

PM-PVM: A Portable Multithreaded PVM

c. M. P. Santos* J. S. Aude**

*NCE and COPPE -Federal University ofRio de Janeiro, Brazil
**NCE and IM -Federal University ofRio de Janeiro, Brazil

Abstract

PM-PVM is a portable implementation of PVM designed to work on SMP architect1lres

supporting multithreading. PM-PVM portability is achieved through the implementation

of the PVM functionality on top of a reduced set of parallel programming primitives.

Within PM-PVM; PVM tasks are mapped onto threads and the message passing

functions are implemented using shared memory. Three implementation appproaches of

the PVM message passing functions have been adopted. In the first one, a single

message copy in memory is shared by alI destination tasks. The second one replicates

the message for every destination task but requires less synchronization. Finall}', the

third approach uses a combination of features .from the two previous ones.

Experimental results comparing the performance of PM-PVM and PVM applications

running on a 4-processor Sparcstation 20 under Solaris 2.5 show that PM-PVM can

produce execution times up to 54% smaller than PVM.

1. Introduction

Symmetric multiprocessing (SMP) is currently common in nowadays desktop

computers. However, its potential parallelism is still very little exploited. PVM [I],

which is widely used in the development of parallel applications for heterogeneous

computer networks, can be an adequate environment to encourage and simplify the

development and migration of parallel applications on and to SMP platforms.

Unfortunately, however, most of the PVM implementations are not easily portable and

do not fully use the facilities available in these systems to improve the performance of

parallel applications.

PM-PVM (Portable Multithreaded PVM) is an efficient and portable PVM

implementation for Unix-like SMP environments, which maps PVM tasks onto threads

and implements PVM message passing functions using shared memory. Therefore, PM-

PVM also supports a hybrid paral1el prograrnming model based on message passing and

globa1 shared variables.

PM-PVM portability is achieved by implementing the ful1 PVM functionality on

top of a reduced set of para11el programming primitives supported by Mulplix, a Unix-

like operating system designed to run para11el applications within Multiplus, a DSM

multiprocessor [2]. Therefore, to port PM-PVM to different SMP platforms, it is only

necessary to implement this reduced set of primitives on such platforms. In fact, this has

a1ready been done for SolarisLWPs, Solaris threads [3] and Pthreads [4].

PLWP [5], TPVM [6] and LPVM [7] are previous efforts to develop PVM-like

environments based on threads. PL WP is a non-intrusive implementation of a PVM

thread-based system designed to work with a specific thread model. TPVM is also a non-

intrusive implementation. It does not support shared memory among threads and its

functions for sending or receiving messages are not re-entrant. LPVM implementation

modifies data structures used in PVM shared memory versions and provides re-entrant

message passing functions. However, the PVM user-interface is modified in order to

generate a thread and signal safe environment.

In contrast with these developments, PM-PVM is not based on previous PVM

implementations. Its new code tries to get as much benefit as possible from the use of

threads and shared memory. Nevertheless, PM-PVM and PVM user interfaces are very

similar , which simplifies the migration of existing PVM applications to SMP platforms.

Section 2 ofthis paper describes the PM-PVM prograrnming model and discusses

the additiona1 facilities offered by its hybrid para11el programming model. Section 3 gives

a brief description of the Mulplix primitives used in the PM-PVM implementations. In

Section 4, three different PM-PVM implementation approaches are presented. Section 5

discusses the performance results achieved with the use of PM-PVM and PVM on a

SparcStation 20 with 4 processors. The first group of tests eva1uates the performance of

the implementations of some PVM operations and Mulplix primitives using Solaris

LWPs and Solaris threads. The second group of tests compares the performance of

PVM and the different PM-PVM implementations for four para11el applications. Fina11y,

Section 6 summarizes the main conclusions and presents proposals of future work.~

2. The PM-PVM Model

A PVM application consists of a set of tasks running in parallel on a virtual

machine, typically a heterogeneous computer network. A PVM task has a unique

identification (tid) and is mapped onto a process within Unix-Iike systems. The tasks

comrnunicate among themselves through message passing. A message consists of the

destination task identification, the message tag and the list of data fragments. The

comrnunication is performed with the use of buffers. Each data fragment to be sent is

packed according to some kind of codification and stored in a buffer. At the receiving

end, it is firstly stored in a buffer and then unpacked. The PVM library provides

functions for: buffer handling; sending/receiving messages; defining the virtual machine

configuration; etc.

