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RESUMO

~

.a

Descrevemos uma nova família de dígrafos, denominados

conexamente redutíveis, para a qual provamos que, a cardinalidade

mínima de um conjunto de vértices que interceptam todos os ci

clos iguala à máxima de um conjunto de ciclos disjuntos em vérti

ce.s. Além disso, formulamos algoritmos polinomiais para os pr.Q.

blemas de reconhecimento e determinação desses conjuntos, mínimo

e máximo, para dígrafos dessa família. Resultados similares são

con'hecidos para os dígrafos totalmente redutíveis. Mais recent�

mente, uma outra família foi definida, os dígrafos ciclicamente

redutíveis, que também possibilita a computação em. tempo polin.Q.

mial desses conjuntos mínimo e máximo. E conhecido o fato de que

os dígrafos totalmente redutíveis não estão contidos nem .contêm

os ciclicamente redutíveis. Em contraste, provamos que os conexa

mente redutíveis contêm ambas as famílias existentes.
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ABSTRACT

co

~

We describe a new family of di.graphs, named con

nectively reducible, for which we prove tha.t the minimum cardi

nality of a set of vertices intersecting all cycles equals the

maximum cardinality of a set of vertex disjoint cycles. In.addl

tion, formulate polynomial time algorithms for the problems of

recognition and finding these minimum and maxi�um sets for di

graphs of the family. Similar results hold for the currently

existing families of fully reducible and cyclically reducible dl

graphs. Neither the fully reducible are contained nor contain

the cyclically reducible. However, we show that the connectively

reducible digraphs contain both of the existi.ng families.
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1. JNTRODUCTION: Frank and Gyárfás [1J have shown that for fully

reducible digraphs the minimum cardinality set of vertices inter

secting all cycles equals the maximum cardinality set of vertex

disjoint cycles. Furthermore, there are polynomial time alg�

rithms for finding such a minimum set of vertices [4-6J for this

family of digraphs, whereas the same problem is well known to

be NP-hard in the general case [2-3J. More recently, Wang, Lloyd

and Soffa [9J defined another family of digraphs, called cX

clically reducible, which also enables the computation of the

above sets in polynomial time. In addition, both these families

of digraphs can be recognized in polynomial time [8-9J. However,

as noted in [9J, the fully reducible digraphs neither are con

tained nor contain the cyclical1y reducible ones. In the present

paper, we define a new family of digraphs, named connectively

re.ducible, and present the following results:

validA proQf that the above m;n-max equa�;ty ;$( i )

for them.

(ii A polynomial time algorithm which reçognizes di

graphs of this kind and finds the corresponding minimum and maxi

mum sets, of vertices and cycles, respectively for digraphs of

the family.

digraphsiii A proof that the connectivelly reducible

contain both the fully and cyclic.ally reducible ones.

The following. is the plan of the paper. In Section 2,

we present the concepts of critical vertices and cycles, in

which are based the proposed results. These lead to the idea of

critical sequences and connectively reducible digraphs, defined in

Section 3. A characterization of the proposed family of digraphs

is given in Section 4. The min-max theorem is proved in Section

5, whereas in the following we formulate the polynomial time a..!.

gorithm for finding the minimum and maximum.sets. The algorithm

is based on the characterization previously described. The

proofs that .connectivelly reducible digraphs contain cyclically

and fully reducible ones are presented in sections 7 and 8

respectively. Some further remarks form the last section.

Throughout the paper, D denotes a digraph with vertex
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set V(D) and edge set E(D). If v e: V(D) and VI ç V(D) then D-v

and D-V' represent the digraphs obtained from D by removing v

and VI, respectively. We use the term component meaning a

strongly connected component of D. A component is trivial if it

consists of a �ingle vertex. T(D) denotes the subset of vertices

of D wh i c h a r e t r i v i a 1 c omp o ne n t s a n d T ( D) = V ( D ).- T ( D ) ..A cyc 1 e

� or feedback vertex � of D is a subset of vertices, denoted

a(D), intersecting all cycles of D. Two cycles w.hich are vertex

disjoint are simply called disjoint. The notation B(D) repr�

sents a set of disjoint cycles. In an acyclic digraph, if there

is a path from vertex v to w then v is a.n ancestor of w, and w a

descendant of v; in additlon if vlw then v .is a .proper ancestor.

and w a proper descendant. Finally, we employ the same notation

to represent some operations in sets or sequences, the me�ning

being clear from the context.

2. CRITICAL VERTICES ANO CYCLES

In this section we present the concept and properties

of critical vertices and cycles of a digraph,. in which are based

the results later describ�d.

