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Abstract. In this paper, we discuss hamiltonian problems for reducible flowgraphs. The

main result is finding, in linear time, the unique hamiltonian cycle, if it exists. In order to

obtain this result, two other related problems are solved: finding the hamiltonian path starting

at the source vertex and finding the hamiltonian cycle given the hamiltonian path.
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1 -Introduction

Reducible flowgraphs are digraphs that model the control flow of computers programs.

In this paper we discuss hamiltonian problems for this family.

Some path problems have already been studied for flowgraphs. Gabow, Maheshwari

and Osterweil [GM76] show an efficient algorithm to solve the multiple node constrained

path problem; they also show that the impossible pairs constrained path problem is

NP-complete, even for an acyclic digraph. Related to impossible pairs is the notion

of must pairs; Ntafos and Hakimi [NH79, NH81] show that finding a path that does

not violate any must pairs is an NP-complete problem, even for acyclic D-structured

flowgraphs.

Recently, dynamic algorithms have been developed for reducible flowgraphs. [RR94]

and [CR88] have solved the problem of incrementally maintaining the dominator tree

of a reducible flowgraph under edge insertions and deletions.

The main result of this paper is finding, if it exists, the hamiltonian cycle of a reducible

flowgraph; we prove that this cycle is unique. In order to obtain this result two other

related problems are solved: the hamiltonian path in which the starting point is the

source of the flowgraph and the hamiltonian cycle, given the hamiltonian path. AlI the

problems studied here are known to be NP-complete if G is a general digraph [GJ79].



We solve these problems for reducible flowgraphs in linear time. These results have
been developed in [V97] .

In section 2 we present the background concepts needed. Section 3 presents the lin-
ear algorithm for the hamiltonian path starting at the source vertex of the reducible
flowgraph; section 4 presents the solution, also in linear time, for the hamiltonian cycle

problem in reducible flowgraphs.

2- Background and Notation

A digraph is a pair of finite sets D = (V, E) , where V is the set of vertices, E is the set

of edges and E ç V x V. A path of length k � O from vertex v to vertex w in D is a
sequence ofvertices [v = XO,Xl,... ,Xk = w] where (Xi,Xi+l) E E, O::; i < k. A path

[v] of length O is a trivial path. A cycle is a non-trivial path from a vertex to itself. A
digraph is acyclic if it contains no cycles. A hamiltonian path is a path in which every
vertex in V appears exactly once. A hamiltonian cycle is a cycle in which every vertex
appears exactly once, except the first and last vertices that are the same.

A flowgraph is a triple G = (V, E, s), where (V, E) is a digraph, s E V is a distinguished
source vertex, and there is a path from s to every other vertex in V. A directed rooted
tree is a flowgraph T = (V,E,r) with IEI = IVI-l.

Given v, w E V in a flowgraph G = (V, E, s), v dominates w if v lies on every path

from s to w. Thus, every vertex dominates itself and the source vertex s dominates
alI vertices in V. For every pair of vertices v, w E V, the greatest common dominator
GCD { v, w} is defined as the unique vertex z such that z dominates v and w and every
other common dominator of v and w dominates z .

A flowgraph can be traversed according to predefined rules, such as those of a depth first
search (DFS). DFS can be implemented as a recursive procedure that automatically
maintains a search path stack. Vertices are numbered according to the order in which
they are stacked ( dfsin( v) , Vv E V) and unstacked ( dfsout( v) , Vv E V) during the search.

As a result of performing a DFS on a flowgraph starting at the source vertex, the set
of edges is divided into four disjoint subsets, the tree, forward, back and cross edges,
respectively. The set of tree edges determines a directed tree rooted at s, called a depth
first tree. A description of DFS can be found in [Mc90], for instance.

Let G = (V, E, s) be a flowgraph and B, the set of back edges resulting from a DFS
on G. The acyclic flowgraph dag( G) =:= (V, E -B, s) is called the directed acyclic graph

( dag) associated to G.

The following are equivalent definitions for a reducible flowgraph G = (V, E, s) [HU72,

HU74]:

(i) Any DFS of G starting at s determines the same set B of back edges.



(ii ) G does not contain the forbidden subflowgraph SP ( s , x, y, z) , shown in Figure 1.

(iii) For every back edge (v,w) E B, w dominates v.

S

Figure 1: The forbidden subflowgraph (edges represent paths)

A topological ordering 'T of an acyclic flowgraph G = (V, E, s) is a bijective numbering

'T:V-+ {1, ..., IVI} ofits vertices such that V(v,w) E E, 'T(v) < 'T(w). An O(IEI)-

time algorithm for finding this ordering is to carry out a depth first search and order

the vertices in decreasing order as they are unstacked from the search path stack (i.e. ,
'T(v) = IVI + 1- dfsout(v),Vv E V) [Tar83].

A flowgraph G is supposed to be represented through its set of adjacency lists AG ( v) =

{w I (v,w) E E}, one for each v E V.

