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Abstract

In this paper, we present and analyze a branching procedure suitable for branch-

and-bound algorithms for solving multiprocessor scheduling problems. The originality of

this branching procedure resides mainly in its ability to enumerate a1l feasible solutions

without generating duplicated subproblems. This procedure is shown to be polynomial

in time and space complexities. The main applications of such branching procedure are

instances of the MSP where the costs are large because the height of the search tree is

linear on the number of tasks to be scheduled. This in opposition to another branching

procedure in the literature that generates a search tree whose height is porportional to

the costs of the tasks.
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1 Introd uction

Nowadays, most multiprocessor systems consist of a set of identical processors with dis-

tributed memory. Each processor has its own memory, and two processors communicate

exclusively by message passing through an interconnection network. This kind of system is

been widely used in a broad spectrum of scientific and industrial applications with excel-

lent cost effectiveness. From this cost effectiveness point of view, and considering the vast

investment in sequential algorithms of such applications, we are lead to the direction of au-

tomatically parallelizing these sequential algorithms in order to run them in multiprocessor

systems. This is the main motivation to the optimization problem considered in this paper ,

namely the multiprocessor scheduling problem.

An important feature of many of the sequential algorithms mentioned in the previous

paragraph is that they can be described in terms of a set of modules to be executed under

a number of precedence constraints. Each module requires a certain amount of time to

be executed. A precedence constraint between two modules determines that one module

must finish its execution before the other module starts its execution. The most important

question related to the execution of the modules verifying the precedence constraints in a

multiprocessor system concerns the minimum execution time with a minimum number of

processors. Due to the importance of this optimization problem, it has been extensively

studied by a large number of researchers. Given its difficulty, most of the authors dedicated

more attention to ways of efficiently solving problems corresponding to weaker versions of

the optimization problem introduced above (for an overview, see [1,2,4,9,11] and references

therein). In this paper, we consider the following and slightly easier version of the problem,
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where the characteristics of the multiprocessor system are available as input (as they would,

in reality) .

Multiprocessor Scheduling Problem (MSP) -Given a program, which must

be divided in communicating modules to be executed in a given multiprocessor

system under a number of precedence constraints, schedule these modules to the

processors of the multiprocessor system such that the program 's execution time

is minimized.

In order to computationally solve the MSP, we suppose that we are able to provide, be-

forehand, a precise description of the program in terms of computation cost of the modules

and their precedence relations. The modules are supposed to interact, and these interactions

take place through communications between modules. Thus, we suppose that the commu-

nication cost between interacting modules are known beforehand. Therefore, in order to be

executed, each module of the program must be scheduled on some processor of the multipro-

cessor system. Consequently, we also suppose that we know, beforehand, the performance

features of the processors and of the interconnection network. Notice that the performance

features of the interconnection network are important since modules interacting in the pro-

gram may be scheduled to different processors, which leads these processors to communicate

during the execution of the program.

We call schedule any solution to the MSP. In general, finding an optimal schedule to an

instance of the MSP is computationally hard because the problem belongs to NP-hard in

the strong sense. Considering the time complexity, there is no pseudopolynomial optimiza-

tion or fully polynomial time approximation algorithm, unless p = N p [4, 5, 6, 12, 14].
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tree should be viewed as the initial problem where some tasks have been scheduled. A

branching procedure takes a subproblem as an input and generate a set of new subproblems.

Each new subproblem corresponds to the original one plus some tasks scheduled. The root

of the search tree is the initial problem, and the leaves are schedules. A depth-first branch-

and-bound algorithm was proposed in [7]. In this algorithm, the branching procedure builds

a search tree whose height depends on the time for execution of each module. In situations

where these times for execution are relatively large, the height of the search tree becomes

huge. In this paper, we propose a branching procedure that generates a search tree whose

height depends linearly on the number of modules to be scheduled. Using this branching

procedure, several different branch-and-bound search strategies can be implemented. For

instance, a depth-first strategy as in [7] can be implemented. A positive feature of this

strategy is that it requires relatively small storage space.