A vertex v E V(D) is critical

i n d u c e d i n D b y [ v, DJ h a s a t 1

is a criticalcycle E.!.- v in D.

in D when the subgraph

east one cycle C. In this case, C

vertices and cycles.lemma relates criticaThe first

criticalLemma 1

in D.

: Let v be a critical vertex and C a

Then C contains v.cycle of v

.�: Suppose the contrary.. Then there exists a cycle

CI formed solely by vertices of some subset of T(D-v). Conse

quently, every vertex w E V(C1) belongs to a non triviàl comp.2

nent of the subgraph induced irl D by {v} U T(O-v). The latter con
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T(D-v)otradicts w e:

We now describe a condition for two classes to be dis

tinct

i n D . Then

Proof: We consider vtw, otherwise the result is trivi

al. If v E: [w,DJ then v belongs to a trivial component of D-w,

that is, every cycle passing through v contains also w. Since v

is also critical, there exists a cycle C formed .by a subset of

trivial components of D-v. By lemma 1, C contains v. That is, w

is a trivial component of D-v and then w E: [v,DJ. Consider now a

vertex ztv,w such that z E: [w,DJ. In this case, every cycle CI

containing z passes through w. Since w E: [v,DJ we conclude that

C I a 1 s o c o n t a i n s v. T h e n z E: [v, DJ a n d h e n c e [ v, DJ = [w, DJ .T h e

converse is immediate, since v i [w,DJ implies [v,DJ=[w,DJ, be

c a u s e v E: [ v, DJ D .

The next lemma asures that any critical cycle contains

critical vertices of its class.al

vertices in D such that

and only if it contains

�: Suppose there exists in O some cycle C con

taining v, but not w. Then C remains a cycle in o-w. Because C

contains v, it follows that v can not be a trivial component of

O-w. Consequently, v t [w,Ol. Then we apply lemma 2 and conclude

that [v,OJ;t'[w,OJ, which contradicts the hypothesis. Therefore C

contains both v and WO.

�

There are certain vertices which may belong to more

than one distinct class of a digraph. These vertices satisfy the

following condition.

n D sLemma 4:� Let v,w be critical vertices

[ v, OJ ;l [ w , DJ ' a n d z e: [ v, DJ n [ w 't DJ .T h e n t h e r e

cyc 1 e i n D c o n t a i n.i n 9 z .

is no

Jçh

cri

that

tical



Proof: Suppose the lemma false. Then there is a criti

cal cycle C of v which contains z. Because [v,DJ1[w,DJ we con

clude by lemma 2 that w t [v,DJ. Hence w t V(C). On the other

hand, v � V(C). Consequently, C remains a cycle in D-w. Since

z � V(C), z can not be a trivial component of D-w, i.e.,

z t [w,DJ, which contradicts the hypothesis o.

criticalThe next lemma describes a condition for two

cycles to be disjoint.

c, c I

i f

lemma 5: Let v,w be critical vertices in D, and

critical cycles of v,w, respectively. Then C,CI are disjoint

a n d o n 1 y i f [ v, DJ l' [ w , DJ .

Proof: Suppose C,CI disjoint and [v,DJ=[w,DJ. In this

case, according to lemma 3, °both cycles C,CI contain both verti

ces v,w. Then C,CI are not disjoint, a contradiction. That is,

[v,DJ/[w,DJ, necessarily. Conversely, when [v,DJ;l[w,DJ we apply

lemma 4 to conclude that no vertex of C or CI can belong to
[ v, DJ n [ w , DJ .T h e r e f o r e C, C I a r e d i S j O i n t O .

vertiwe discuss the effect of removing criticalNow,

ces.

Then

Proof: If [V,�J:f[W,DJ we must prove that w remains

critical after removing v. Let C be a critical cycle of w in D.

The idea consists of showing that C is also a critical cycle of

w in D-v. Let z be a common vertex of [v,DJ and [w,DJ. By lemma

4, we know that there is no critical cycle of D containing z.

That is, z i V(C). In addition, since every vertex z' � V(C)

n e c e s s a r i 1 y b e 1 o n 9 s t o [w , DJ we c o n c 1 u d e t h a t z I i [v , DJ .

Therefore, C is preserved in D-v and w remains critical. The co�

verse is simple, as follows. If w is critical in D-v then

w i [v,DJ, necessarily. Otherwise, if w � [v,DJ either w i V(D-v)

or w becomes a trivial component in D-v. In none of these cases

can w be a critical vertex inD-v, a contradiction. �ow, when

w i [v,DJ we apply lemma 2 and conclude that [v,õJ:f[w,DJo.
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;n D. Then

Proóf.: Initially, we consider the hypothesis [v,DJf[w,DJ.

