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RESUMO

Descrevemos uma nova familia de digrafos, denominados
conexamente redutiveis, para a qual provamos que a cardinalidade
minima de um conjunto de vértices que interceptam todos os ci
clos iguala a mdxima de um conjunto de ciclos disjuntos em vérti
ces. Além disso, formulamos algoritmos polinomiais para os pro
blemas de reconhecimento e determinagio desses conjuntos, minimo
e mdximo, para digrafos dessa familia. Resultados similares sdo
conhecidos para os digrafos totalmente redutiveis. Mais recente
mente, uma outra familia foi definida, os digrafos <ciclicamente
redutiveis, que também possibilita a computagd3o em tempo polino
mial desses conjuntos minimo e mdximo. E conhecido o fato de que
os digrafos totalmente redutiveis ndo estdo contidos nem ‘contém

-0s ciclicamente redutfveis. Em contraste, provamos que oS conexa

mente redutiveis contém ambas as familias existentes.
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ABSTRACT

We describe a new family of digraphs, named con
nectively reducible, for Which we prove that the'minimum cardi
nality of a set of vertices intersecting all cycles equals the
maximum cardinality of a set of vertex disjoint cycles. In.addi
tion, formulate polynomial time algorithms for the problems of
recognition and finding these minimum and maximum sets for di
graphs of the family. Similar results hold for the currently
existing families of fully reducible and cyclically reducible di
graphs. Neither the fully reducible are contained nor contain
the cyclically reducible. However, we show that the connectively
reducible digraphs contain both of the existing families.
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1. INTRODUCTION: Frank and Gydrfads D] have shown that for fully
reducible digraphs the minimum cardinality set of vertices inter

secting all cycles equals the maximum cardinality set of vertex
disjoint cycles. Furthermore, there are polynomial time algo
rithms for finding such a minimum set of vertices [}-6] for this
family of digraphs, whereas the same problem is well known to
be NP-hard in the general case [2-i]. More recently, Wang, Lloyd
and Soffa [9] defined another family of digraphs, called cy
clically reducible, which also enables the computation of the
above sets in polynomial time. In addition, both these familijes
of digraphs can be recognized in polynomial time [8-9]. However,
as noted in [9], the fully reducible digraphs neither are con
tained nor contain the cyclically reducible ones. In the present
paper, we define a new family of digraphs, named connectively
reducible, and present the following results:

(i) A proof that the above min-max equality is valid
for them.

(ii)Y A polynomial time algorithm which recognizes di
graphs of this kind and finds the corresponding minimum and maxi
mum sets, of vertices and cycles, respectively for digraphs of
the family.

(iii)} A proof that the connectivelly reducible digraphs
contain both the fully and cyclically reducible ones.

The following is the plan of the paper. In Section 2,
we present the concepts of critical vertices and cycles, in
which are based the proposed results. These lead to the idea of
critical sequences and connectively reducible digraphs, defined in
Section 3. A characterization of the proposed family of digraphs
is given in Section 4. The min-max theorem is proved in Section
5, whereas in the following we formulate the polynomial time al
gorithm for finding the minimum and maximum.sets. The algorithm

is based on the characterizationfprevious1y described. The
proofs that connectivelly reducible digraphs contain cyclically
and fully reducible ones are presented in sections 7 and 8 ,

respectively. Some further remarks form the last section.

Throughout the paper, D denotes a digraph with vertex



set V(D) and edge set E(D). If v ¢ V(D) and V'€ V(D) then D-v
and D-V' represent the digraphs obtained from D by removing v
and V', respectively. We use the term component meaniﬁg a
strongly connected component of D. A component is trivial if it
consists of a single vertex. T(D) denotes the subset of vertices
of D which are trivial components and T(D)=V(D).-T(D). . A cycle
cut or feedback vertex set of D is a subset of vertices, denoted
a(D), intersecting all cycles of D. Two cycles which are vertex
disjoint are simply called disjoint. The notation B(D) repre
sents a set of disjoint cycles. In an acyclic digraph, if there

is a path from vertex v to w then v is an ancestor of w, and w a
descendant of v; in addition if v#w then v "is a proper ancestor

and w a proper descendant. Finally, we employ the same notation

to represent some operations in sets or sequences, the meaning
being clear from the context.

2. CRITICAL VERTICES AND CYCLES

In this section we bresent the concept and properties
of critical vertices and cycles of a3 digraph, in which are based
the results later described.