The following sections are organized as follows. A more formal statement of the problem

and the mathematical definitions used in this paper are presented in Section 2. In Section

3, we describe an enumeration algorithm based on our branching procedure. The proof

of correctness of this enumeration algorithm is given in Section 4, which yields that our

branching procedure performs correctly in constructing the search tree. Section 5 is devoted

to the complexity analysis of our branching procedure. Finally, the conclusions and remarks

for further research are given in Section 6.

2 Definitions and statements

In this section, the MSP is formally stated.
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2.1 The multiprocessor system

In this formulation, the following assumptions on multiprocessor systems are made.

I. We are given a set of m identical processors p = {Pl, ...,Pm}.

II. The interconnection network is a fully connected network of identical communi-

cation links.

III. Each processor executes at most one task at a time.

IV. Task preemptions are not allowed.

V. Each processor can compute and communicate through several of its links simul-

taneously.

These assumptions can be considered "realistic" since they can be verified in several commer-

cial parallel computers, as IBM SP2, Cray T3D, or CM 5. With relation to assumption II,

we consider that the interconnection network can be physically or virtually fully connected.

What is required is that the communication cost is independent of the processor sending and

recelvmg a message.

2.2 The task digraph

We now define more formally the parameters characterizing a program. Each module of the

program to be scheduled is called a task. A task is said to be scheduled when it is allocated to

be executed on a processor at a given start time. The program is described by a (connected)

directed acyclic graph (DA G ), whose vertices represent the n tasks 'T = { t1 , ..., tn} to be

6





processor Pj taking into account the precedence relations. For each task ti, denote P(ti, Sr)

and r(ti, Sr), respectively, the processor and the rank in this processor Ofti under the schedule

Sr. The computation of the introduction dates for the tasks in the schedule Sr follows a

list heuristic whose principIe is to schedule each task ti to p( ti, Sr) according to its rank

r(ti, Sr). In addition, the task is scheduled as soon as possible depending on the schedule

of its immediate predecessors. We call these (partial) schedules minimal (partial) schedules

(for example, Sr of Figure 1).

A list heuristic builds a schedule step by step. At each step, the tasks that can be

scheduled are those whose alI predecessors have already been scheduled (free tasks). Then,

we choose one of such tasks, say ti, according to a certain rule R1. Additionaly, we choose,

according to another rule R2, a processor, say Pj, to which ti will be scheduled. We then

schedule ti to Pj as soon as possible. This algorithm finishes when all tasks have been

scheduled. At an iteration k of this algorithm, let O(k) be the set of tasks remaining to

be scheduled, and OF(k) be the set of free tasks from O(k). Initially, 0(0) = T and

OF(o) = {tl}. Thus, at an iteration k > O, we choose a task ti from OF(k), we take it

out from both O(k) and OF(k), and we schedule it to P(ti, Sr), as soon as possible. This

algorithm finishes when OF(k) = 0. It is clear that the schedule obtained is minimal with

respect to the makespan.

2.4 The multiprocessor scheduling problem

In what follows, we use the notation below:
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Sr: represents a partial schedule where r tasks, O ~ r ~ n, are scheduled. For an example,

see Figure 1. An initial task is a task, scheduled on some processor Pj in Sr, with the

smallest start time among the tasks scheduled on Pj in Sr. Similarly, a terminal task

is that with the largest completion time. A schedule Sn is said to be attainable from

Sr if the tasks that are scheduled in Sr are scheduled in Sn on the same processor and

with the same start time as in Sr. Notice that to each partial schedule Sr is associated

a set of schedules attainable from Sr. If the tasks til' ti2 , ..., tir are scheduled in Sr ,

then the set NT(Sr) = T\ { til' ti2 , ..., tir} is the set of non-scheduled tasks of Sr;

FT(Sr): set of free tasks, i.e., the non-scheduled tasks of a given Sr whose alI predecessors

have already been scheduled. For an illustration, see Figure 1;

Sr(j): set of tasks scheduled on Pj in Sr;

g(Sr): load of Sr, given by its time to completion or makespan,

g(Sr) = m.ax g(Sr(j)),
1~3~m

where g(Sr(j)) is the total execution time of the tasks scheduled on Pj. See Figure 1.

In Figure 1, an example of an instance of the MSP consisting of a DAG with five tasks

to be scheduled to three processors is shown, where many of the above parameters are

illustrated.

The MSP can be stated formally as the search of a schedule that minimizes the makespan.

