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Chordal (2, l)-graphs

Pavol Hell* Sulamita Klein t Fábio Prottit Loana Tito§

Abstract

A graph is said to be (k, 1) if its vertex set can be partitioned into
k independent sets and 1 cliques. The class of (k, 1) graphs appears as
a natural generalization of split graphs. In this paper, we describe a
characterization for chordal (2,1) graphs. This characterization leads
to a O(nm) recognition algorithm, where n and m are the numbers of
vertices and edges of the input graph, respectively.

Keywords: (k, 1) graphs, chordal graphs

1 Introd uction

A graph is a split graph [6] if its vertices can be partitioned into an inde-

pendent set and a clique. Split graphs are a well known class of perfect
graphs. They can be recognized in polynomial time and admit polynomial

time optimization algorithms [8]. Recently, generalizations of split graphs
have appeared in the literature. Brandstãdt [1] introduced the concept of
(k, I) graphs, graphs that can be partitioned into k independent sets and 1
cliques. Notice that split graphs correspond to the case in which k = 1 = 1.
The case k = 3 and 1 = O corresponds to the graph 3-colorability problem [7].
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When k ~ 3 or l ~ 3, recognizing (k, l) graphs is a NP-complete problem [3].
In particular, Brandstadt studied the (2,1) and (2,2) graphs [2]. He gave
a polynomial-time algorithm for the recognition of these generalized split
graphs, however this algorithm is not correct [4]. A new version of it [3] has
been proposed which runs in O((n+m)2) time, where n and m are the num-
bers of vertices and edges of the input graph, respectively. Feder et al. [5]
studied the complexity of the more general problem of partitioning a graph
in dense and sparse subgraphs (independent sets induce sparse graphs and
cliques induce dense graphs). One of their results yields a polynomial-time
algorithm for recognizing (2,1) and (2,2) graphs. Hoang and Le [9] proved
that (2,1) and (2,2) graphs satisfy the Strong Perfect Graph Conjecture
of Berge [8] and designed a polynomial-time algorithm to recognize perfect

(2,2) graphs.
In this paper we consider the class of chordal (2,1) graphs. We describe

a characterization for it that leads to a O(nm) recognition algorithm.
Throughout this paper all graphs are finite, simple (i.e. without self-loops

and multiple edges) and undirected. Let G be a graph. Denote its vertex
set by V(G) and its edge set by E(G), and assume that IV(G)I ~ n and
IE(G)I = m. For a set X of vertices of G, denote by G[X] the subgraph of
G induced by X .

Denote by N ( v) the open neighborhood of a vertex v. If S ç V ( G) , denote
by Ns(v) the set ofneighbors ofv belonging to S, and define t5s(v) = INs(v)l.
For R ç V(G), define Ns(R) = UVERNs(v).

Let Sl, S2 ç V(G). We say that Sl and S2 are isolated if Sl nS2 = 0 and
NS1(S2) = 0. In other words, Sl and S2 are disjoint and there is no edge
linking a vertex of Sl to a vertex of S2.

A clique is a subset of vertices C ç V(G) inducing a complete subgraph.
A triangle is a triple of vertices of G inducing a K3. Write T = xyz to mean

that T is ~ triangle formed by vertices x, y, and z.
A graph is chordal if it does not contain chordless cycles with length

greater than three. A graph G is chordal if and only if G has a per-
fect elimination scheme [8] .A perfect elimination scheme is an ordering
Vl, V2, ...,Vn of the vertices of G such that N(Vi) n V(Gi) is a clique, where
Gi = G[Vi, Vi+l, ..., Vn] for 1 :::; i:::; n.
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2 The characterization

In this section, we consider chordal graphs and present a characterization for
chordal (2,1) graphs. The following lemma is a key result for our character-
ization.

Lemma 1 Let G be a chordal graph. Let T be a triangle of G, and let C be
a clique of G disjoint from T. Then at least one vertex of T is adjacent to
all the vertices of Nc(T).

Proof. Let X = Nc(T), and assume that IXI = l. The result is straightfor-
ward if l ~ 2. Assume l > 2 and write X = {Vl,V2, ...,VI}. Write T = abc.
Assume by contradiction that no vertex of T is adjacent to alI the vertices
of X, that is, f5x(Y) < l, for Y = a, b, c. Therefore, there exists i E {1, ..., l}
such that ( a, Vi) ffi E( G) .Since Vi E X, it has at least one neighbor in T. As-
sume w.l.o.g. that (b, Vi) E E(G). Since f5x(b) < l, there exists j E {1, ..., l},
j :f= i, such that (b, Vj) ffi E(G). Since Vj has at least one neighbor in T, (a, Vj)
or (c, Vj) must belong to E(G). But (a, Vj) ffi E(G), otherwise Vj, Vi., b, and
a would induce a C4. Therefore, (c,Vj) E E(G). Moreover, (C,Vi) E E(G),
otherwise Vj, Vi, c, and b would induce a C4. Since f5x(c) < l and l > 2,
there exists k E {1, ...,l}, k :f= j, k :f= i, such that (C,Vk) ffi E(G). If
(a, Vk) E E(G), then Vk, Vj, c, and a induce a C4. Therefore, (a, Vk) ffi E(G).
Similarly, (b, Vk) ffi E(G), otherwise Vk, Vj, c, and b would induce a C4. This
leads to a contradiction: Vk E X but (Y, Vk) ffi E(G) for Y = a, b, c. D

Let C :f= 0 be a clique in a graph G. If C n T :f= 0 for every triangle T of
G, say that C is a t-clique of G. We are now ready now to present the main
result of this work:

Theorem 2 Let G be a chordal graph. Then the following three statements
are equivalent:
(i) G is (2,1);
(ii) there exists a t-clique C in G;
(iii) G does not contain two isolated triangles.