Let D be a digraph and v,w vertices of it. The class
of v in D is the subset of vertices {v} U T(D-v), which we. de
note by [v,D]. The classes [v,D] and [w,0] are distinct when

[v.,D]#[w,0].

A vertex v e V(D) is critical in D when the subgraph
induced in D by [v,D] has at least one cycle C. In this case, C
is a critical cycle of v in D.

The first lemma relates critica vertices and cycles.

Lemma 1: Let v be a critical vertex and C a critica)
cycle of v in D. Then C contains v.

. Proof: Suppose the contrary. Then there exists a cycle
C' formed solely by vertices of some subset of T(D-v). Conse
quently, every vertex w ¢ V(C') belongs to a non trivial compo
nent of the subgraph induced in D by {v} Wy T(D-v). The latter con



tradicts w ¢ T{(D-v)O

We now describe a condition for two classes to be dis
tinct

Lemma 2: Let v,w be critical vertices in D. Then
v e [w,0] if and only if [v,D]=[w,D].

Proof: We consider v#w, otherwise the result is trivi

al. If v e [w,D0] then v belongs to a trivial component of D-w,
that is, every cycle passing through v contains also w. Since v
is also critical, there exists a cycle C formed .by a subset of
trivial components of D-v. By lemma 1, C contains v. That is, w
is a trivial component of D-v and then w ¢ [v,D]. Consider now a
vertex z#v,w such that z ¢ [ﬁ,Q]. In this case, every cycle c'
containing z passes through w. Since w ¢ [v,0] we conclude that
C' also contains v. Then z ¢ [v,0] and hence [v,0]=[w,0]. The
converse is immediate, since v ¢ [w,D] implies [v,0]=[w,D], be
cause v ¢ [v,D]O.

The next Temma asures that any critical cyc]e contains
al critical vertices of its class.

Lemma 3: Let v,w be critical vertices in D such that
[v,D]=[w,D]. Then a cycle contains v if and only if it contains
also w.

Proof: Suppose there exists in D some cycle C con
taining v, but not w. Then C remains a cycle in D-w. Because C
contains v, it follows that v can not be a trivial component of
D-w. Consequently, v ¢ [w,Dl. Then we apply lemma 2 and conclude
that [v,D]#[w,D], which contradicts the hypothesis. Therefore C
contains both v and wO.

There are certain vertices which may belong to more
than one distinct class of a digraph. These vertices satisfy the
following condition.

Lemma 4: Let v,w be-critical vertices n D such that
[v,0]#[w,D0], and z ¢ [v,D] fy [w,D]. Then there is no critical
cycle in D containing z.



Proof: Suppose the lemma false. Then there is a criti

cal cycle C of v which contains z. Because [v,D]#[w,D] we con
clude by lemma 2 that w ¢ [v,D]. Hence w ¢ V(C). On the other
hand, v ¢ V(C). Consequently, C remains a cycle in D-w. Since
z e V(C), 2z can not be a trivial component of D-w, i.e.,

z ¢ [w,D], which contradicts the hypothesis O.

The next lemma describes a condition for two <c¢ritical
cycles to be disjoint.

Lemma 5: Let v,w be c¢critical vertices in D, and c,c'
critical cycles of v,w, respectively. Then C,C' are disjoint if
and only if [v,D]#[w,D].

Proof: Suppose C,C' disjoint and [v,D]={w,D]. In this
case, according to lemma 3, both cycles C,C' contain both verti

ces v,w. Then C,C' are not disjoint, a contradiction. That is,
[v,D]#[w,D], necessarily. Conversely, when [v,D]#[w,D] we apply
lTemma 4 to conclude that no vertex of C or C' can belong to

[v.D] N [w,0]. Therefore C,C’' are disjoint O.

Now, we discuss the effect of removing critical verti
ces.

Lemma 6: Let v,w be critical vertices in D. Then
[v.O]#[w,D] if and only if w is critical in D-v.

Proof: If [v,0]#[w,D] we must prove that w remains
critical after removinglv. Let C be a critical cycle of w in D.
The jidea consists of showing that C is also a critical cycle of
w in D-v. Let z be a common vertex of [v,D] and [w,0]. By lemma
4, we know that there is no critical cycle of D containing z.
That is, z ¢ V(C). In addition, since every vertex z2' ¢ V(C)
necessarily belongs to [w,0] we conclude that z' ¢ [v,0].
Therefore, C is preserved in D-v and w remains critical. The con
verse is simple, as follows. If w is critical in D-v then
w ¢ [v,0], necessarily. Otherwise, if w e [v,D] either w ¢ V(D-v)
or w becomes a trivial component in D-v. In none of these <cases
can w be a critical vertex in D-v, a contradiction. Now, when
w ¢ [v,0] we apply lemma 2 and conclude that [v,0]#[w,0]0.