The MSP can hence be stated as follows.

9



( ~

Pl ~ l

P2 t

P3 t2

01234567
.time

Multlprocessor graph

Partia1 schedule Sr:
Costs:

tl ~ Pl
e(i) = i mod 2 + 1 u.t.

t2 ~ P3
c(i.j) = 2 u.t.

t3 ~P2
ts

Critical path: {t1,t3,t4.tS} Free tasks: FT(Sr) = {t4}
DAG Critica1 path length: 7 u.t. Load: g(Sr) = 6 u.t.

Figure 1: Example of a scheduling problem.

minimize g(Sn)

such that Sn is a minimal schedule.

3 All minimal schedules enumeration algorithm

In this section, we concentrate our discussion on enumerating all minimal schedules based on

a branchig procedure in such a way that each partial schedule is enumerated exactly once.

Starting from an algorithm that enumerates all minimal schedules at least once, we reach an

enumeration algorithm where each partial schedule is visited exactly once, by two successive

refinements on the branching procedure used.
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An enumeration algorithm consists of a sequence of iterations, as can be seen in Figure 2.

In each iteration, a partial schedule Sr in a list i:, is selected and split. Informally speaking,

splitting a partial schedule Sr means that if r = n, then it is a minimal schedule that

is eliminated from the enumeration; otherwise, the set of schedules attainable from Sr is

split, which generates a number of new partial schedules to be inserted in i:,. Each schedule

attainable from Sr is also attainable from some of the new partial schedules. The execution of

the algorithm starts with the list i:, containing the partial schedule So. The execution finishes

when i:, = 0, meaning that alI schedules were enumerated. More formally, an iteration of

the enumeration algorithm is composed of three rules:

1. Selection of partial schedules: the rule for selecting partial schedules from the list i:,.

See line 2 of the algorithm in Figure 2.

2. Splitting: given a partial schedule Sr, this rule generates a set of new partial schedules

S:+l' S;+l' ..., S:+l' each of which different from the others and consisting of Sr plus

exactly one task ti E FT(Sr) scheduled on some processor. Notice that the set of

schedules attainable from each new schedule represents a subset of the set of schedules

attainable from Sr. This rule is applyed as in line 3 of the algorithm in Figure 2, and

corresponds to the branching procedure.

3. Insertion of partial schedules: the rule for inserting partial schedules into the list i:"as

shown in lines 1 and 4 of the algorithm in Figure 2.

In what follows, we specify the implementation of each of the rules defined above.
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list L:;/* initially empty */

algorithm all-minimal(So) :
list SPL;
partial schedule Sr ;

1. insertion({So},L:);
while L: # 0 do

2. Sr +- selection(L:) ;
if (r = n) then

eliminate Sn;
else

3. SP L +- splitting(Sr) ;
4. insertion(SP L, L:) ;

Figure 2: Sequentialenumeration of schedules.

3.1 Ali minimal schedules rules

The following rules implement an algorithm that enumerates alI minimal schedules at least

once.

3.1.1 Selection

Select the first partial schedule from the list .c in a LIFO ( last in first out) order .

3.1.2 Splitting

To implement this rule, the tasks are ordered in the decreasing order of their levels in the

DAG. The levellvi of a task ti, i .$: n, is defined to be the longest path length from ti to tn

( tn is at leveI e( n ) ) .To each immediate successor tik of ti corresponds a path ck from ti to
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sequence of task schedulings leading So to a partial schedule Sr, i.e.,

u(Sr) =< til -t Pjl' ..., tir-l -t Pjr-l' tir -t Pjr > .

For an illustration of these parameters, see Figure 3. The concepts of ancestork and founder

shall be introduced in Section 3.3.

1 2 3 4 5 time

Pl - l

P2 t3 t5 t7

P3 t2 t4

A partial schedule.

q(S5) =< tl -+ Pl, ...,t5 -+ P2 > ancestorl(S6,q(S6» = S5

( " ) t ancestor4(S6,q(S6» = S2
q .;'6 =< tl -+ Pl, ..., 7 -+ P2 >

founder(S6,q(S6» = S5
founder(S5,q(S5» = S2 2

Figure 3: Example of a sequence of splittings.