I f z E [ v, DJ t h e n z t [ w , DJ .Gt h e r w i s e, z wo u 1 d b e a c r i t i c a 1

ver t e x b e 1 c n 9 i n 9 t o [ v, DJ a n d [ w , DJ ' .s i m u 1 t a n e o u s l.y ; t h e n , b y

lemma 2, [v,DJ=[z,DJ and [w,DJ=[z,DJ, i.e. [v,DJ=[w,DJ a contra

d i c t i o n .N o w , [ v, DJ = [ z , DJ i m p 1 i e s t h a t v c a n n o t b e .a c r i t i c a 1

vertex in D-z, by lemma 6. Also, [w,DJ1[z,DJ means that v must

be a critical vertex in D-z, since no critical cycle of w in D

can contain z, according to lemma 5..Therefore, [v,D-zJ f [w,D-z]

and the lemma is valid for this case. If z E [w,DJ we apply a

similar argument. It remains to analys� the situation

z i [v,DJ ' [w,DJ .Suppose the lemma fálse, that is, [v,D-zJ=[w,D-zJ

and let C be a critical cycle of v in D. Then w i V(C), since it

follows from the hypothesis that w t [v,DJ. In addition, C must

contain some vertex x E [z,DJ, x;r!z. Otherwise, C would remain as

a critical cycle of v in D-z; and because [v,D-zJ=[w,D-zJ we co.!:!.

clude by lemma 3 that C also contains w, a contradiction. Conse

q u e n t 1 y, i n f a c t x E: [z , DJ .I n a d d i t i o n , s i n c e C i s a c r i t i c a 1

cycle of v in D we know that x E: [v,DJ. In the present situation ,

v a n d z a r e t w o c r i t i c a 1 ver t i c e s i n D s u c h t h a t [ v, DJ 1 [ z , DJ an d

x i s a common vertex of [v, DJ and [z, DJ .By 1 emma 4, we can see

that there is. no critical cycle in D containing x. Therefore, C

does not exist, which contradicts the fact that v is a critical

vertex. Consequently, [v,D-zJ1[w,D-zJ and the proof of necessity

is completed. Conversely, let the hypothesis [v,D-zJ;r!�,D-zJ.

There are four cases to consider:

( i) z e: .[ v, DJ , [ w , DJ .

Then by lemma 2, [v,DJ=[w,DJ=[z,DJ. In this case, [v,V-zJ=[v,DJ-{z}

a n d [ w , D -z J = [ w , DJ -{ z } .T h a t i s , [ v, D -z J = [W , D -z] , c o n t r a d i c t i n 9

the hypothesis. Therefore, this case does not occur.

i s ,That

[ w , DJ .and z e;
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( i v) z t [ v, DJ , [ w , DJ .

T h e n [ v, DJ 1 [ z , DJ a n d [ w , DJ 1 [ z , DJ .L e t C a n d C I b e c r i t i c a 1 c .l

cles of v and w in D, respectively. By lemma 6, we conclude that

v and w remain critical in D-z and therefore C and CI are criti

cal also in D-�. We now apply lemma 5 to D-z and find out that C

and CI are disjoint. Next, using again lemma 5,. but to t.he di

graph D instead, we finally conclude that [v,DJ1[w,DJ. This com

pletes the proof o.

�

3. CRITICAl SEQUENCES

In arder ta describe the class af cannectively

ducible digraphs we need the fallawing definitians.

re

Let D be a digraph and S={v ,. ..,v} a sequence of ver
1 k

tices of it. The value k is the léngth of $, while the symbol S

j

We alsodenotes the subsequence {v ,...,v }, for any j, 1�j�k.

write S

1 j

to represent the empty sequence �. T.h e n o t a t i o n
o

means the digraph induced in o. by the subset of vertices

for example, D(SThen,

D(S

j

T(O-S ) .

j

triviis the "digraph formed by the non

o

The digraph D(S ed the resulting ofal components of O. is ca

j

;n D(S )s . If each vertex v is critical then s is a
j j j-1

critical sequence of D, 1�j�k. In this case, additionally, if
.-�

D(S) does not contain any critica.l vertices then S is a complete

��i-t-i c a-l. s e q u e n c e, o r s i m p 1 y , c o m p 1 e t e s e q u e n c e. N e x t� a ver t e x

v E V(D) is strongly � critical if there is no critic .

quence of D containing v. Finally, D is connectively

when the subgraph induced in it by the subset of all

non critical vertices is acyclic.

ai se

reducible

strongly

For example, the d;graph of f;gure 1 has only one cr;tl

cal vertex, namely v. In add;t;on, {v�. ;s ;ts only cr;t;cal se

quence, wh;le the removal of th;s vertex destroys all cycles.

