ON A MIN-MAX CONJECTURE FOR REDUCIBLE DIGRAPHS

Jayme Luiz Szwarcfiter

NCE 0186

January, 1986

Universidade Federal do Rio de Janeiro Núcleo de Computação Eletrônica Caixa Postal 2324 20001 - Rio de Janeiro, RJ BRASIL

ON A MIN-MAX CONJECTURE FOR REDUCIBLE DIGRAPHS

Jayme Luiz Szwarcfiter

ABSTRACT

A. Frank and A. Gyárfás (1976) have conjectured that in a reducible digraph D the maximum number of edge disjoint cycles equals the minimum number of edges intersecting all cycles of D. We prove this conjecture in the special case when D has at most two distinct dominators. The proof leads to a polynomial time algorithm for finding both the maximum set of cycles and minimum set of edges, in the considered case.

RESUMO.

A. Frank e A. Gyárfás (1976) conjecturaram que em um dígrafo redutível D o número máximo de ciclos disjuntos em arestas é igual ao número mínimo de arestas que interceptam todos os ciclos de D. Provamos essa conjectura no caso especial em que D pos sui no máximo dois denominadores distintos. A prova conduz a um algoritmo polinomial para encontrar tanto o conjunto máximo de ciclos quanto o conjunto mínimo de arestas, no caso considerado.

1. Introduction

A conjecture by A.Frank and A.Gyarfas [2] states that the maximum number of edge disjoint cycles of a reducible digraph D equals the minimum number of edges whose removal turns D acyclic. In the present paper we prove a special case of this conjecture. The proof is constructive and leads to a polynomial time algorithm for finding such a maximum set of cycles and minimum set of edges, in the considered case.

A <u>flow digraph</u> is a digraph D together with a vertex $s \in V(D)$, called <u>root</u>, such that every vertex of D is reachable from s. In particular, if every path from s to $v \in V(D)$ contains $w \in V(D)$ then w <u>dominates</u> v. A (<u>fully</u>) <u>reducible</u> digraph is a flow digraph D such that each cycle C of D contains some vertex w which dominates all the vertices of C. We call w a <u>dominator</u> of both C and D. See [5,7,9].

Let D be a general digraph. Denote by $\alpha_{\mathbf{V}} = \text{set of vertex disjoint cycles of D}$ $\alpha_{\mathbf{E}} = \text{set of edge disjoint cycles of D}$ $\beta_{\mathbf{V}} = \text{set of vertices intersecting all cycles of D}$ $\beta_{\mathbf{E}} = \text{set of edges intersecting all cycles of D}$ $\mathbf{Clearly, } \max |\alpha_{\mathbf{V}}| \leq \min |\beta_{\mathbf{V}}| \text{ and } \max |\alpha_{\mathbf{E}}| \leq \min |\beta_{\mathbf{E}}|.$

 $\beta_{\rm V}$ and $\beta_{\rm E}$ are also known as <u>feedback vertex</u> and <u>edge sets</u>, respectively. Recall that the problems of finding the minimum cardinality sets $\beta_{\rm V}$ and $\beta_{\rm E}$ are both NP-hard [3,6].

Theorem 1 (Frank and Gyárfás [2]: If D is reducible then $\max |\alpha_V(D)| = \min |\beta_V(D)|$

It follows that a minimum feedback vertex set of a reducible digraph can be found in polynomial time [2,4,8].

Conjecture [2]: If D is reducible then $\max_{\alpha_E}(D) = \min_{\alpha_E}(D)$.

We prove this conjecture in the case when D has at most two distinct dominators.

2. The Proof

Throughout this section, D will always denote a reducible digraph.

Let $C \equiv v_1, \dots, v_k, v_1, k>1$, be a cycle of D and v_1 the dominator of C. Then edge (v_k, v_1) is called a <u>back edge</u> of D.