Each splitting of a partial schedule Sr corresponds to the scheduling of the tasks in

FT(Sr) as follows.

Branching rule 1 Given a partial schedule Sr, r ~ 1, and a sequence u(Sr), the splitting

rule generates every partial schedule Sr+l for which U(Sr+l) =< U(Sr),ti -t Pj > such that

ti E FT(Sr).

The idea behind this definition is that the task ti is scheduled on Pj if and only if ti is a
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free task. It is clear that this algorithm enumerates alI minimal schedules at least once.

3.1.3 Insertion

Inserts the partial schedules generated by a splitting into the list .c.

3.2 A voiding processor permutations

A drawback of the previous enumeration algorithm is that "equivalent" partial schedules can

be generated. In this section, we deal with processor permutations.

Definition 1 (Processor permutation) A partial schedule S; is a processor permutation

of another partial schedule Sr if there is a permutation

{P1T(I) , P1T(2) , ..., P1T(m) }

of the processors such that S;(jk) = Sr(7r(k)), for k = 1,2, ..., m.

For an illustration, see Figure 4. The first partial schedule in that figure could be modified

by exchanging processors P2 and P3, which corresponds to a processor permutation where

7r(2) = 3 and 7r(3) = 2. In order to avoid these situations, we redefine the splitting rule.

Branching rule 2 Given a partial schedule Sr, r ~ 1, and a sequence O"(Sr), the splitting

rule generates every partial schedule Sr+l for which O"(Sr+l) =< O"(Sr) , ti -t Pj > such that:

i. ti E FT(Sr); and

ii. thete is no free processor Pj' , j' < j .
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In Section 4, we demonstrate the correctness of this splitting rule in avoiding processor

permutations.

3.3 A voiding intersections

A partial schedule Sr could be generated from two ( or more) different partial schedules if Sr

could be generated by scheduling more than one of its terminal tasks. Recall again Figure

4. The partial schedule S6 of this figure could be generated by scheduling t7 on P2 or t4 on

P3. We shall define a third splitting rule avoiding this undesirable situation. We need some

more formalism.

Definition 2 (Intersection) If a partial schedule is generated from the splitting of two

different partial schedules, then we say that there is an intersection.

We denote ancestorl(Sr, (J"(Sr)) the partial schedule obtained by the sequence (J"(Sr-l) =<

til -+- Pjl' ..., tir-l -+- Pjr-l >, for a given Sr. Recursively, we define

ancestork ( Sr , (J" ( Sr ) ) = ancestor 1 ( ancestork-l ( Sr , (J" ( Sr ) ) , (J" ( Sr-l ) ) ,

for some k > 1. Finally, the founder partial schedule of a given partial schedule Sr is defined

in function of tir as follows. If tir is an initial task in Sr, then we call founder(Sr, (J"(Sr))

the initial partial schedule So; otherwise, if tir is not an initial task in Sr, then let tiq be the

task scheduled to Pjr immediately before tir in Sr. Also, let Sq be the ancestor of Sr in (J"(Sr )

generated by the scheduling oftiq. Then, we call founder(Sr,(J"(Sr)) the partial schedule Sq.

For an illustration of these parameters, see Figure 3.

16



An important notion in the splitting operation is the dependence relation of task schedul-

ings. Informally, given a partial schedule Sr and two tasks, namely til and ti2' scheduled

in Sr, til is said to be dependent of ti2 in Sr if Sr cannot be constructed by scheduling til

before scheduling ti2. More formally, let Sr be a partial schedule, and til and ti2 be two tasks

scheduled on Pjl and Pj2' jl # j2, respectively, in Sr. The task til is dependent of ti2 in Sr if

(ti2' til) belongs to the digraph D(Sr) = (7, A(Sr)), where:

7 is the set of tasks; and

A(Sr) is the set of arcs formed by:

1. the transitive closure of the arcs in the DAG and

2. every arc (ti, ti' ), if ti and ti' are scheduled to the same processor in Sr, and ti is

scheduled before ti' .

Notice that the dependence relation just defined is transitive and antisymmetric. For the

sake of simplicity, we say that til is dependent of ti2 or that til depends of ti2 and we often

omit the corresponding partial schedule where it is clear by the context. As an example,

consider the partial schedule S7 in Figure 4. In this case, t4 depends of t9 because t9 is

scheduled on Pl before t2, and P2 is a predecessor of 4. Then, considering S7, t4 cannot be

scheduled before scheduling t9.