Lemma 7: Let v,w,2 be critical vertices in D. Then
[v,0]#[w,D] if and only if [v,D-z]#[w,D-z].

Proof: Initially, we consider the hypothesis [v,D]#[w,D].
If z € [v,0] then z ¢ [w,D]. Otherwise, z would be a critical
vertex belcnging to [v,D] and [w,D], simultaneously; then, by
lemma 2, [v,D]=[z,0] and [w,0]=[z,0], i.e. [v,0]=[w,D] a contra
diction. Now, [v,D]=[z,D] implies that v can not be a critical
vertex in D-z, by lemma 6. Also, [w,D]#[z,0] means that v  must
be a critical vertex in D-z, since no critical cycle of w in D
can contain z, according to lemma 5. Therefore, [v,D-z] # [w,0-z]
and the Temma is valid for this case. If z ¢ [w,D] we apply a
similar argument. It remains to analyse the situation
z ¢ [v,0],[w,0]. Suppose the lemma false, that is, [v,0-z]=[w,0-Z]
and let C be a critical cycle of v in D. Then w ¢ V(C), since it
follows from the hypothesis that w ¢ [:v,D]. In adch'tion, C must
contain some vertex x € [z,D], x#z. Otherwise, C would remain as
a critical cycle of v in D-z; and because [v,D-z]=[w,D-z] we con
clude by lemma 3 that C also contains w, a contradiction. Conse
quently, in fact x ¢ [z,0]. In addition, since C is a critical
cycle of v in D we know that x € [v,D]. In the present situation ,
v and 2z are two critical vertices in D such that [v,D]#[z,0] and
x is a common vertex of [v,0] and [z,0]. By lemma 4, we can see
that there is no critical cycle in D containi‘ng x. Therefore, C
does not exist, which contradicts the fact that v is a «critical
vertex. Consequently, [v,D-z]#[w,D-Z] and the proof of nécessity
is completed. Conversely, let the hypothesis [v,D-z];‘f__W,D-z].
There are four cases to consider:

(i) z € [v,0],[w,0].
Then by lemma 2, [v,0]=[w,D]=[z,D]. In this case, [v,D-z]=[v,0]-(2}
and [w,D-z]=[w,D]-{z}. That is, [v,0-z]=[w,0-2], contradicting
the hypothesis. Therefore, this case does not occur.

{ii) z ¢ [v,D] and z ¢ [w,0].
That is, [v,D]#[w,0] and the lemma holds

(iii) z ¢ [v,D] and z e [w,0].
Similar to (ii).



(iv) z ¢ [v,D],[w,D]. :

Then [v,0]#[z,D] and [w,D]#[z,D]. Let C and C' be critical cy
cles of v and w in D, respectively. By lemma 6, we conclude that
v and w remain critical in D-z and therefore C and C' are criti
cal also in D-z. We now apply lemma 5 to D-z and find out that C
and C' are disjoint. Next, using agaih lemma 5, but to the di
graph D instead, we finally conclude that [v,0]#[w,D]. This com
pletes the proof O. '

3. CRITICAL SEQUENCES

In order to describe the class of connectively re
ducible digraphs we need the following definitions.

Let D be a digraph and S={v ,...,v } a sequence of ver
1 k -

tices of it. The value k is the length of S, while the symbol S_

J

denotes the subsequence {v1,...,v_}, for any j, 1gigk. We also

J

write S to represent the empty sequence ¢. The notation D(S')
0 J

means the digraph 1nduced'1n D.By the subset of vertices TYD-S_L
J

Then, for example, D(S ) is the digraph formed by the non trivi
0

al components of D. The digraph D(S ) is ca ed the resulting of

J
S . If each vertex v is critical in D(S ) then S is a
J j . J-1
critical sequence of D, 1gjgk. In this case, additionally, if
D(S) does not contain any critical vertices then S is a complete

critical sequence, or simply, complete sequence. Next,a vertex

v e V(D) is strongly non critical if there is no critical se

quence of D containing v. Finally, D is connectively reducible
when the subgraph induced in it by the subset of all strongly
non critical vertices is acyclic.