Lemma 1: Each cycle of D contains exactly one back edge

<u>Proof:</u> Let v_1, \ldots, v_k, v_1 be a cycle of D and v_1 its dominator. Then (v_k, v_1) is a back edge. Suppose that C contains another back edge (v_i, v_{i+1}) , $i \neq k$. In this case, v_{i+1} is the dominator of another cycle C' which contains v_i . Let P be a path from s to v_1 followed by v_1, \ldots, v_i . Then P meets C' in a vertex which is not its dominator, a contradiction. That is, C has exactly one back edge

Let $\{r_1,\ldots,r_m\}$ be the set of dominators of D. Denote by D* the network obtained by the following construction:

1. Remove all back edges of D. Let $\mathbf{D}_{\!\!\!A}$ be the resulting acyclic digraph.

- 2. Assign a distinct positive label $x(r_i)$ to each dominator r_i , such that if r_i reaches r_j in D_A then $x(r_i) < x(r_j), 1 \le i, j \le m$ and $i \ne j$.
- 3. For each back edge (v,r_j) of D, include a new vertex w and an edge (v,w). Assign to w the negative label $-x(r_j)$.
 - 4. Include the ordered sets

$$S=\{s_1,\ldots,s_m\}$$
 and $T=\{t_1,\ldots,t_m\}$

of new vertices. S and T are the sources and sinks of D*, respectively. For $1 \le j \le m$, include the edge (s_j, r_j) and an edge to t_j from every vertex with label $-x(r_j)$. Assign to s_j and t_j the labels $x(r_j)$ and $-x(r_j)$, respectively.

5. Assign capacity 1 to each edge of $\textbf{D}_{\widehat{\textbf{A}}}$ and infinite to those leaving S and entering $\textbf{T}_{\widehat{\textbf{A}}}$

The sets $S=\{s_i\}$ and $T=\{t_i\}$ are in <u>normal order</u> if $x(s_i) < x(s_{i+1})$ and $x(t_i) < x(t_{i+1})$, 1 < i < m, respectively.

Lemma 2: Let $S=\{s_1,\ldots,s_m\}$ and $T=\{t_1,\ldots,t_m\}$ be the sources and sinks of D*, respectively in normal order. Then there is a one-to-one correspondence between cycles of D and s_j-t_j paths of D*

Proof: Let v_1, \dots, v_k, v_1 be a cycle C of D and v_1 its dominator. Then (v_k, v_1) is a back edge and there exists $w \in V(D^*)-V(D)$ such that $(v_k, w) \in E(D^*)$ and $x(w)=-x(v_1)$. Consequently, for some j, $1 \le j \le m$, (s_j, v_1) , $(w, t_j) \in E(D^*)$ and therefore $s_j, v_1, \dots, v_k, w, t_j$ is a path in D*. The converse is similar.

Lemma 3: Let $\{r_1, r_2\}$, $S=\{s_1, s_2\}$ and $T=\{t_1, t_2\}$ be the dominators, sources and sinks of D* in normal order, respectively. Denote by f a S-T flow in D* having value n and such that $f(s_1) \ge f(t_1)$. Then D has at least n edge disjoint cycles.

Proof: Since f has value n, D* contains a set P, |P|=n, of S-T edge disjoint paths. Divide P into four subsets P_1 , P_2 , P_3 and P_4 , consisting respectively of s_1-t_1 , s_2-t_2 , s_1-t_2 and s_2-t_1 paths. Clearly, $|P_3|=f(s_1)-|P_1|$ and $|P_4|=f(t_1)-|P_1|$. Hence $|P_3|\geq |P_4|$. We obtain the required cycles as follows. Each path of P_1 or P_2 corresponds to a cycle of D, according to lemma 2. Since D is reducible, each s_1-t_2 path contains r_2 . Consequently, the union of a pair of cycles, one of P_3 and the other of P_4 , contains two disjoint paths, of types s_1-t_1 and s_2-t_2 , respectively, that is, two new cycles of D. In addition, the $|P_3|-|P_4|$ remaining s_1-t_2 paths can be transformed into an equal number of s_2-t_2 paths, by disregarding the s_1-r_2 subpaths and adding edges (s_2,r_2) . A total of n edge disjoint cycles of D has been obtained.

If k>0 is an integer denote by kD^* the network obtained from D as follows:

- 1. Construct D*. Let D_1^* , ..., D_k^* be k identical copies of D*, with $S_i = \{s_{i1}, \ldots, s_{im}\}$ and $T_i = \{t_i, \ldots, t_{im}\}$, respectively the sets of sources and sinks of D_i^* , in normal order. The vertices of S_1 and T_k are the sources and sinks of kD*, respectively.
- 2. For l<i<k and l<j<m include an edge (t_{ij},s_{i+l,j}) and assign to it infinite capacity.