Therefore, ;t ;s connect;vely reduc;ble.
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Next, we establish relations between critical vertices

and resulting digraphs.

~

of

Then

Lemma 8: Let D be a digraph, S a critical sequence

i t a n d v, w c r i t i c a 1 ver t i c e s i n D s uc h t h a t [ v, DJ = [ w , DJ .

v E V(D(S)) implies:

( i ) =

.

(ii) w e: V(D(S) and

; ; ; ) v, w r e m a; n c r; t ; c a 1 ver t ; c e s .; n D ( S )

, ...,v }. We use induction in k. IfLet S={vProof:
k1

k=O the lemma is trivially true. When k>O, assume it valid for

all critical sequences of length at most k-1. Let ve: V(D(S )).
k

Then v e: V(D(S )) and we can apply the induction hypothesis to

k-1

conclude that

k -1 )J ,)J
k-1

[w;D(S( i ) =

) ) ,
(ii) I W E V(D(S and

k-1

~

;n D(Siii) I v,w are both critical

k-1

are a" critiWe can now observe that vertices v,w,v
k�

Therefore, we can apply (;)1 to lemma 7 andcal in D(S ). con

k&

(D(S ))=T(D(S )-vclude that

kk k-1

we can apply (i) to
This proves

leads to w e: V(D(S ) ) assuring
k

( ; ;, )

~~
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Finally,

'/ [v

k

k -1 )J , D ( S .)J ,
k-1

[v,D(S

otherwise v i V(D(S , a contradiction. Therefore., we can apply

;n D(S .Similary for w.

k

lemma 6 to obtain that v is critica

k

The proof of i i i is now completed o.

We now introduce the conce�t of representatives of O.

Let D be a digraph and R D)={.v,...,v} some subset of
1 k

critical vertices af it. R(O) is a critical representative -subset,

ar simply a representative, af O when the fallawing canditians

are bath satisfied:

[ v, O] .

j

( i ) -1
1"

ii) w � V(D) is a critical vertex of D �

[v ,DJ=[w,DJ, for some i, 1�i�k.
i

In other words, a representative of O is a maximum

cardinality subset formed by critical vertices belonging to dis

tinct classes of O.

The next lemma shows a relation between

tives and critical" sequences of a digraph.

represent!

Let S be a sequence farmed by vertices af a

representative af O, in any arbitrary arder. Then S is a criti

cal sequence af O.

Lemma 9:

n k . f

lemma

vertices

i s

i
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critica in D(S
[v

o i j

apply lemma 6 to conclude that v

, O] # [v ,o],and i#j. Consequently, we can

s critical in D(S }.

J

1�j<k. Repeating iteratively this argument it r.esults th.at v

tion, t foll
for

i s
k

sequence of D o.

4. CHARACTERIZATION OF CONNECTIVEI-V RrnllrTRI J:" nT�Dl1Dt./<:

Consider solving the recognition problem for con

nectively reducible digraphs. A first idea might be to apply the

definition and recognize as a member of this family every di

graph D whose subgraph induced by its strongly non critical ver

tices is acyclic. To use this strategy we would need previously

to devise a method for finding the set of all. strongly non criti

cal vertices. It seems dif.ficult to solve the latter problem

directly from t�e definition, since to identify these special

vertices we would need to generate all possible complete se

quences of D, whose number can grow exponentially with IV(D)I.

In this section, we prove a convenient characterization for this

family, which enables to recognize connectively reducible .di

graphs after constructing just one complete sequence.

rheorem 1: A 11 complete sequences of a digraph D

the same resulting digraph.

have

The

showing

�: Let S be an arbitrary complete sequence.

proof consists of defining a canonical sequence SI and

that D(S)=D(S' ), as below detailed. We start by SI.

�Constructing SI: Let R(D) be a representative of D. A

canonical sequence SI Q.f. D is recursiv.ely defined as follows. If

R(D.)=� then S'=�. Otherwiset SI is formed by the vertices of

R(D).t in an arbitrary ordert followed by a canonical sequence of

D-R(D).

In addi

1k

ows from emma 7 that
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To verify that the above construction al!ways finds a
i

complete sequence of D, we use induction in the length kt of SI.