For example, the digraph of figure 1 has only one criti
cal vertex, namely v. In addition, {v} is 1ts.on1y critical se
quénce, while the removal of this vertex destroys all cycles.
Therefore, it is connectively reducible.



FIGURE 1:

A CONNECTIVELY REDUCIBLE DIGRAPH



Next, we establish relations between critical vertices
and resulting digraphs.

Lemma 8: Let D be a digraph, S a critical sequence of
it and v,w critical vertices in D such that [&,Q]=[k,0]. Then
v € V(D(S)) implies:

(i) [v,0(sy] = [w,0(S)],
(ii) w € V(D(S) and
(1ii) v,w remain critical vertices -in D(S)

Proof: Let S={v ,...,v }. We use induction in k. If
1 k

k=0 the lemma is trivially true. When k>0, assume it valid for
all critical sequences of Yength at most k-1. Let v e V(D(S )).
. k

Then v ¢ V(D(S ) and we can apply the induction hypothesis to
k-1

conclude that

i ,D(S = [w;0(S ,
(i) [v (k1):| [w (k_ )]

1

(ii)" w e V(D(S )), and
k-1

(iii)"' v,w are both critical in D(S )
k-1

We can now observe that vertices v,w,v are all criti

k
cal in D(S ). Therefore, we can apply (i)' to lemma 7 and con
k
ctude that [v,D(S )]=[w,D(S )], because T(D(S ))=T(D(S }-v
k k k k-1 k
This proves (i). Next, since v ¢ V{(D(S )) we can apply (i) to
k

write [v,D(S )J]=[w,0(S )], which leads to w ¢ V(D(S )) assuring
K Kk k

(i1)



Finally,

,0(S )] # [v ,0(S: ,
[oo(s, ) # 0,008 ]

otherwise v ¢ V(D(S )), a contradiction. Therefore, we can apply
k

lemma 6 to obtain that v is critica in D(S ). Similary for w.
k

The proof of iii is now completed O.
We now introduce the concept of representatives of D.

Let D be a digraph and R(D)={v .,...,v } some subset of
. 1 k

critical vertices of it. R(D) is a critical representative subset,

or simply a representative, of D when the following conditions
are both satisfied:

(i) i#3 » (v ,0] # [v ,0O].
i j

(ii) w e V(D) is a critical.vertex of D =
[v ,0}=[w,D], for some i, lgick.
i _

In other words, a representative of D is a maximum
cardinality subset formed by critical vertices belonging to dis
tinct classes of D,

The next lemma shows a relation between representa
tives and critical sequences of a digraph.

Lemma 9: Let S be a seguence formed by vertices of a
representative of D, in any arbitrary order. Then S is a criti
cal sequence of D.

Proof: Let S={v ,...,v }. We employ induction n k. f
‘ 1 k

k=0 there is nothing to prove. Otherwise, suppose the lemma
holds for all sequences of ]ength_at‘most k-1. Since the vertices

of S belong to a representative of D we know that each v is
1



0.

critica in D(S ) and [v ,0]#[v ,0], i#j. Consequently, we can
0 i J
apply lemma 6 to conclude that v s critical in D(S J. 1In addi
k 1 -
tion, .t follows from lemma 7 that [v ,D(S J] # [v ,D(S )], for
k 1 J 1

1<J<k. Repeating iteratively this argument it results that v is

4
still critical in D(S }. In this situation, we can use the in
k-1 -
duction hypothesis to conclude that {v ,...,v } is a criticatl
1 k
sequence of D O.
4. CHARACTERIZATION OF CONNECTIVELY REDUCIBLE DIGRAPHS
Consider solving the recognition problem for con

nectively reducible digraphs. A first idea might be to apply the
definition and recognize as a member of this family every di
graph D whose subgraph induced by its strongly non critical ver
tices is acyclic. To use this‘strategy we would need previously
to devise a method for finding the set of all strongly non criti

cal vertices. It seems difficult to solve the latter problem
directly from the definition, since to identify these special
vertices we would need to generdate all possible complete se

quences of D, whose number can grow exponentially with |V(D)].
In this section, we prove a convenient characterization for this
family, which enables to recognize connectively reducible . di
graphs after constructjng Just one complete sequence.

Theorem 1: Al1 complete sequences of a digraph D have
the same resulting digraph.

Proof: Let S be an arbitrary complete sequence. The
proof consists of defining a canonical sequence S$' and showing
that D(S)=D(S'), as below detailed. We start by S'.

