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ON A MIN-MAX CONJECTURE
FOR REDUCIBLE DIGRAPHS

Jayme Luiz Szwarcfiter

ABSTRACT

A. Frank and A. Gyarfas (1976) have conjectured that in
a reducible digraph D the maximum number of edge disjoint cycles
equals the minimum number of edges intersecting all cycles of D.
We prove this conjecture in the special case when D has at most
two distinct dominators. The ?robf leads to a pelynomial time
algorithm for finding both the maximum set of cycles and minimum

set of edges, in the considered case.

RESUMO.

A. Frank e A. Gyarfas (1976) conjecturaram que em um di
grafo redutivel D o numero maximo de ciclos disjuntos em arestas
é igual ao numero minimo de arestas gue interceptam todos os ci
clos de D. Provamos essa conjectura.no caso especial em que D pos
sui no maximo dois denominadores distintos. A prova conduz a um
algoritmo polinomial para encontrar tanto o conjunto maximo de ci

clos quanto o conjunto minimo de arestas, no caso conside:adb.



1. Introduction

A conjecture by A.Frank and A.Gyarfas [2] states that the
maximum number of edge disjoint cycles of a reducible digraph D
equals the minimum number of edges whose removal turns D acyclic.

In the present paper we prove a special case of this conjecture.

The proci‘is constructive and leads to a polynomial time algorithm
¥ o

for finding such a maximum set of cycles and minimum set of

edges, in the considered case.

2 flow digraph is a digraph D together with a vertex s €

V(D), called root, such thet every vertex of D is reachable from

s, In particular, if every path from s to v e V(D) contains W €

v(D) then w dominates v. A (fully) reducible digraph is a flow
digraph D such that each cycle C of D contains some vertex W
which dominates all the vertices of C. We call w a dominator of

both C and D. See [ 5,7,9].

Iet D be a general digraph. Denote by

a, = set of vertex disjoint cfcles of D

ap = set of edge disjoint cycles c¢f D

By = set of vertices intersecting all cycles of D
B, = set of edges intersecting all cycles of D

Clearly, max|uv]5'minlﬂvi and max|aE| < min IEEI-

Bv and BE are also known as feedback vertex and edge
" sets, respectively. Recall that the problems of finding the

minimum cardinality sets (b and @, are both NP-hard [3,6]-




Theorem 1 (Frank and Gyérfés_ [2] : If D is reducible
then max!uv(D}|=min|8v(D)]_ |
It follows that a minimum feedback vertex set of a

reducible digraph can be found in polvnomial time [2,4,81.

Conjecture [2]: If D is reducible then'max[ué(D)]ﬁminTBE(D)1:“m
We prove this conjecture in the case when D has at most

two distinct dominators.

2. The Proof

Throughout. this section, D will always denote a reducible

digraph.

Let C = Vire<erVi,Vy, the

dominator of C. Then edge (vk Vl) is called a back edge of D.
, . 24ck edge

Lemma l: Each cycle of D contains exactly one back edge

‘Proof: Let VieeeesVisVy be a cycle of p and vy its
dominator. Then (Vk' vl) is a back edge. Suppose that C contains
anqther back edge (vi'vi+1)’ i#k. In this casg, viy is the
dominator of another cycle C' which contains v;. Let P be a path
from s to vy followed by VireeesVse Then P meets C' in a vertex

which is not its dominator, a contradiction. That is, C has exactly

one back edgea

Let {rl,;..;rm}'be the set of dominators of D. Denote by D*

the network obtained by the following construction:

1. Remove all back edges of D. Let DA be' the resulting acyclic

digraph.



2. Assign a distinct positive l?bel :x(ri) to each dominator
r,, such that if r; reacﬁes rj.ip DA then x(r;)«< x(rj).lsi.jim
and i#j.

3. For each back edge (v,rj).of D, include a new vertex w

and an edge (v,w). Assign to w the negative label ‘;i(rgy:“‘
4. Include the ordered sets
S={sl,...,sm} and T={tl'...,tﬁ}

of new vertices. S and T are the sources and sinks of D%,
respectively. For l<j<m, include the edge (sj,rj) and an edge to tj
from every vertex with label -x(rj)} Assign to S5 and tj the labels

x(rj) and —x(rj), respectively.

5. Assign capacity 1 to each edge of D, and infinite to those

leaving S and entering Ta

The sets S={si} and :T={ti}' are in normal order if

x(si)<x(si+l; and x(ti >x(ti+l), l<i<m, respectively.