PM-PVM has been designed to be a portable PVM-Iike environment optimized

to run on SMP platforms with support to multithreading. PM-PVM implements the PVM

functions with the use of a reduced and simple set of primitives derived from the Mulplix

operating system. Instead of being mapped onto processes, PM-PVM tasks are mapped

onto threads. Hence, a PM-PVM application consists of a single process made up of

threads which run in parallel, share the process resources and comrnunicate among

themselves using shared memory, but fol1owing the message passing model at the user

leveI.

PM-PVM is almost ful1y compatible with PVM. Basical1y, only the pvm-spawn

function has had its user interface changed in order to become compatible with the

Mulplix thread model. Due to the compatibility issue, PM-PVM keeps the idea of

packing and unpacking message data through buffers, but with no data encoding.

PM-PVM supports global shared variables among its tasks. Global variables can

be used to store the initial values of an application data base, eliminating the need to send

this information to the tasks through messages. If each task has exclusive access to a

given fraction of the data base, the results of the task processing can also be stored

directly into the global variable area. This kind of hybrid paral1el programming model is

specially useful in applications which fol1ow the master-slave approach.

3. The Mulplix Primitives

The Mulplix operating system has a set of primitives to support the development

of parallel prograrnrning applications. PM-PVM uses these primitives for the~

implementation of PVM functions based on threads and shared memory. Since Mulplix

has a simQle and reduced set of Qrimitives" to Qort PM -PVM to different SMP Qlatforms"

it is on1y necessary to implement these primitives on top of some available thread

package for such platforms and use multithread .s'afe libraries.

The Muplix primitive, "thr-spawn", creates a group of threads. Its parameters

are the number of threads to be created, the name of the function to be executed by the

threads, an optional list of preferential processing elements for the execution of each

thread and a common argument. A synchronous creation of threads is performed with

the "thr-spawns" prirnitive.

Three additional primitives for thread control are: "thr-itf', which retums the

unique identification number of a thread; "thr-kilr', which allows any thread to kill

another thread within the same process; and "thr-term ", which forces the termination of

the thread.

Dynarnic shared memory allocation can be performed with the use of the

'.me-salloc" prirnitive. The "me-sfree" primitive is used to release previously allocated

regions of shared memory.

Mulplix supports synchronization mechanisms based on mutual exclusion and

partial ordering relations. F or the manipulation of mutual exclusion semaphores,

primitives are provided for the creation ("mx-create"), allocation ("mx-lock"), non-

blocking allocation (.'mx-test"), destruction ("mx-delete") and release ("mx-free") of

a semaphore. For partial ordering semaphores, which implement barrier-type

synchronization, primitives are provided for waiting on the event occurrence

("ev- wait") or for creating ("e\:.-- create"), asynchronous signalling ("e\� signaf'),

synchronous signalling ("ev-swait") and destroying ("e\�delete") an event.

4. Implementations of the PM-PVM Model

Within PM-PVM, information on the tasks is stored in the ta.s'k contraI vector ,

which is indexed by the task identification (tid). As the tid is a unique task identifier, no

access collision can occur and this data structure can be implemented as a simple global

vector. PM-PVM functions call the thr -id function to obtain the tid before accessing

information on a task within this vector.

Three different approaches have been used for the implementation of PM-PVM.

In the first one, named PM-PVM1, a message is shared by all destination tasks. There is

no message replication. Each task is initially associated with a vector of 4 buffers,

Additional buffers can be created in groups of 4. A buffer holds the message source task

identification, the message tag and a pointer to the message. The message holds a pointer

to its list of data fragments. A new fragment is allocated in memory for every packing

operation. The message also holds the reference counter, which stores the number of

references to it. Access to the reference counter is protected by a lock. In addition,

within PM-PVM1, each task has a pointer to the received message queue, where

message information is stored until a receive operation is performed.

The second approach, PM-PVM2, aims at optirnizing the message passing

procedure by reducing PM-PVM1 synchronization overhead in handling the reference

counter and in allocating memory for the data fragments. Within PM-PVM2, data

fragrnents are stored in a single vector, which is dynarnically allocated in 256-byte

blocks. Therefore, additional packing operations will only require memory allocation if

the previously allocated blocks have no room left to store the new data fragments. In

addition, PM-PVM2 elirninates the message reference counter by copying the message

to the destination tasks. PM-PVM2 buffer structure includes the data fragment vector

and all information held by PM-PVM1 message structure. When a message is sent, the

full contents of the buffer is copied to the destination task. The received message queue

is implemented through a linked list of buffer structures.