3- The Hamiltonian Path

The first problem that we consider is to find a hamiltonian path starting at the source

vertex s of a reducible flowgraph G = (V, E, s). Some results must be presented:

Lemma 1: Let G = (V, E, s) be a reducible flowgraph. If G has a hamiltonian path

starting at s, then this path is unique.

Proof

Let us suppose, by contradiction, that G has two distinct hamiltonian paths P1 and P2

starting at s. So, there must be vertices x, y E V such that x precedes y in P1 and y

precedes x in P2 :

Pl=[S,...,x,...,y,...] and P2=[S,...,y,...,x,...]

Hence, neither x dominates y nor y dominates x. Let z = GCD{x,y}. Clearly, z

precedes x in P1, z precedes y in P2 and there are subpaths [ z , ..., x] C P1 and

[z, ..., y] C P2 having only vertex z in common.



Let us consider now the subpaths Sl = [X, ..., y] C P1 and S2 = [y, ..., X] C P2.

Let S = {v E VIV E Sl A v E S2} -{x,y}. If S = 0, then G contains the forbidden

subflowgraph SP(s, z, x, y). If S is not empty, let t E S such that t precedes, in Sl, any

other vertex in S. Then, G contains SP(s, z, x, t). In both cases, G is not reducible, as

shown in Figure 2. I

Figure 2: Proof of lemma 1 (edges represent paths)

Lemma 2: Let G = (V, E, s) be a reducible flowgraph. If G has a hamiltonian path

starting at s, then this path 1ies on dag( G) .

Proof

Let P = [s, ..., v, w, ...] be the unique hamiltonian path of G starting at s. Let us

suppose, by contradiction, that ( v, w) is a back edge. As G is reducible, w dominates

v and w must precede v in any path starting at s. Hence, w appears twice in P, and

P is not hamiltonian. I

Lemma 3: Let G = (V, E, s) be a reducible flowgraph. If G has a hamiltonian path

starting at s, then dfsout(v),\iv E V is the same, no matter the depth first tree.

Proof

As the hamiltonian path lies on dag( G), this dag admits a unique topological ordering

7, where 7( v) corresponds to the position of vertex v in the hamiltonian path. Thus,

dfsout(v) does not depend on the depth first tree, since dfsout(v) = IVI + 1 -7(V),

\iv E V. I



By lemmas 1,2 and 3, we are able to present a linear algorithrn to determine whether a
reducible flowgraph G = (V, E, s) has a hamiltonian path starting at the source vertex

s. It is sufficient to verify whether dag( G) has such a path. The main steps are:

step 1: compute a topological numbering 7 for the vertices of dag( G).

step 2: for all v E V, test if there exists w E AG(v) such that 7(W) = 7(V) + 1.

Steps 1 and 2 may be performed simultaneously during a DFS on G, based on the

computation of dfsout( v) , v E V ( section 1) .As no new computations are added, the

algorithm complexity is the same of the depth first search for connected digraphs,

O(IEI).

It is important to observe that the results presented are only valid if the source vertex

s is taken as the starting point of the harniltonian path. Figure 3 shows a reducible

flowgraph; [d,e,f,b,c,s,a] and [d,e,f,s,a,b,c] are distinct hamiltonian paths, both

starting at vertex d.

Figure 3: Two distinct hamiltonian paths in a reducible flowgraph

4- The Hamiltonian Cycle

For a general digraph D = (V, E) , the problem of verifying if D has a hamiltonian cycle

remains NP-complete even if a hamiltonian path is given as part of the instance [GJ79].

However, for reducible flowgraphs, the knowledge of the hamiltonian path starting at

the source vertex is fundamental, as stated in the next theorem.

Theorem 1: If a reducible flowgraph G = (V, E, s) has a hamiltonian cycle, this cycle

is unique and consists of a hamiltonian path starting at the source vertex s and a back

edge ( V, s) , where v is the last vertex in the path.

Proof

Let us suppose, by contradiction, that G has two distinct hamiltonian cycles

C1=[S,Vl,...,VIVI-l,S] and C2=[S,Wl,...,WIVI-l,S].



By removing the last vertex ( s) in both cycles, we obtain two distinct hamiltonian

paths starting at s. Then, by lemma 1, G is not reaucible. .

Theorem 1 leads us to a linear-time algorithm for finding the hamiltonian cycle of a
reducible flowgraph G = (V, E, s) :

,
step 1: find the hamiltonian path of G starting at s; using the algorithm presented in

the previous -section;

step 2: if such a path exists, test if (v, s) E E, where v is last vertex in the path.

5- Conclusions

When dealing with paths in flowgraphs, the source vertex is often given an special

treatment. This fact motivated the solution of the hamiltonian path problem for re-

ducible flowgraphs starting at the source vertex. As it happens this path is shown to

have two important properties: if it exists, it is unique and can be determined in linear

time; furthermore, the knowledge of this path leads to the solution, also in linear time,

of the hamiltonian cycle problem.
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