If k'=O. the �esult is. correct, since .SI:;:0 means RciD)=0 and there

can be no crit;cal sequence without cr;tical vertilces. Otherw;se,

assume the construction correct for lengths at moslt k-1. From

the definition, we know that SI is fdrmed by the vi'ertices of

R(D), followed by a canonical sequence of D-R(D), :which we now

denote by SII .The leading vert;ces of SI, i .e. R(q) ,. form a

critical sequence of.D, according to lemma 9. On t!he other hand,
I

using the induction hypothesis we conclude that SI'i is a complete

sequence Qf D-R(D). At this point we can apply thei definition.

and asure that SI is a complete sequence of D, whichi proves the

correctness of the above construction. i

i

To show that D(S =D the idea consistls of

forming S into SI through the application of somé idifferent oper

ations. Each operation can result in alterations iln S. ln thi�
I

case, we must guarantee that the resulting digraphi of the

quence remained the same.. If we asure the invarianlce of
,

through the process we obtain DI S =D SI c which woluld prove

theorem.

( s I ) trans

se

D(S)

the

Two

re

S'

i s

We use four different operations to tranisform S.

of them replace certain vertices ofS by others, wlhile the

maining operations simply change the order of the lsequence.

I

I
I

Now, we describe the transformation froml S into

i

together with the proofs of invariance of D(S) in ,the process

The current sequence S is denoted by {v ,. ..,v }, iwhile R(D)

1

precisely the representative of D which SI

k :

c o n t a i nis .

con

case,

Operation 1: For each vertex v � R(D) veirify if S
I

ta.ins some criticaJ vertex w e: [V�DJ. In the affirlmative

rep 1 ace \1J by \' i n S .

nd D(S) pr

v,

bot

ThE

mple. Let

[ v, DJ ,

The proof that S is mantained complete a

served after the end of the above oper'ations is Sl

a c c o r d i n 9 t ó t h e h y p o t h e s i s , t h a t .i s', v E: R D ) , w i

critical vertices in D and w=v for some i, 1�i�k.1
i

thatlemma 8 we concludeand applyingWE: V(D{S

i -1

'e

,w

:h

�n
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v e: V(D(S ) and that V,W are both critical vertices i n

D(S

i -1

belonging to a same class in it. Therefore, by lemma 2,
i -1

[v,D(S
i -1

That is, S is mantained complete and D(S

of the vertex replacements.

.)J .

1 -1

Hence, D(S -v and D(S -w coincide

i -1

p r e s e.r ve d a f t e.r each

After operation 1, S may not contain yet a 11 vertices

of R(D). The transformation to include in S the remaining de

sired vertices is given below.

�

Operation 2: For each v e: R(D)-S, determine the

j�1 such that v is a critical vertex in D(S ), but not

value

i n

j-1

D(S by v ;n $.and next replace v

j j

We now describe the proof of correctness of operation

2. We need to show that the new sequence S contains R(D), after

all transformations. The argument is inductiv.e. If R(D)-S=0

there is nothing to prove.. Othe�wise, choose v e: R(D)-S. Ope!::.

ation 2 identifies the value j�1 satisfying

v e; V(D(S -V(D(S
j-1 j

.com

Because

We need to asure that such value j does exist. Since S is

plete, D(S ) does not contain critical vertices.
k .

it follows that v is critical D(Sv e: R(D), i n Thus, there

;n D(Sexists necessarily j, 1�j�k,

o

such that v is critical

in D(S There are two alternatives to consider,

j-1

namelybut not

v E: V(D(S

j

ar nat. s non critical i nIn the first case, v
j

D(S by hypothesis. However, Becausethis can not occ�r.

in D(S

j

and vare both critical and v i V(D(S i tv

j

fo

j-1 j J

[v,D(S j -1 )J 1 [ vlows that
lemmabyapplying

j
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;n D(S6 we would conclude that v remains critical contra) , a
j

ity is v t .V(D(STherefore, the only possibi Indiction.

j

;n D(Sand vare critica andthis case, using again that v

j-1j

)J = [v

j-1 j
[v,D(S , D ( S )J .

j-1

That is,lemma 6, we obtain

)J .[v,D(S )J = D(S

[v ,D(SD(S = D(S

j j-1 j-1 j-1 j j-1"
�

�
s is stilaftet' replacing v by v, complete. Furthermore,Hente,

j

y wt-v Because, if w=v

j

succesively

thenfor any vertex w E R(D), necessGri

)J = [ w , D I )J .

j-1 j-1

j

applying[ v, D ( S ( s In this case,

contradicts

by V in S in

j

)creases by one the number of vertices of R(D

This completes the proof of operation 2.

which appear in S.

After operat;ons 1 and 2, S necessar;ly conta;ns RD, .