Constructing S': Let R(D) be a representative of D. A
canonical sequence S' of D is recursively defined as follows. If
R(D)=¢ then S'=¢. Otherwise, S' is formed by the vertices of
R(D), in an arbitrary order, followed by a canonical sequence of
D-R(D).




L1,

To verify that the above construction always finds a
complete sequence of D, we use induction in the 1éngth k' of S'.
If k'=0 the result is- correct, since S'=¢g means R(D)=¢g and there
can be no critical sequence without critical vertﬂces. Otherwise,

assume the construction correct for lengths at moét k-1. From
the definition, we know that S' is formed by the %értices of
R(D), followed by a canonical sequence of D-R(D),iwhich we now
denote by S". The leading vertices of S', i.e. R(D), form a

critical sequence of-D, according to Temma 9. On ﬂhe other hand,
using the induction hypothesis we conclude that Sﬂ is a complete
sequence of D-R(D). At this point we can apply thé definition
and asure that S'is acomplete sequence of D, which proves the
correctness of the above construction. |

1

To show that D(S)=D(S') the idea consists of trans
forming S into S' through the application of soméédifferent oper
ations. Each operation can result in alterations in S. In this
case, we must guarantee that the resulting digraph of the se
quence remained the same. If we asure the invariance of D(S)
through the process we obtain D(S)=D(S'). which would prove the

theorem.

We use four different operations to transform S. Two
of them replace certain vertices of § by others, while the re
maining operations simply change the order of the !sequence.

Now, we describe the transformation from S into S!
together with the proofs of invariance of D(S) in the process

The current sequence S is denoted by {v ,...,v }, while R(D) is
1 k

precisely the representative of D which §' containls.

Operation 1: For each vertex v € R(D) verify if S con
tains some critical vertex w € [y,Q]. In the affirmative case,

replace w by v in S.

The proof that S is mantained complete and D(S) pre
cerved after the end of the above operations is simple. Let v,w
according to the hypothesis, that is, v ¢ R(D), we [v,0], both

critical vertices in D and w=v for some i, lgigk. Then
i

w e V(D(S )) and applying lemma 8 we conclude that
i-1
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v € V(D(S )} and that v,w are both critical vertices in
i-1

D(S ) belonging to a same class in it. Therefore, by lemma 2,
i-1

[v,D(S )]=[w,D(S
i-1 . i

i-1 -1

Y] . Hence, D(S )-v and D{(S )-w coincide
- . .

That is, S is mantained complete and D(S preserved after each
of the vertex replacements.

After operation 1, S may not contain yet all vertices
of R{(D). The transformation to include in S the remaining de
sired vertices is given below.

Operation 2: For each v ¢ R(D)-S, determine the value

jy»1 such that v is a critical vertex in D(S ), but not . in
j-1
D(S ) and next replace v by v in S.
J J

_ We now describe the proof of correctness of operation
2. We need to show that the new sequence S contains R(D), after
all transformations. The argument is inductive. If R(D)-S=¢
there is nothing to prove. Otherwise, choose v ¢ R(D}-S. Oper
ation 2 identifies the value j»1 satisfying

ve V(D(S }) - v(D(S })

J-1 J
We need to asure that such value j does exist. Since § is com
plete, D(S ) does not contain critical vertices. Because
" )

v €¢ R(D), it follows that v is critical in D(S ) Thus, there
0

exists necessarily j, tgijgk, such that v is critical in D(S )
-1
but not in D(S ) There are two alternatives to consider, namely
J

v e V(D(S )) or not. In the first case, v s non critical in
J

D(S_)_ by hypothesis. However, this can not occur. Because
J

v and v are both critical in D(S ) and v ¢ V(D(S )) it

J Jj-1 J J

fo Tows that [v,D(S

J_1):]9‘[:\'j,D(S_ 1)]. Hence, by applying lemma
J-
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6 we would conclude that v remains critical in D(S ), a contra

J
diction. Therefore, the only possibi ity is v & -V(D(S )) In
J
this case, Lsing again that v and v are critica 1in D(S ) and

i o -1
lemma 6, we obtain [v,D(S Y)=[v ,D(S Y]. That is,
j-1 J J-1

D(S ) =0(S ) [v.d(s )] =0(s ) [v.o(s ).
] j i -1

J Jj-1 -1 J-1

Hence, after replacing v by v, S'is stil complete. Furthermore,

J
for any vertex w € R(D), necessari y w#v Because, if w=v then
J J
[v,D(S y]=[w,0D(S Y]. In this case, applying succesively
-1 j-1
lemma 7 would lead us to [v,0]=[w,D], which contradicts
v,w € R{(D). Therefore, each replacement of v by v in S in
J

creases by one the number of vertices of R(D) which appear in S.
This completes the proof of operation 2.