Iemma 2: Let S={sl,...,sm} and T={tl,...,tm} be the sources

and sinks of D%, reSpectively'in normal order. Then there is a

5 paths of D*

one-to-one correspondence between cycles .of D.and sj—t

Proof: Let Viyreses Vi, Vy be a cycle C of D and vy its
dominator. Then (v ,vl) is a back edge and there exists w €
V(D*)-V(D) such that (v, ,w) ¢ E(D*) and x(w)=-x(v,). Consequently,
for some j, 1l<j<m, (sj;vl),(w,tj € E(D*) and therefore

sj,vl,...,v ,w,tj is a path in D*. The converse is similara



Lemma 3: Let {Il’fz}* 5={El’52} and T={tl,t2} ke the
dominators, sources and sinks of D* in normal order, respectively.
Denote by f a S-T flow in D* having value n and such that

f(sl}if{tll. Then D has at least n edge disjoint cycles.

Proof: Since £ has value n, D* contains a set P, | P]=n, of
S-T edge disjoint paths. Divide P into four subsets P, P, P, and
r r

P4 consisting respectively of sl-tl, SE_tE' sl~t2 and s,—ty paths,

r

Clearly, |P;|= f{sl}~|Pl[ and |P4|=f{tl}—|P1|- Hence |P3iiJP4|.
We obtain the reqguired cycles as follows. Each path of P; or Z,
corresponds to a cycle of D, according to lemma 2. Since D is
reducible, each sl--t2 path contains Ty- Consequently, +the union

of a pair of cycles, oneof P, and the other of P, contains two

L

disjoint paths, of types s;—t; and s,-t, respectively, that is, two

T

new cycles of D. In addition, the |P3|—|P4| remaining sl-t2 paths
can be transformed into an egual number of 52~t2 paths, by
disregarding the s,-I, subpaths and adding edges {sz,rzj. A total of

n edge disjoint cycles of D has been obtainedi

If k>0 1is an integer denote by kD* the network obtained from
D as follows:

1. Construct D¥*. Iet D{, .-.,Dﬁ be k identical copies of

D*, with Si={sil""'5im} and Tif{tifl--ktim}, respectively the

sets of sources and sinks of D;, in normal order. The vertices of

S and T are the sources and sinks of kD*, respectively.

1 k

2. For l<i<k and 1l<j<m include an edge {tij'si+1,j} and

assign to it infinite capacityd
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Lemma 4: If kD* has a cut X of capacity n<= then D has

a feedback edge set B, such that |EE|in.

E,
Proof: Let OQ={e€E(D) | e e X}. Then |0|<n. Next, we show
that 0 is a feedback edge set. Suppose it is not. Then by .lemma 2,
D* has a path p of the type Ej—tj containing no edge of Q. ﬁy iV
repeating p in each copy D; of kD* we obtain a S.-Ty path in kD*

_ with no edge of X, a contradictioni
Theorem 2: If m<2, max|aE{DJ[=min!EEEDJ[.

Proof: If m=1 the theorem follows from lemma 2 and the
max-flow min-cut theorem [l] épplied to D*. When m=2, construct kD=,
k=|E(D) |. Let 51={511,512} and Tk={tk1rtk2} be the sets of

sources and sinks of kD*, respectively in normal order, and f a

maximum Sl_T— flow in kD*, having value n. Suppose, initially,

k
f{sil} < f{tilj, for all 1<i<k. Since
f{silj - f{siz} = f{till + f{tizj = n, it follows that

f(sizl > f{tizj, l<i<k. Because f{tizl==f{§Hﬂ1f,lf;<k, we conclude
that f£(s;,) > f(s,5)> ...>"f(s;,). However, the latter ineguality
can not occcur because f{siz} <'|E{D}], k=|E{D}[ and all flow wvalues
f{EiE} are non negatiwve integers. Consequently, there exists some

j, 1<j<k, such that f{sjl} > f{tjl}. Zpplving lemma 3 to D;, we
conclude that D contains at least n edge disjeoint cycles, that is,
maxlaE{D}lgn. By the max-flow min-cut theorem, kD* has a cut of
capacity n and using lemma 4 it follows that . D contains a feedback
edge set of size <n, that is, min|8_(D)|<n. Hence

max|uE{D}] i_min|EE{Dj]. Since max|e (D) |< mig]EE{D]I the equality

followsi



3. The Algorithms

The algorithmsfecllow from the proof. Given the reducible
digraph D, construct the network kD*, k=|E(D)|. Then find the
minimum cut X of kD*. The edges of D which form X constitute
the minimum cardinality feedback edge set EE' For finding a maximum
set of disjoint cycles o let £ be the maximum S-T flow in |EZ(D) |D*.
Next, identify the copy D§ in |E(D)|D* such that f(sjl} > f{tjli.

Then use the construction of lemma 4 which transforms £ into the
desired g
Both algorithms, for finding a minimum feedback edge set and

a maximum set of edge disjoint cycles, have the same complexity

as finding a maximum S-T flow in the network |E(D)|D*, that is,

polynomial in |V(D)|.
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