However, ;n order to transform S ;nto SI we need the vert;ces of

RI-D) to appear ;n the lead;ng pos;t;ons of S. Th;s ;s

compl;shed by the follow;ng.

ac

e: R(D) suchOperation 3: If S contains some vertex v

j

interchange the positions oft R(D) , j>1, the.nthat v

j-1

E: R(D)no suchRepeat the operation untiand v i n s . vv
Jj j-1

exists in S

1 e mm a 7 wo u 1 d 1 e a d u s t o [ v, DJ = [ w , DJ ' w h i c h

V,we: R(D). Therefore, each repTacement of v
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number of vertices of R O) which are at the right side of v i n

s . If displacement (v =o for al E: S-R(D) then

i

óperation 3v

Other

that

i

is not performed and its correctness follows trivially.

wise, S contains necessarily a vertex v e; R(D) such

j

t R(D), 1 < j� k . is critical in D(S ), andv In this case, v
j j-1

n D(S On the other hand

j-1

clearlyalso
� o

[v ,D(S )] ,
i

l' f o'r a 11 1� i < j

Because, otherwise, if for some i vertices v belong toand v

i j

n D(Sa same class lemma 2 v

j i

)). Similary, we conclude that v

,t' V(D(S
) then according to

i -1

e: V(D(Swhich contradicts v

j j

ares critical in D(S

j-1

1�i<j. Consequently, and vv
;-1 j-1 j

both cr;t;cal vert;ces and belong;ng to d;st;.nct classes ;n

D ( S ) .N o w , we a p p 1 y 1 e m.m a 6 t o c e r t ; f y t h a t v; s a 1 s o c r; t ;
j-2 ;-1

;n D(S )-v

" .

Therefore, we can interchange theca positions
j-2

and vof v obtained

j

;n s and asure that the new sequence so

j-1 j

is still critical and complete. Besides, D(S) is also preserved.

Because D(S ) in both sequences, old and new, equals the di

j

graph obtained by removing the trivial

D(S ) -{v ,v }. On the other hand,

ofcomponents

the change of positions

j-2

between v

j-1 j

and v decreases byasures that displatement ( v
j-1 j j-1

This completes the proof of correctness of operation 3one unit.

of

they

T h e 1. e a d i n 9 ver t i c e s o f S a r e n o w e x a c t 1 y t h e s e

R(D), However, we need them in S with the same ordering as

are in SI, This is the purpose of the 1ast operation be1ow

Operation 4: Reorder the vertices of R(D)

to obey the same ordering as they appear in SI.

asn S, so
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The correction of it is simple. The sequence formed in

S by the vertices of R(D} in its new ordering is itself critical,

according to lemma 9. Besides, D(S is the digráph obtained

the new

I R ( D) I

by removing the trivial components of D-R(D). Therefore,

sequence S is álso complete and D(S is mantained.

.

.
,

Consider now the sequence S after al'l above operations

and let us complete the transformation from S into SI. In both

sequences the IR(D) I leading vertices coincide, respectively.

Now, remove R(D) both from S and S'. If D-R(D)=0 then S=SI. Othe�

w i s e, S- R ( D) i s a c om p 1 e t e s e q u e n c e o f D.- R ( .D ) .Al s o, S I -R ( D) i s

a canonical sequence of it. lri addition, D(S)=D(S-R(D)) and

D(SI )=D(S'-R(D)). Next, apply the four described operations to

S-R(D) which would transform it into a new sequence having .the

same leading IR(D-R(D))I vertices as S'-R(D), while preserving

its resulting digraph. Then remove R(D-R(D)) from both S-R(D)

and S'-R(D) and so on iteratively. We can then conclude that any

arbitrary complete sequence of D has the same resulting digraph

as the canonical one. This completes-the proof of theorem 1 o.

The next prc�ositions.follow directly from the above

proof

complete sequences of a digraphCorollary 1:

length.

Al have

the same

Corollary 2:

plete sequence of ;t.

only ;f D(S)=�.

Let D be a digraph and S an arbitrary com

TheR D is connectively reducible if and

..

�
5. THE MIN-MAX THEOREM

Let O be a cónnectively reducible digraph.

O) I

then

; s

let

the
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subsets of vertices a.(D)={v ,.. .,v} and cycles 8(D)={C , .., c }
k1 k

cycle of v 1� j� k .