After operations 1 and 2, S necessarily contains R(D).
However, in order to transform S into S' we need the vertices of
R(D) to appear in the leading positions of S. This is ac
complished by the following.

Operation 3: If S contains some vertex v € R(D) such

J
that v ¢ R(D), j>»1, then interchange the positions of
J-1

v and v in S. Repeat the operation wunti no such v o€ R(D)
J J-1 J
exists in S

The proof of correctness of operation 3 consists in
showing that after the tlast interchange of positions, § is still
a complete sequence and that D{S) was preserved. In addition,
the |R(D)| Teading vertices of the transformed sequence are
precisely those of R(D). The argument is again inductive. If S

is formed solely by vertices of R(D) there is nothing to prove.
Otherwise, for each v e S-R(D).define displacement (v ) as the




number of vertices of R(D) which are at the right side of v in
i

S. If displacement (v )=0 for al v € S-R(D) then operation 3
i \

is not performed and its correctness follows trivially. Other
wise, S contaihs necessarily a vertex v & R(D) such that
J
v ¢ R(D), 1<jgk. In this case, v is critical in D(S }, and
J-1 3 i-1
clearly also n D(S ) On the other hand
o)

[v ,0(S )] # [v ,0(S )], for all 1gi<j
i o

Because, otherwise, if for some i vertices v and v belong to
i J
a same class n D(S ) then according to lemma 2 v £ V(D(S ))
i-1 : J i
which contradicts v ¢ V(D(S }). Similary, we conclude that v
J Jj-1 J

s critical in D{(S ). 1gi<j. Consequently, v and v are
- -1 : i-1 ]

both critical vertices and belonging to distinct classes in

D(S ). Now, we apply lemma 6 to certify that v is also criti
j-2 . j-1
ca in D(S y-v Therefore, we can interchange the positions
-2y '
of v and v in S and asure that the new sequence so obtained
J-1 J
is still critical and complete. Besides, D(S) is also preserved.

Because D(S ) in both sequences, old and new, equals the 'di
J

graph obtained by removing the trivial components of

D(S ) - {v ,v }. On the other hand, the change of positions
j-2 j-1 3
between v and v asures that displacement (v ) decreases by
j-1 3 i-1
one unit. This completes the proof of correctness of operation 3

The leading vertices of S are now exactly these of
R(D). However, we need them in S with the same ordering as they
are in S'. This is the purpose of the last operation below

Operation 4: Reorder the vertices of R{(D) n S, so as
to obey the same ordering as they appear in S'.
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The correction of it is simple. The sequence formed in
S by the vertices of R(D) in its new ordering is itself critical,

according to Temma 9. Besides, D(S| ) is the digraph obtained
R(D)|

by removing the trivial components of D-R(D). Therefore, the new
sequence S is also complete and D(S) is mantained.

Consider now the sequence S after all above operations
and let us complete the transformation from S into S'. In both
sequences the |[R(D)| leading vertices coincide, respectively.
Now, remove R(D) both from S and S'. If D-R(D)=¢4 then S=S'. Other
wise, S-R(D) is a complete sequence of D-R(D). Also, S'-R(D) is
a canonical sequence of it. In addition, D(S)=D(S-R(D)) and
D(S')=D(S'-R(D)). Next, apply the four described operations to
S-R(D} which would transform it into a new sequence having - the
same leading |R(D-R(D))| vertices as S'-R(D), while preserving
its resulting digraph. Then remove R(D-R(D)) from both S-R(D)
and S'-R(D) and so on iteratively. We can then concludeAthat any
arbitrary complete sequence of D has the same resulting digraph
as the canonical one. This completes _the proof of theorem 1 O.

The next prcopositions follow directly from the above
proof

Corollary 1: Al complete sequences of a digraph have

the same length.

Corollary 2: Let D be a digraph and S an arbitrary com
plete sequence of it. Thea D is connectively reducible if and
only if D(S)=¢.