Each splitting of a partial schedule Sr corresponds to the scheduling of the tasks in

FT(Sr) as follows. It is assumed that the representation of each partial schedule contains

its corresponding sequence of task schedules.
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Branching rule 3 Given a partial schedule Sr, r ~ 1, and a sequence a(Sr), the splitting

rule generates every partial schedule Sr+l for which a(Sr+l) =< a(Sr ), ti -+- Pj > such that:

i. ti E FT(Sr),. and

ii. there is no free processor Pj' , j' < j; and

iii. every task ti' scheduled in a(Sr) from founder(Sr, a(Sr)) until Sr is such that:

.i' < i. or,

.ti is dependent of ti' .

The idea behind this definition is that the task ti is scheduled to Pj if and only if a(Sr)

is the only possibility for the generation of Sr. Hence, if Sr can be generated by another

sequence a'(Sr), then the splitting does not generate Sr from a(Sr). Intuitively, we can see

that this avoids situations where the same partial schedule is generated several times during

an enumeration process. We shall formally see in the next section that this is indeed the

case and that alI minimal partial schedules are generated nonetheless.

Example 1 Figure 4 shows a DAG, whose costs are alI equal to 1, and two partial schedules.

The first one can be generated by scheduling t4 on P3 using the splitting rule 3. We can

observe that, when scheduling t4, the tasks t5, t7 and t9 have already been scheduled. However,

the scheduling of t4 is dependent of the scheduling of t5, t7 and t9 since t2, an immediate

predecessor of t4, is scheduled on Pl after t9, which is itself an immediate successor of t7.

On the other hand, the second partial schedule cannot be generated by scheduling t4 on P3

according to th;e splitting rule 3 because, in this case, the scheduling of t4 is not dependent
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of t7 (t2 is scheduled to P3). Nevertheless, this second partial schedule can be generated by

scheduling t7 on P2.

~ lVl = 6 1 2 3 4 5 6 7 8 9 10

/ \ Pl tl t9 t2

P2 t3 t5 t7

P3 t4

lV4 = 4 lV5 = 4
I generated by scheduling t4.

t6 lV6 = 3 @ Iv7 = 3

~ ~ ;; ~ ~ ~ t, ~ ~ ~ ~ ~ ~~ Pl tl P2 t3 t5 t7

t9 Iv9 = 2 P3 t2 t4

S6: A partial schedule that cannot be

= 1 generated by scheduling t4.

Figure 4: Example of splitting.

4 Correctness of the enumeration algorithm

In this section, we provide a proof of correctness of the enumeration algorithm, which guaran-

tees that splitting rule 3 performs correctly, i.e., alI minimal partial schedules are generated,

but that neither processor permutations nor intersections are generated. The first lemma

concerns processor permutations and splitting rule 2.

Lemma 1 If splitting rule 2 is used during an execution of the enumeration algorithm then,

for every (minimal) partial schedule Sr, either it is generated or a processor permutation of
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Sr is generated.

Proof: We demonstrate the lemma by induction on r. For r = O, the lemma is trivially

verified since there is no tasks scheduled. Consider a partial schedule Sr, and let ti and Pj be

any terminal task in Sr and the processor to which ti is scheduled, respectively. Supposing,

without loss of generality, that ancestorl(Sr,U(Sr)), the partial schedule that differs from

Sr by ti (which is not scheduled in ancestorl(Sr, u(Sr)), is generated, we show that, if Sr is

not generated, then a processor permutation of Sr is. Then, by contradiction, suppose that

Sr violates the lemma, i.e. neither Sr is generated nor a permutation of Sr is generated. If

Sr is not generated from ancestorl(Sr, U(Sr)) by scheduling ti to Pj due to splitting rule 2

then there exists a free processor Pj' in ancestorl(Sr,u(Sr)), f < j. In this case, it is easy

to see that the permutation of Sr where 7r(j') = j, 7r(j) = f and 7r(j) = j for j # j,j', is

generated. Contradiction. D

In the following lemma, splitting rule 3 is used in order to assure that only one processor

permutation of each partial scheduling is generated.