The third approach, PM-PVM3, is a combination of the previous ones. The

contents of a message is shared by alI destination tasks, as in PM-PVM1, but, on the

other hand, the message data fragments are stored in a vector of bytes as in PM-PVM2.

-PM-PVM1 message structure is preserved, but with a pointer to the data fragment

vector. This way, PM-PVM3 eliminates some synchronization needed in PM-PVM1 by

not using a fragment list and avoids the PM-PVM2 message replication overhead.

5. Performance Evaluation

PM-PVM implementations have been developed and tested on a Sparcstation 20

with 4 HyperSparc@100MHz processors and 128 Mbytes of memory. AlI programs

have been compiled using GNU C [8] compiler with all optirnization options enabled.

PVM version 3.3.11 for Solaris/Sun has been used in these experiments. In this version,

the cornrnunication among PVM tasks is performed using Unix streams sockets.

The experimental tests have been performed for PM-PVM implementations based on

Solaris LWPs and on Solaris threads. AlI results refer to the smallest execution time in

seconds achieved in at least 10 executions of the test programs. This rninirnizes the

interference on the measurements that might be caused by other programs that were

eventually running on the same machine.

lnitially, several experiments have been performed to evaluate the performance of

both the basic PVM operations and the Mulplix basic primitives used by the PM-PVM

implementations.
In relation to the performance evaluation of the Mulplix primitives, the

experiments have shown that the implementation based on Solaris threads of the thr -id

primitive, which is often used by the PM-PVM functions, is over 6 times faster than that

based on LWPs. In addition, implementations based on Solaris threads perform thread

context-switching faster and do not require explicit synchronization for handling dynamic

memory allocation, another frequently used operation. However, considering the

creation of threads, the implementation based on Solaris threads is 7 times slower than

that based on LWPs and it is also slightly slower when performing semaphore

lock/unlock operations.

Regarding the tests for performance evaluation of the basic PVM operations, all

implementations based on Solaris threads have a worse performance than those based on

L WPs when creating a large number of tasks, as already expected. However, they are at

least 80 times faster than PVM. Implementations based on L WPs can even be 250 times

faster than PVM. The tests have also shown that PM-PVMl performs worse than PVM,

PM-PVM2 and PM-PVM3 when packing multiple fragments. The time spent by PM-

PVMl on lM packing operations of a single integer is at least 4 times longer.

Concerning message transmission, PVM has shown to be at least 40 times slower

in sending and 25 times slower in receiving empty messages than any of the PM-PVM

implementations. Both PM-PVMl and PM-PVM3 are nearly twice slower than PM-

PVM2 in receiving empty messages. However, PM-PVM2 is almost 50 times slower

than both PM-PVMl and PM-PVM3 in sending messages consisting of a single fragment

with 10K integers due to the time spent on memory allocation and message copy.

5.1 Performance of paranel applications

The performances of PVM and the different PM-PVM implementations have

also been analysed considering four parallel applications: SOR, Bubble Sort, Gaussian

Elimination and VLSI placement using Genetic Algorithm. In all applications, the tasks

have been evenly distributed among the four available processors. For the PM-PVM

implementations based on Solaris threads, four L WPs have always been created, one on

each processor, with one or more tasks mapped onto each LWP. The PM-PVM versions

using Solaris threads are identified in the tables with test results by the termination M.

5.1.1 SOR

This application simulates the heat propagation process on a surface described by

a 192x192 array and having its borders always at 00 c. Initially the whole surface

temperature is set to 0° C. The center of the surface is then heated to 100° C for a short

time period (one single iteration). At each iteration, the temperature on each position is

evaluated as the average temperature on its 8 neighbours. The algorithm runs for 238

iterations until an equilibrium situation is reached. The parallel version of the SOR

algorithm uses the master-slave approach and each task processes a set ofrows.

Table 1 shows that PVM has the worst performance because it processes

message passing operations much slower than PM-PVM. With more than 8 tasks, PVM

performance gets much worse since the task idle time is too small to make process

context switching worth while. However, with PM-PVM, context switching is faster and

the performance improves with 8 tasks. Performance also improves with 12 tasks for

PM-PVM implementations based on Solaris threads and even with 16 tasks when PM-

PVM2st is used, since the message length decreases as the number of tasks increases.

oftasks 2 4 8 12 16
PVM 29.46 28.31 28.44 42.56 47.31

PM-PVM1 23.06 20.48 18.63 19.89 20.51
PM-PVM2 23.61 20.57 18.84 19.79 20.42
PM-PVM3 23.17 20.53 18.61 19.95 20.49
PM-PVM1st -19.89 17.26 16.96 17.12
PM-PVM2st -19.77 17.27 16.57 16.23
PM-PVM3st -19.74 17.26 16.82 16.90
SeQuential 40.00