1

First,where C is a critica wein D(S

j-1

Since D

llary 2.

is connectively

Consequently,

re

for

j j

show that a(D) is a cycle cut of D.

ducible, D(S )=�, according to coro

k

1�j�k, such that Cany cycle C of D(S there exists an index j,
o

, but not ;n D(S Therefore C containsis a cycle in D(S

jj-1

[v ,D(S

j

-

)J. Suppose that C does not contain v

j-1

�

.,

some vertex w e:

j

}J. ,Then w t T(D(S contradictiona)-v
j

is in factHence, a

j-1

c contains v

j

cycle cut. Next, we examine 8(0). Suppose there e.xists a pair of

distinct cycles C, C E 8(0) containing a common vertex z.

because

which

ip p-1

contradicts z E V(D(S

p

cand z e: V(C Therefore, c , can

q-1 q p q

not contain common vertices. Hence, a.(D) and 8(D) are respectiv�

lya cycle cut and a set of vertex disjoint cycles of D, having

the same cardinality. Therefore the first is minimum and the

second maximum o.

THE ALGORITHM6.

con

and

i s

.

A p o 1 y n o m i a ,1 t i m e a 1 9 o r i t h m f o r r e c o 9 n i z i n 9

nective1y reducib1e digraphs and finding minimum cyc1e cuts

maximum sets of disjoint cyc1es for digraphs of this fami1y

a direct consequence of coro11ary 2 and theorem 2.

The algorithm below accepts as input an arbitrary di

graph D and .computes one of the following alternative results.

Either it confirms that D is co.nnectively reducible and simu.l

taneously exhibits a minimum cycle cut and maximum set qf dis

joint cycles, ar it reports that D is not. connectively reducible



In the initial �, let i :=O, define the digraph

the sets a:=8:=� and unmark all vertices. In the generalo :=o,

terminates

affirma

�t if there. are no unmarked vertices the process

(O is connectively reducible iff 0 is acyclic; in the

i

tive case, a and s are respectively a minimum cycle cut and maxi

mum set of disjoint cycles of O). Otherwise, choose any unmarked

ver t e x v, m a r k i t a n d c o n s t r u c t c 1 a s s [ v, O J .N e x t , v"e r i f y i f
i�

[v, D Jby the vertices of containsthe subgraph induced in De

í

If it does contain, the'n include v in a,

:=O -[v,O J, unmark a 11 vertices of O

include C i ri

and

sorr:e cycle C.

Bt define D

;+1i+

repeat the generali by 1. step Dincrease

i i

In any case,

i nThere is no difficulty to implement this algorithm

O(n2(n+m)) time, n=IV(D) I and m=IE(D) I.

ANO CYCLICALLY REOUCIBLE OIGRAPHS7. CONNECTIVELY

In this section we show that the family of connectively

reducible digraphs contains the cyclically re.ducible ones. We

start by presenting the definitions of the latter.

D
(O )

is blocked in
-

-'

�

L e t o b e a d i 9 r a p h. A ver t e x w. e: V

if there exists a path in O from w to some vertex z e: T(O) .The

-�-� s o c i a t e d d i 9 r a p h A ( v, O) � O r e 1 a t i ve t o v i s t h e s u b 9 r a p h i n

duced in O by the �ubset of V(O) that contains v and all verti

ces that are not blocked in O. A W-sequence � O is a sequence

of vertices {v ,. ..,v} such that there are cycles in each of

1�i�k, where O =O and

1 k

the associated digraphs A , D( v ,
i i -1 o

-V(A(v , DD = D

i -1 i i -1i

is acyclic then. t�e W-sequence is complete.naddition, if O

k

thatFinally, a cyclically reducible digraph is precisely one

admits a complete W-sequence.



.18

di
I. .

The !followlng lemma relates the above assoclated

graphs and classes as defined in Section 2.

( D) . If w is a
Lemrr

vertex of A(v.

10: Let D be a digraph and w E V

D ) t h e n w b e 1 o n 9 s t o [ v, DJ .

�: If w ;s a vertex of A(v,D) then w=v or w ;s not

blocked ;n D-v. In the f;rst case, the lemma holds. Cons;der

then wtv. By def;n;t;on, there ex;sts no path ;n D-v from w to

some vertex z ,e: T(D-v). Therefore we: T(D-v), other\,l;se there ;s

a contradictidn if we choose z as a vertex located in the same

!
component as of D-v, and such that (w,z) e: E(Dl. Therefore,

u s i n 9 t h e d e f 1 n i t i o n o f c 1 a s s we .c on c 1 u d e t h a t w e: [ v, DJ .

~~

Finally,

Theorem 3: Let D be a cyclically reducible digraph.

ely reducible.

Then

D ; �

Other

The

~

�: If D i s acycl i c the theorem i s tri.viql.

a complete W-sequence S={v ,. ..,v }, k11.D admitc:wise,
1 .k

.proof consist of showing that S is a complete critical sequence

of D. The arg�ment is inductive. Suppose the result true for

alldigraphs �dmitting W-sequences with fewer than k vertices.

Since D is cydlically reducible, A(v ,D) has some cycle C.