Lemma 2 If splitting rule 3 is used during an execution of the enumeration algorithm then,

for alI partial schedules Sr, at most one processor permutation of Sr is generated during an

enumeration process.

Proof: An immediate consequence of the splitting rule 3 is that, for alI partial schedules that

are generated, if ti is the initial task of a processor Pj and ti' is the initial task of a processor

Pj', j' < j, than either i' < i or ti is dependent of the initial task in Pj'. Using this fact, we

prove the lemma by contradiction. Suppose that two processor permutations Sr and S; are
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generated, both satisfying the conditions in splitting rule 3. Let ti(Pl)' ti(P2)' ..., ti(Pn) be the

starting tasks of processors Pl, P2, ..., Pn, respectively, in Sr, and ti(p1r(l»)' ti(p1r(2»)' ..., ti(p1r(n»)

the starting tasks in S~. Consider processor Pk such that k # 7r(k). If i(Pk) < i(P1T(k))

(the situation where i(Pk) > i(P1T(k)) is analogous) then, in Sr, there are a < n -k initial

tasks greater than i(P1T(k)) or dependent of ti(p1r(k»). However, in S~, there exist n- k initial

tasks greater than i(P1T(k)) or dependent of ti(p1r(k»). Thus, since the precedence relation is

antisymmetric, if the initial tasks of Sr are ordered according to splitting rule 3, then the

same is not true for the initial tasks of S~. Contradiction. O

In what follows, we analyze the role played by splitting rule 3 in avoiding intersections.

The following lemma says that this rule allows the generation of alI minimal partial schedules.

Lemma 3 If splitting rule 3 is used during an enumeration process, then every partial sched-

ule Sr can be generated or a processor permutation of Sr is generated.

Proof: From lemmas 1 and 2, we know that splitting rule 3 guarantees that at most one

processor permutation can be generated. In order to demonstrate lemma 3, we will show

that

for each partial schedule Sr whose generation is allowed by splitting rule 2,

(1)
there exists a sequence a(Sr) that is generated with splitting rule 3.

We will demonstrate (1) by induction on r. Again, (1) is trivially verified for r = O since

there is no task scheduled. We suppose (1) valid for alI partial schedules containing r -1

tasks scheduled, then we show that (1) is also valid for a partial schedule Sr, r > O, whose

generation is allowed by splitting rule 2. Suppose a sequence a(Sr) of task schedulings. If
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a(Sr) can be generated with splitting rule 3, then the lemma is proved. Otherwise, we will

exhibit another sequence that is generated.

Let ti' -+ Pj' be a task scheduling in a(Sr) such that alI tasks scheduled after ti' in a(Sr )

are not dependent of ti'. Such a task exists if splitting rule 3 is not satisfied. Let Sr-l be

the partial schedule whose task schedulings are those of Sr but for ti' -+ Pj'. By lemma 1,

there exists a processor permutation II(Sr-l) that is generated using splitting rule 2 and, by

the induction hypothesis, there exists a sequence a(II(Sr-l)) that is generated. Finally, we

include ti' -+ P7r(j') to a(II(Sr-l)), which can be done since alI tasks on which ti' is dependent

are scheduled in a(II(Sr-l)). D

Lemma 4 If splitting rule 3 is used during the execution of the enumeration algorithm then

there are no intersections.

Proof: Once more, the proof is by induction on r, being the basis of the induction (r = O)

trivially satisfied. Suppose that splitting rule 3 renders the lemma valid for alI partial

schedules with less than r, r ~ 1, tasks scheduled. Let Sr-l be a partial schedule with

r- 1 tasks scheduled, and a(Sr-l) its sequence of task schedulings (which is unique by the

induction hypothesis). Additionally, let Sr and S; be two partial schedules with r tasks

scheduled such that there exist two sequences a(Sr) =< a(Sr-l), ti-+ Pj > and a(S;). Two

cases are possible:

Case 1: The sequences oftask schedulings generating S; do not include a(Sr-l). Then,

there exists a partial schedule SI-l, 1 < r, such that SI-l E a(Sr) and SI-l E
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a(S~), but S: fj; a(S~) and S: fj; a(Sr), where

ancestorl(S" a(S,)) = ancestorl(S:, a(SD) = S,-l.