Table 1: Performance of the SOR algorithm

With the PM-PVM hybrid parallel programming model, an optimized

implementation has been produced by avoiding the master to send sets of rows to the

slaves at each iteration. The array representing the surface is defined as a shared variable

and, since each slave operates on different rows, they are accessed without mutual

exclusion synchronization. Message lengths are reduced, but the number of messages

does not change to ensure the correct task synchronization at each iteration.

oftasks 2 4 8 12 16
PM-PVM1 21.48 18.70 16.48 17.59 18.19
PM-PVM2 21.14 18.33 16.12 17.04 17.19
PM-PVM3 21.47 18.66 16.44 17.47 17.88
PM-PVMlst -18.85 15.99 15.50 15.16
PM-PVM2st -15.86 13.79 13.22 13.12
PM-PVM3st -18.85 15.92 15.33 15.25

Table 2: Optimized SOR implementation

The performance results achieved with the optimized parallel SOR algorithm are

shown in Table 2. The much smaller message lengths improve the performance of all

PM-PVM implementations. In particular, PM-PVM2, which is more sensitive to the

message lengths, has shown the greatest improvement.

5.1.2 Bubble Sort

The bubble sort para11el implementation uses a master-slave approach and works

in two phases. The first one consists of dividing a vector with 96000 integers in sections

and sorting them in parallel. In the second phase, the ordered sub-vectors are repeatedly

merged together in pairs by a decreasing number of parallel tasks.

Table 3 shows that with 2 and 4 tasks, the algorithm execution time is reduced

with the square of the number of tasks, since the bubble sort algorithm complexity is

O(n2). With 8 or more tasks, the performance improvement is not so big, because the

tasks start competing by processors. With 16 tasks PVM performs worse than with 12

tasks -and much worse than any PM-PVM implementation. In addition, the message

length increase, as the algorithm progresses, also makes PVM performance worse-

oftasks 2 4 8 12 16
PVM 104.76 26.92 14.58 10- 78 15.56

PM-PVM1 104.17 26.23 13.28 8.98 6.84
PM-PVM2 104.15 26.34 13-36 9-10 6.99
PM-PVM3 104.17 26.25 13.28 8.96 6.84
PM-PVM1st -26.27 13.27 8.93 6.81
PM-PVM2st -26.33 13.38 9.04 6.98
PM-PVM3st -26.24 13.25 8.95 6.83
Sequential 466.86

Table 3: Performance of the Bubble Sort algorithm

5.1.3 Gaussian Elimination

This application performs the Gaussian elimination of a 960 x 960 matrix of real

numbers and evaluates its determinant. The initial task creates as many other tasks as

required and sends to them the range of columns onto which they should work. The

range of columns is associated with the tasks according to their tids. Every task reads the

fuII matrix from an input file. During the Gaussian elimination procedure, the task

holding the current pivot element calculates and sends the corresponding set of

multipliers to the tasks with bigger tids. Then, each task performs the necessary

calculations and sends its partial determinant result to the initial task that finds the final

determinant value.

oftasks 2 4 8 12 16
PVM 44.50 26.92 24.16 25.35 28.50

PM-PVM1 44.11 25.32 22.10 21.27 21.73
PM-PVM2 44.28 25.88 23.92 24.86 26.07
PM-PVM3 44.18 25.24 22.07 21.56 21.54
PM-PVM1st -25.26 19.23 18.10 17.78
PM-PVM2st -25.87 19.79 19.30 19.92
PM-PVM3st -25.27 19.13 18.24 17.70
S�uential 82.24

Table 4: Gaussian Elimination Performance

Table 4 shows that both PVM and PM-PVM have similar performances for up to

4 tasks. From 8 tasks on, PM-PVM1 and PM-PVM3 perform better, indicating that they

benefit more from context switching between tasks. With PM-PVM2, however,

performance gets worse with more than 8 tasks because the number of messages

increases in the beginning ofthe processing when the messages are Ionger. As expected,

implementations based on S0/aris threads get more benefit from increasing the number

oftasks.

5.1.4 Genetic AIgorithm

This application aims at soIving the placement problem in VLSI design and uses a

distributed processing modeI where each processor runs the fuII genetic aIgorithm on a

fraction ofthe total population [9]. The original PVM implementation has been ported to

PM-PVM using a hybrid paralleI programming modeI in which some of the initialization

messages have been eliminated with the use of shared data structures among the tasks.