~

By
1

i sver t i c e s o f C b e 1 o n 9 t o [ v � DJ .T h a t i s � v
1 1

the non trivial components of

lemma 10, a 11

In additio.n,critical in D

~

,O) )D- V(A(v
1

are identical

lemma 10i sbecause v

1

, DJ[vV(A(v ,O)) ç

11

connecti\J
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Therefore, ty removing v from D and applying the induction h.l

pothesis to D-v

1

we conclude that S is a complete critlcal se
1

quence of O. Furthermore, D i s acyclic because b is cyclically
k

Then the resulting digraph D(Sreducible. is empty, sinGe

T( D = T(D(S ), O�i�k,
i i.

§

.. that is, D is connectively reducible o

ANO FUllY REOUCIBlE OIGRAPHS8. CONNECTIVELY

We prove in this section that the connectively

ducible contain the fully reducible digraphs.

re

dis

the

when

;f

dominator

A f1ow. digraph is a digraph D together with a

tinguished vertex s e: V(D), ca11ed �, that reaches a11
ve r t i c e s of D. We s ay t h at w e: V ( D) .d om i n a t-e s .v E V -D -

every path in D from s to v contains w. D is fu11y reducib1e

every cyc1e C of D contai.ns som.e vertex w e: V(C) which dominates

a 11 t h e ver t i c e s o f C. .I n t h i s c a s e, we c a 11 w a -dQ-m i n a t o r o f C

and a1so of D. The edge of C which is directed to the

of this cyc1e is ca11ed a � �.

Theorem 4: Let D be a fully reducible digraph

T h e n D i s c o n n e c t i v"e 1 y r e d u c i b 1 e .

having

root s.

Proof: Let L be the set of back edges of D. The arg�

ment ;s by ;nduct;on on ILI. If ILI=O then D ;s acycl;c and the

theorem ;s tr;v;al. Otherw;se, suppose the result correct for

all fully reduc;ble d;graphs w;th fewer than ILI back edges. Let

w E V(D) be a dcm;nator of D located at a max;mal d;stance of s

;n D-L. That ;s, ;n the acycl;c d;graph D-L no proper descendan.t

of w ;s a dom;nator ;n D. Let C be a cycle conta.;n;ng the back

edge (v,w) and z E V(C), ztw. Suppose �here exists a cycle CI ;n

D such that z E V(C1 ), but w t V(CI ). let wl be the dom;nator of

CI. Observe that w does not dom;nate wl ;n D, otherw;se there

would be a path ;n D-L start;ng ;n w and conta;n;ng wl, wh;ch

Q.
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contradicts w as a dominator of O at a maximal distance of s in

O-L. Hence there exists a path in D from s to wl that does not

contain w. Consequently, this path s-wl followed by the path

wl-z in CI forms a path originated in the root of D and inter

secting C in some vertex other than its dominator w, which

tradicts D as fully reducible. Therefore, if z e; V(C) n v

then necessarily w e; V(CI ). In this case, every vertex of C

becomes a trivial component in o-w. That is, w is a critical ver

tex in O, and C is a critical cycle of w in D. Removing w from D

and taking the non trivial compon�nts of D-w we obtain t.

sulting digraph D({w}). Let SI be a complete critical

of o({w}). Note that D({w}) has fewer than ILI back edge

is, this digraph is connectively .reducible according to �

duction hypothesis. By corollary 2, we conclude that the

sul.ting digraph of SI in D({w}) is empty. Consequently, the

quence S formed by w followed by SI is a complete sequence in

satisfying D(S)=�. Therefore, 0 is connectively reducible D.

con

( c I )

�

�
.

he

se

s ,

th

re

se

D

9. CONCLUSIONS

namedWe have described a new family of

tonnectively reducible and proved that

digr"aphs D

= maxIB(D) I

m�nla.(D)

The proofs lead to polynomial time algorithms for finding the

minimum set .of vertices a(D) and maximum of cycles B(D). Furthe�

more, we have also proved that the proposed family of digraphs

contains two others for which similar properties hold, namely

the fully reducible an.d connectively reducible digraphs.

�

..

�

Less is currently known about the equivalent problem

for edges instead of vertices, regarding reducible digraphs. In

fact, it is not known if in a fully reducible digraph the mini

mum cardinali.ty set of edges intersecting all cycles equals the

maximum cardinality set of edge .disjoint cycles. Frank and

Gyárfás [1J h�ve conjectured that equalit� also holds in the

e d 9 e c a s e. p a r t i a 1 r e s u 1 t s i n t h .i s d i r e c t i o n we r e r e p o r t e d i n

[7J .

qL

e

jen

th

re

ce

at

i n
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