5. THE MIN-MAX THEOREM

Theorem 2: Let D be a connectively reducible digraph.
Then min|a(0)|=max|8(D) |

Proof: If D does not contain critical vertices then
all its vertices are strongly non critical. In this case D is
necessarily acyclic and the theorem is trivial. Otherwise, Tet

S={v ,...,v } be a complete sequence of D, k»1. Define the
1 k



.16.

subsets of vertices o(D)={v ,...,v } and cycles g(D)={C ,..,C }
1 k 1 k
where C is a critica «cycle of v in 0(S Y 1g¢jgk. First, we
J J j-1
show that a{(D) is a cycle cut of D. Since D is connectively re

ducible, D(S )=¢, according to corollary 2. Consequently, for
k

any cycle C of 0(S ) there exists an index j, 1gjgk, such that C
0

is a cycle in D(S ), but not in D(S ) Therefore C contains

J-1 J
some vertex w ¢ [& L0(S )]. Suppose that C does not contain v
J J-1 J
Then w ¢ T(D(S )-v ), that is w ¢ [v .D(S Y], a contradiction
=1 | i -
Hence, C contains v and we conclude that «{(D) is in fact a
J
cycle cut. Next, we examine B(D). Suppose there exists a pair of

distinct cycles C , C € B(D) containing a common vertex z.

P g
Without loss of generality, let p<q. Then z ¢ V(D(S )) because
, p
ze {v}VUT(DS )-v ). That is, z ¢ T(D-S ), ipp-1, which
p p-1 P i
contradicts z € V(D(S Y) and z € V(C ) Therefore, C , C can
q-1 q ‘ P q

not contain common vertices. Hence, «(D) and B(D) are respective
ly a cycle cut and a set of vertex disjoint cycles of D, having
the same cardinality. Therefore the first is minimum and the
second maximum O. '

6. THE ALGORITHM

A polynomial time algorithm for recognizing con
nectively reducible digraphs and finding minimum cycle cuts and
maximum sets of disjoint cycles for digraphs of this family is
a direct consequence of corollary 2 and theorem 2.

The algorithm below accepts as input an arbitrary di
graph D and computes one of the following alternative results.
Either it confirms that D is connectively reducible and simul
taneously exhibits a minimum cycle cut and maximum set of dis
joint cycles, or it reports that D is not connectively reducible



In the initial step, let i:=0, define the digraph

D :=D, the sets a:=B:=¢ and unmark all vertices. In the general

i .
step, if there- are no unmarked vertices the process terminates

(D is connectively reducible iff D‘ is acyclic; in the affirma
i

tive case, o and B are respectively a minimum cycle cut and maxi

mum set of disjoint cycles of D). Otherwise, choose any unmarked

vertex v, mark it and construct class [V,D‘]. Next, Verify if
i

the subgraph induced in D by the vertices of [v,D ] contains
.i
some cycle C. If it does contain, then include v in a, include C in

B, define D :=D -[v,D ], unmark all vertices of D and
i+ i i i+

increase i by 1. In any case, repeat the general step O
There is no difficulty to implement this algorithm in

0(n(n+m)) time, n=|V(D)| and m=|E(D)]|.

7. CONNECTIVELY AND CYCLICALLY REDUCIBLE DIGRAPHS

In this section we show that the family of connectively
reducible digraphs contains the cyclically reducible ones. We
start by presenting the definitions of the latter.

Let D be a digraph. A vertex w e V(D) is blocked in D
if there exists a path in D from w to some vertex z € T(D). The
associated digraph A(v,D) of D relative to v is the subgraph in
duced in D by the subset of V(D) that contains v and all verti

ces that are not blocked in D. A W-sequence of D is a sequence

of vertices {v ,...,v } such that there are cycles in each of
1 k
the associated digraphs A(v ,D ), 1g<igk, where D =D and
i i-1 0
D =D - V(A(v_,D ))

i i-1 i i-1

n addition, if D 1is acyclic then the W-sequence is complete.
k

Finally, a cyclically reducible digraph is precisely one that

admits a complete W-sequence.
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Thegfo1}ow1ng lemma relates the above associated di
graphs and classes as defined in Section 2.

Lemm 10: tet D be a digraph and w € V(D). If w is a
vertex of A(v{D) then w belongs to [v,0].

Proof: If w is a vertex of A(v,D) then w=v or w is not
blocked in D-v. In the first case, the lemma holds. Consider
then wfv. By definition, there exists no path in D-v. from w to
some vertex z ¢ 1(0-v). Therefore w ¢ T(D-v), otherwise there is
a contradgiction if we choose z as .a vertex located in the same
component as w of D-v, and such that (w,z) ¢ E(0). Therefore,
using the definition of class we.conclude that w ¢ [v,0].

|
Finally,

Thegrem 3: Let D be acyclically reducible digraph. Then
D ¢ connecti@e1y reducible.