See Figure 5. By the induction hypothesis, S, and S: do not intersect. As a

consequence, Sr and S~ do not intersect because S, C Sr and S: C S~ .

Case 2: The sequence a(S~) of task schedules generating S~ contains a(Sr-l). Let

a(S~) =< a(Sr-l), ti' -+ Pj' >. By contradiction, let S" 1 > r, be a partial

schedule such that there exist two disjoint sequences of task schedulings leading

Sr and S~ to S" respectively, as shown in Figure 5. Let al and a2 be such

sequences. Clearly, (ti' -+ Pj' ) E al and (ti-+ Pj) E a2 since S, contains both Sr

and S~. As shown in Figure 5, we define Sh to be the partial schedule generated

by ti' -+ Pj' in al, and S'2 to be the partial schedule generated by ti-+ Pj in a2.

Additionally, a(Sh) and a(S,2) being two sequences generating Sh (containing

a(Sr) and ti' -+ Pj' ) and S'2 (containing a(S~) and ti-+ Pj), respectively, we

observe that founder(Sh, a(Sh)) and founder(S,2' a(S,2)) are generated by task

schedulings in a(Sr-l) because ti' and ti must be the first tasks scheduled to,

respectively, Pj' and Pj after Sr-l. Thus, ti' -+ Pj' and ti-+ Pj violate splitting

rule 3 in al or a2. Contradiction.

O

We consider in the following theorem the general case where no other equivalence among

the partial schedules than processor permutations and intersections occurs. For particular
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ti .,,

0"1 0"2

~ S'l Sl2

ti-+ Pi S~

0

Case 1 Case 2

Figure 5: Two cases in the proof of lemma 4.

instances where equivalence among the partial schedules can be identified, the splitting rule

3 is no more a necessary condition.

Theorem 1 An enumeration of partial schedules generates a minimum number of (minimal)

partial schedules if and only if splitting rule 3 or an equivalent is used.

Proof: To prove the "ir' assertion, we examine the situation where a weaker rule is used.

In this case, partial schedules not generated using splitting rule 3 are generated. Then, by

lemma 1, we know that all partial schedules are generated using splitting rule 3. Conse-

quently, redundant partial schedules are generated in the case where the weaker rule is used

(processor permutations or intersections).

For the necessary condition, we suppose that a stronger rule is used. In this case, contrary

to the previous case, there exist some partial schedules that are not generated, but that are
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generated using splitting rule 3. Using lemmas 2 and 4, we verify that alI cases of processor

permutations and intersections are already avoided. Consequently, the stronger rule may

avoid the generation of some minimal partial schedules. O

5 Complexity analysis

In this section, we show that a splitting procedure derived from the splitting rule 3 has

polynomial time and space complexities. For this purpose, call two partial schedules Sr and

S; diJJerent if Sr is not a processor permutation of S;, and Sr and S; do not intersect. Let

us consider the following problem.

Splitting problem: given an instance of the MSP and a generic set R of different

partial schedules with exactly r tasks scheduled, O $ r < n, list alI different

partial schedules Sr+l such that Sr+l =< (J(Sr ), ti-* Pj >, where Sr E R,

ti E FT(Sr) and Pj E P.

Clearly, a procedure that solves the splitting problem is able to enumerate alI different

partial schedules if applied recursively. In order to analize the complexity of enumerating alI

minimal schedules avoiding processor permutations and intersections based on the splitting

rule 3, we will describe a splitting procedure derived from the splitting rule 3 and analyze

its complexity. This splitting procedure solves the splitting problem, then its complexity

is an upper bound for alI splitting procedures solving the splitting problem. We define

some specific functions to be used in the procedure in Figure 6. This procedure checks

splitting rule 3. Suppose (J(Sr) =< til-* Pjl' ..., tir -* Pjr >. Then, define the function
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preV(ik, O"(Sr)), 1 ~ k ~ r, to be the function mapping ik to ik-l, if k > 1, or to -1

otherwise. Equivalently, define next(ik,0"(Sr)) = ik+l, for all1 ~ k < r. Additionaly, define

proc(ik,0"(Sr)), 1 ~ k ~ r, as the processor on which tik is scheduled in O"(Sr), i.e., jr.