Programme Service Serv

Figure 1: A reducible digraph D and its associated networks.

Lemma 4: If kD* has a cut X of capacity n< ∞ then D has a feedback edge set β_E , such that $|\beta_E| \le n$.

Proof: Let $Q=\{e \in E(D) \mid e \in X\}$. Then $|Q| \le n$. Next, we show that Q is a feedback edge set. Suppose it is not. Then by lemma 2, D^* has a path p of the type s_j^{-t} containing no edge of Q. By repeating p in each copy D_i^* of kD^* we obtain a s_1^{-t} path in kD^* with no edge of X, a contradiction.

Theorem 2: If $m \le 2$, $\max |\alpha_E(D)| = \min |\beta_E(D)|$.

Proof: If m=1 the theorem follows from lemma 2 and the max-flow min-cut theorem [1] applied to D*. When m=2, construct kD*, k = |E(D)|. Let $S_1 = \{s_{11}, s_{12}\}$ and $T_k = \{t_{k1}, t_{k2}\}$ be the sets of sources and sinks of kD*, respectively in normal order, and f a maximum $S_1^{-T}_k$ flow in kD*, having value n. Suppose, initially, $f(s_{i1}) < f(t_{i1})$, for all $1 \le i \le k$. Since $f(s_{i1}) + f(s_{i2}) = f(t_{i1}) + f(t_{i2}) = n$, it follows that $f(s_{i2}) > f(t_{i2}), 1 \le i \le k$. Because $f(t_{i2}) = f(s_{i+1,2}), 1 \le i \le k$, we conclude that $f(s_{12}) > f(s_{22}) > \dots > f(s_{k2})$. However, the latter inequality can not occur because $f(s_{12}) < |E(D)|$, k=|E(D)| and all flow values $f(s_{ij})$ are non negative integers. Consequently, there exists some j, $1 \le j \le k$, such that $f(s_{j1}) \ge f(t_{j1})$. Applying lemma 3 to D_{j}^{*} , we conclude that D contains at least n edge disjoint cycles, that is, $\max |\alpha_{E}(D)| \ge n$. By the max-flow min-cut theorem, kD* has a cut of capacity n and using lemma 4 it follows that D contains a feedback edge set of size $\leq n$, that is, $\min |\beta_E(D)| \leq n$. Hence $\max |\alpha_{E}(D)| \ge \min |\beta_{E}(D)|$. Since $\max |\alpha_{E}(D)| \le \min |\beta_{E}(D)|$ the equality follows*

3. The Algorithms

The algorithms follow from the proof. Given the reducible digraph D, construct the network kD*, k=|E(D)|. Then find the minimum cut X of kD*. The edges of D which form X constitute the minimum cardinality feedback edge set β_E . For finding a maximum set of disjoint cycles α_E , let f be the maximum S-T flow in |E(D)|D*. Next, identify the copy D* in |E(D)|D* such that f(s_jl) \geq f(t_jl). Then use the construction of lemma 4 which transforms f into the desired α_E .

Both algorithms, for finding a minimum feedback edge set and a maximum set of edge disjoint cycles, have the same complexity as finding a maximum S-T flow in the network $|E(D)|D^*$, that is, polynomial in |V(D)|.

REFERENCES

- [1] L.R.Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, 1962
- [2] A.Frank and A.Gyarfas, Colloques Internationaux C.N.R.S. Problèmes Combinatoires et Théorie des Graphes (260), 157-158, 1976.
- [3] M.Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.Freeman, San Francisco, 1979.
- [4] A.Gyarfas, Blocking the Loops of a Flow-Graph, Zeits.
 Angew. Math. Mech. 56 (1976), T330-331.
- [5] M.S.Hecht and J.D.Ullman, Characterizations of Reducible Flow Graphs, J. of the ACM 21 (1974, 367-375.
- [6] R.M.Karp, Reducibility among Combinatorial Problems, in R.E. Miller and J.W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 85-103, 1972
- [7] V.N.Kasyanov, Some Properties of Fully Reducible Graphs, Inf. Proc. Letters 2 (1973), 113-117.
- [8] A.Shamir, A Linear Time Algorithm for Finding Minimum Cutsets in Reducible Graphs, SIAM J. Computing 8 (1979 645-655.
- [9] R.E.Tarjan, Testing Flow Graph Reducibility, J. Comp. Systems Sci. 9 (1974, 355-365.