Proof: If D is acyclic the theorem is trivial. Other
wise, D admits a complete W-sequence S={v ,...,v }, ky1. The
? ' ' 1 .k
proof consists of showing that S is a complete critical sequence
of D. The argument is inductive. Suppose the result true for

all digraphs admitting W-sequences with fewer than k vertices.

Since D is cydjica]ly reducible, A(v ,0) has some cycle C. By
1

Temma 10, all lvertices of C belong to [v ,0]. That is, v is
' 1 1

critica) in DJ In addition, the non trivial components of

D - V(A(v ,D)})
1

are 1dentica1§as those of

D - [v.,0],
1

because v is}critica1 in D and ‘according to lemma 10
L

V(A(v1,D))g [\/1,0]
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Therefore, by removing v from D and applying the induction hy

pothesis to D-v we conclude that S is a complete critical se

1 £

quence of D. Furthermore, D is acyclic because D is cyclically
k

reducible. Then the resulting digraph D(S) is empty, since

T(D ) = T(D(S )), Ogigk,
1 1

that is, D is connectively reducible O

8. CONNECTIVELY AND FULLY REDUCIBLE DIGRAPHS

We prove in this section that the connectively re
ducible contain the fully reducible digraphs.

A flow digraph is a digraph D together with a dis
tinguished vertex s € V(D), called root, that reaches all the
vertices of D. We say that w ¢ V(D) dominates v e V(D) when

every path in D from s to v contains w. D is fully reducible if

every cycle C of D contains some vertex w € V(C) which dominates
all the vertices of C..In this case, we call w a dominator of C
and also of D. The edge of C which is directed to the dominator
of this cycle is called a back edge.

Theorem 4: Let D be a fully reducible digraph having
root s. Then D is connectively reducible.

. Proof: Let L be the set of back edges of D. The argu
ment is by induction on |L|. If |L|=0 then D is acyclic and the
theorem is trivial. Otherwise, suppose the result correct for
all fully reducible digraphs with fewer than |L| back edges. Let

W e V(D) be a2 dominator of D located at a maximal distance of s
in D-L. That is, in the acyclic digraph D-L no proper descendant
of w is a dominator in D. Let C be a cycle containing the back
edge (v,w) and z € V(C), z#w. Suppose there exists a cycle C' in
D such that z ¢ V(C'), but w ¢ V(C'). Let w' be the dominator of
C'. Observe that w does not dominate w' in D, otherwise there
would be a path in D-L starting in w and containing w', which
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contradicts w as a dominator of D at a maximal distance of s in
D-L. Hence there exists a path in D from s to w' that does not
contain w. Consequently, this path s-w' followed by the path
w'-2 in C' forms a path originated in the root of D and inter
secting C in some vertex other than its dominator w, which con
tradicts D as fully reducible. Therefore, if z ¢ V(C) N V(C")
then necessarily w ¢ V(C'). In this case, every vertex of C
becomes a trivial component in D-w. That is, w is a critical ver
tex in D, and C is a critical cycle of w in D. Removing w from D
and taking the non trivial components of D-w we obtain the re
sulting digraph D({w}). Let S' be a complete critical sequence
of D({w}). Ncte that D({w}) has fewer than |L| back edges, that
is, this digraph is connectively reducible according to the in
duction hypothesis. By corollary 2, we conclude that the re
sulting digraph of S' in D({w}) is empty. Consequently, the se
quence S formed by w followed by S' is a complete sequence in D
satisfying D(S)=@. Therefore, D is connectively reducible O.

9. CONCLUSIONS

We have described a new family of digraphs D named
connectively reducible and proved that

min|ja(D) = max|B(D)]|

The proofs lead to polynomial time algorithms for finding the
minimum set of vertices a(D) and maximum of cycles B(D). Further
more, we have also proved that the proposed family of digraphs
contains two others for which similar properties hold, namely
the fully reducible and connectively reducible digraphs. |

Less is currently known about the equivalent problem
for edges instead of vertices, regarding reducible digraphs. 1In
fact, it is not known if in a fu]ﬁy reducible digraph the mini
mum cardinality set of edges intersecting all cycles equals the

maximum cardinality set of edge ‘disjoint cycles. Frank and
Gydrfds [1] have conjectured that equality also holds in. the
edge case. Partial results in this direction were reported in

[73 -
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