algorithm split(DAG, O"(Sr ) ) :
integer mark[m] ; /* all initialized with FALSE */
integer i,j,i';

i f- prev(ir, O"(Sr )) ;
j f-proc(i,0"(Sr));

1. while (i ~ O) AND (j # jr) do
if i > ir then

if NOT mark[j] then
i' f- next(i,0"(Sr));

2 .while (i' # ir) AND (NOT mark[proc(i', O"(Sr)]) AND
(NOT (ti-* ti')do

i' f- next(i',0"(Sr));
if (i' = ir) then

3. return FALSE;
else

mark[j] f- TRUE ;
return TRUE ;

Figure 6: Verifying splitting rule 3.

Lemma 5 below says that the algorithm splitting in the Figure 7, which corresponds to

our splitting procedure, solves the splitting problem when applied to alI partial schedules in

the set R.

Lemma 5 For a given Sr, splitting rule 3 is verified if and only if branch returns TRUE.

Proof: What procedure branch does is to check, for each task ti from founder(Sr, O"(Sr))

until the last task scheduled in O"(Sr) (tir), whether i > ir or whether tir depends of ti in Sr.

The latter is equivalent to check whether some of the immediate successors of ti is scheduled
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on a processor whose terminal task tik verifies the follwoing property: tir is dependent of tik

in Sr. Since procedure branch examine the tasks in the loop of line 1 in the inverse order

of their schedulings, then, for every processor Pj' different from Pj, the first task examined

among those scheduled on Pj' is the terminal task. Additionaly, when an arbitrary task ti

examined in the loop of line 1, then its immediate successors scheduled in Sr have already

been examined. Then, it follows that line 3 is executed if and only if splitting rule 3 is not

verified. D

The time complexity of branch is determined by the loops in the lines 1 and 2. The time

required by these loops in the worst case is bounded by E;=ll, that is, O(n2). However, it

is clear that the average case turns in time much smaller than the worst case. The storage

requirements is O ( 1) .

algorithm splitting(Sr) :
partial schedule Sr+l ;
set of partial schedules S ;

S~0;
1. for each task ti E FT(Sr) do
2. for each processor Pj E p s .t .

there is no free processor Pj', j' < j do
3. if branch(DAG,0"(Sr)) then

Sr+l ~ Sr U (ti-+ Pj) ;
FT(Sr+l) ~ FT(Sr)\{ti};

4. O"(Sr+l) ~< O"(Sr),ti -+Pj >;

S~SU{Sr+l};
return S;

Figure 7: The splitting procedure.

The time complexity of the splitting procedure is determined by four components. First,

the loop in the line 1 is executed O(n) times, while the loop in the line 2 is executed
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O(m) times. Checking splitting rule has time complexity O(n2) (line 3). Finally, setting

O"(Sr+l) in line 4 takes O(n) time. The additional storage space required by splitting, besides

the O(m + n2) storage space required for representing the DAG and the multiprocessor

system, corresponds to the variables S and O"(Sr+l). These storage space requirements are,

respectively, O(mn) and O(n).

We have proved the following theorem, which indicates, as desired, that our splitting

procedure requires polynomial time and storage space.

Theorem 2 The time complexity of the splitting problem is O(mn3) and requires O(mn)

storage space.

We conclude this section with the following recall: a splitting procedure based on the

splitting rule 1 turns in O(mn) in the worst and average cases, but generating a lot of

processor permuations and intersections. Consequently, splitting performs much better in

practice.

6 Concluding remarks

In this paper, considered the multiprocessor scheduling problem. Being an NP-hard problem

in the strong sense, branch-and-bound algorithms appear to be an adequate method for

finding approsimated solutions with proved accuracy. In order to efficiently implement such

algorithms, the branching problem must be faced up. We have shown in this paper that this

problem is polynomial in time and storage space. Therefore, we proposed a polynomial time

and storage space branching procedure. This implies that a branch-and-bound algorithm
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whose associated search tree has height equal to the number of tasks in the MSP instance

can be efficiently implemented. This in opposition to branching procedures in the literature

where the height of the search tree is proportional to the costs of the tasks. A branch-and-

bound algorithm using the branching procedure proposed in this paper applies mainly to

instances of the MSP where the costs involved are large.
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