃22d = λd.

• Use Valerio transform and then realize an Arnoldi iteration on the EVP

J̃−122 M̃22d = λd. It is worth mentioning that to our knowledge these steps

were not emplyoed together before.

• Apply shift-invert over the original GEVP, using the ARPACK [19]. It is a

highly optimized variant of the implicitly restarted Arnoldi iteration (IRA),

detailed in [1].

5.1 COUETTE FLOW

The first 18 eigenvalues computed are ilustrated in Figure 15. There are no-

ticeable differences in eigenvalues near <{λj} = −1. This error is solved in [33]

by permuting the lines of J and M before applying the transform. This was not

done in this work because while both discretizations are valid as Figure 13 depicted,

the FD did not appear to have an obvious permutation in the same vein as the FE

formulation.
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Figure 15: Comparison between all procedures in Couette flow (except ARPACK’s

IRA that is virtually the same as QZ).

All strategies’ execution time were measured, to quantify if there was an advan-

tage of avoiding the use of QZ. The entire solution process (matrices construction,

transform and GEVP/EVP solution) was done for different node sizes so as to per-

ceive differences as the problem dimension grows. The obtained results are presented

in Figure 16.

As expected, QZ is worst one in total running time. The new proposed strat-

egy (first using Valério transform and then Arnoldi iteration) had the second best

running time, losing only to ARPACK (IRA). After the 9 runs, it appeared that

the bottleneck lied in the transform (accounting for approximately 90% of the to-

tal time). This suggests that if the linear systems in 4.14, 4.15 are solved more

efficiently, the total running time could rival ARPACK IRA.

5.2 POISEULLI FLOW

The first 18 eigenvalues were computed with all procedures once again. Curiously,

the reduced problem did not contain any noisy error in a region of the spectrum

like Couette. What is interesting in this case was the difference between Arnoldi

and other procedures. The motive behind the discrepancy can be explained by

noting that the eigenvalues are more clustered, a fact that slows Arnoldi (too many

eigenvalues of similar large magnitudes). Increasing the Krylov subspace size was a
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Figure 16: Mean execution time (in seconds) for each strategy present in Figure

15 and ARPACK IRA after 9 runs. The t-value confidence interval has 98% of

probability.

way to treat this issue. The results are presented below from Figure 17 to Figure

20:
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Figure 17: Comparison using Re = 5772, α = 1.02 and Arnoldi with s = 60
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Figure 18: Comparison using Re = 5772, α = 1.02 and Arnoldi with s = 85 (better

Ritz values convergence)
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Figure 19: Comparison using Re = 104, α = 1.02 and Arnoldi with s = 60
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Figure 20: Comparison Re = 104, α = 1.02 and Arnoldi with s = 85 (better Ritz

values convergence).
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Since the subspace size increase was not considerable, the running times were

pretty much the same as the Couette results.
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6 CONCLUSIONS AND FUTURE WORKS

Over the development of this work it was possible to observe that the approach

used to solve the linear stability of flows implies in how much time and accurate

the final solution will be. Concepts of how perturbing a base flow and solving the

GEVP were applied successfuly for both paralell flows, where the literature results

were met even with the new tried strategies. The most important observations that

could be drawn over the development were:

• If a bad discretization scheme is employed over a system of differential equa-

tions, it will not matter if an efficient solver is used in sequence, as the results

are already compromised by the incoherence between the differential and the

difference equations.

• The way a problem is discretized guides which method to be used to numeri-

cally solve a continuous problem, as the corresponding matrices have proper-

ties associated with the discretization used and a computational linear algebra

method depends on these properties to work properly.

For the future, there is still a lot to explore as answers to the questions below:

1. How hard will it be to replicate the procedure in bidimensional (non paralell)

and tridimensional flows? Is Valerio transform adaptable to this situation?

2. What if a global state of art discretization such as Nek5000 spectral elements

was used? If the blocked dense matrices are difficult to represent in memory

(eg. in three dimensional flows), is the sparse nature of larger finite differ-

ences/elements discretizations a beter choice?

3. How does this rival against the recent matrix-free/exponential time stepper

methods?

4. Are there ways to speed up the process by paralelizing it with CUDA (GPU)[22]?
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5. In Valério transform, is it possible to avoid the actual construction of J̃22 and

M̃22, such that a representation (a form of matrix decomposition that can be

used at linear systems solving later on) in an attempt to preserve sparsity?

6. Is is possible to “zero out” the J23 and J32 blocks using orthogonal transforms

such as reflections or rotations (Householder or Givens Rotations [31])?

In the future, the answers to these questions should help in a deeper understand-

ing of linear hydrodynamic stability problems, discretization of differential operators

and generalized eigenvalues problems and obtain the respective solution in a fast and

reliable manner.
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APPENDICES

APPENDIX A – The minimization problem behind Arnoldi iteration

Before enunciating the problem, it seems reasonable to look at the relation es-

tablished between the characteristic polynomial p(t) and p(A), where A ∈ Cr×r and

t are it’s eigenvalues. According to the Cayley-Hamilton theorem [12],

p(t) = det(A− tI) = γ0t
0 + γ1t+ ...+ γr−1t

r−1 + tr = 0

p(A) = γ0I + γ1A+ ...+ γr−1A
r−1 + Ar = 0r×r

Which in turn means that

Ar = γ0I + γ1A+ ...+ γr−1A
r−1 = q(A)

(6.1)

Informally, as its eigenvalues are the roots of the charateristic polynomial, the matrix

A is also a “root” of the polynomial p (not exactly because it results on a null matrix

and not a scalar). Also, the matrix Ar is a linear combination of the lower powers of

A as denoted by the polynomial q(A). Back to Krylov subspaces, there is a subspace

Ks such that every one of its vector v may be written as some linear combination

v = θ0c0 + θ1Ac0 + ...+ θs−1A
s−1c0

Defining the following polynomials :

q̃(A) = θ0I + θ1A+ ...+ θs−1A
s−1

p̃(A) = q̃(A)− As

(6.2)

The Arnoldi iteration solves at each iteration the following optimization problem:

Find q̃ in the space of polynomials of degree s− 1 such that

||p̃(A)c0 = q̃(A)c0 − Asc0|| = minimum

The interpretation is that, while Asc0 cannot be written in terms of q̃(A), Arnoldi

tries to find the polynomial that in a least squares sense makes the distance between

the subspace and Asc0 minimum. If the Arnoldi iteration goes further until the

r − 1th power (and assuming it does not break down), the solution would be the

q(A) as defined in 6.1. The Ritz values (eigenvalues of Hs) are the roots of the

polynomial p̃(A) [31].