Circuit-1 (80 modules and 30 nets) and Circuit-2 (100 modules and 300 nets)

have been used as test circuits. Table 5 shows performance results for the placement of

both of them, considering a population with 1024 individuals. The paralleI versions

achieve an excellent speed-up because the evolution of populations in paralleI finds

"fitter" individuaIs earlier in the process and, therefore, the convergence is faster .

Circuit 1 Circuit 2
oftasks 4 8 4 8

PVM 14.91 29.53 37.11 74.18
PM-PVMl 22.03 39.15 43.13 76.15
PM-PVM2 8.69 17.45 30.45 61.54
PM-PVM3 14.11 25.54 35.03 69.79
PM-PVMlst 23.00 40.61 43.68 79.41
PM-PVM2st 8.71 17.64 30.41 61.29
PM-PVM3st 15.96 25.84 36.38 70.38
SeQuential 128.11 715.52

Table 5: Perforrnance of the Genetic Algorithrn

PVM perforrns better than PM-PVM1 and slightly worse than PM-PVM3.

However, PM-PVM2 perforrns much better than PVM. PM-PVM3 loses with the small

amount of message sharing since much time is spent on allocating and releasing memory

for the messages and it is not worth while to maintain the reference counter. With PM-

PVM1, there is also loss in perforrnance due to the packing ofthe several data fragments

that make up typical messages in this application. PM-PVM2, on the other hand, can re-

use allocated memory regions.

With 8 tasks, all perforrnance results get worse. This shows that the algorithrn

idle time is negligible and, therefore, no benefit is achieved by using PM-PVM

implementations based on Solaris threads.

6. Conclusions

PM-PVM is a portable PVM implementation for Unix-based SMP multithreading

platforrns. Three PM-PVM implementation approaches have been discussed considering

the use of Solaris threads and Solaris L WPs. The perforrnance of such implementations

has been evaluated through experimental tests.

In all tests with parallel applications, at least one of the PM-PVM

implementations has perforrned much better than PVM with execution times up to 54%

smaller. In applications where the tasks are idle for some time, PM-PVM

implementations based on Solaris threads norrnally perforrn better since context-

switching is faster.

PM-PVM2 perforrns better in applications with a small number of short

messages. PM-PVM3 and PM-PVM1 perforrn better than PM-PVM2 in applications

with effective message sharing, such as broadcasting intensive applications. In contrast

with PM-PVM2, PM-PVM3 perforrnance is less sensitive to the message size. PM-

PVM 1, however, does not perforrn well in applications issuing several messages with

multiple fragments.

Future work will main1y focus on the optimization of PM-PVM implementations

for cluster-based distributed shared memory architectures such as Multiplus and on the

integration of PM-PVM with PVM in order to provide a scalable and efficient

environment for use in heterogeneous networks of SMP workstations.

7. Acknowledgements

The authors would like to acknowledge the support given to the development of

this research work by FINEP, F APERJ, CNPq, RHAE and CAPES.

8. References

[1] PVM -A users guide and tutorial for Network Parallel Computing, Geist A., et al.,

The MIT Press, Cambridge, Massachusetts, 1994.

[2] 1he MultipluslMulplix Parallel Processing Environment., Aude, J.S., et al., Proc.

ISPAN.96. Beijing, China, May 1996, pp. 50-56.

[3] Multithreaded Programming Guide -Solaris 2.5, SunSoft, Inc, 1995.

[4] 1hreadsExtensionforPortable OperatingSystems, Posix PI003.4a, IEEE, 1994

[5] PVM Light Weight Process Package, Chuang, W., Laboratory of Computer

Science, MIT, Computation Structures Group Memo 372, December 1994.

[6] Multiparadigm Distributed Computing with TPVM, Ferrari, A., Sunderam, V.S.,

Concurrency: Practice and Experience, Vol. 10(3), March 1998, pp. 199-228

[7] LPVM: A Step Towards Multithread PVM, Zhou, H., Geist, Al., Concurrency:

Practice and Experience, Vol. 10(5), April1998, pp. 407-416

[8] Using and Porting GNU CC, Stallman, R. M., Cambridge, USA, Free Software

Foundation, 1993.

[9] Parallelization of Genetic Aigorithms Applied to the Placement Problem in

Workstation Clusters, Knopman,J., Aude,J.S., Proceedings ofthe VIII SBAC-PAD.

Recife, Brazil, August 1996