Proof. The equivalence (i)++(ii) is immediate, since G is (2,1) if and only
if there exists a clique C ç V ( G) intersecting every odd cycle of G. The
implication (ii) -t (iii) is also simple, since (ii) implies that any two distinct
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triangles either intersect or are joined by an edge. The remainder of the proof
consists of showing that the implication (iii) -+ (ii) is true.

Assume that (iii) holds. Let t(G) denote the number oftriangles ofG. We
will prove that there is a t-clique C in G, by induction on t( G) .If t( G) = O,
the result holds trivially. Assume that the result is valid for all chordal graphs
G such that t(G) < k. Let us show that it is also valid when t(G) = k ~ 1.
Since G is chordal, G has a perfect elimination scheme V1, V2, ..., Vn. Let i
(1 ~ i ~ n- 1) be the smallest index such that t(Gi+1) < t(Gi). Observe
that there indeed exits such an index i, since t( Gn) = 0 and t( G1) = k ~ 1.
Moreover, t(Gi) = t(G1).

Clearly, Gi+l is J;,..hordal and does not contain two isolated triangles (oth-
erwise, Gi and G would also contain these triangles). Moreover, t(Gi+1) < k.
Therefore, Gi+1 satisfies the induction hypotheses, that is, there exists a t-
clique C in Gi+1. Now we will show how to obtain from C a t-clique in

Gi.
Let Ni(Vi) = N(Vi)nV(Gi+1), and let p = INi(Vi)l. Since t(Gi+1) < t(Gi),

Vi forms-a triangle with two vertices of Gi+1. Therefore, p ~ 2. Let us divide
the proof in cases. ,

Case 1: IC n Ni( Vi) I ~ p- 1.
If C contains at least p-1 neighbors of Vi in Gi+1, then C is also a t-clique

in Gi, since C intersects all the triangles of Gi+1 and also all the triangles
containing Vi .

Case2: ICnNi(Vi)l~p-2.
Assume that C contains at most p -2 neighbors of Vi in Gi+1. In this

case, C contains in fact exactly p- 2 of such neighbors, since the existence of
three vertices in Ni(Vi)\C would imply that C does not intersect the triangle
formed by them, a contradiction.

Let x,y E Ni(Vi)\C. Let T be the triangle ViXy, and let L be clique
formed by the set of vertices in C which are neighbors of Vi, x, or y, that is,
L = N c ( T) .Note that L contains p- 2 neighbors of Vi in G i+ 1. Occasionally,

L might be empty. Let T be the collection of triangles of Gi+1 containing
no vertices of L, V(T) the subset of vertices belonging to triangles of T, and
W = { w E V(T) I w E N(T) and w E Q for alI Q E T}.

Case 2.1: T= 0.
In this case, W = 0 and L intersects every triangle in Gi+1, that is, L is a

t-clique in Gi+1. By Lemma 1, there exists a vertex r E T which is adjacent
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to alI the vertices in L. Thus, L U { r} is a clique intersecting every triangle
in Gi, that is, L U { r} is a t-clique in Gi.

Case 2.2: T # 0 and W # 0.
Let W E W. Then there exists t E T such that t is adjacent to W, by the

definition of W. We claim that L U { w } is a clique. Clearly, w ft C. Assume
by contradiction that there exists a vertex u E L such that u is not adjacent
to w. Let z E C\L such that z is adjacent to w. There indeed exists such
a vertex z, since w belongs to some triangle T1 E T and T1 is intersected
by C. In addition, z is not adjacent to any vertex in T, since z ft L by the
definition of T. Since u E L, there exists t' E T, not necessarily distinct
from t, such that u is adjacent to t'. Observe that the subgraph induced
by W, t, t', z, u contains either a C4 or a C5. This is a contradiction, since G
is chordal. Therefore, L U { w } is indeed a clique. Moreover, L Li { W } is a
t-clique in Gi+l. By Lemma 1, there exists a vertex r E T which is adjacent
to alI the vertices in L U {w}. Thus, L U {r,w} is a t-clique in Gi.

Case 2.3: T # 0 and W = 0.
The following argument shows that this case leads to a contra:diction,

and thus cannot occur. Since G does not contain two isolated triangles,
every Q E T contains a vertex belonging to N(T). Since W = 0, there

exist distinct T 1, T 2 E T and distinct vertices Wl, W2 such that Wl E T 1, W2 E
T 2, and Wl, W2 E N (T) .Let tl, t2 E T, not necessarily distinct, such that
(4,Wl), (t2,W2) E E(G). Observe that Wl,W2 ft C. Let Zl,z2 E C\L, not
necessarily distinct, such that (Zl, Wl), (Z2, W2) E E(G). These two vertices
must exist, since T1 and T2 are intersected by C. Moreover, Zl and Z2 are
not adjacent to any vertex in T, since Zl, Z2 ft L. We conclude this case by

observing that:
a) if (Wl, W2) E E(G), then 4 # t2, since otherwise the triangle WIW24

would not be intersected by C. Moreover, Wi (i = 1,2) cannot be adjacent
to t1 and t2 simultaneously, since otherwise Wit1t2 would not be intersected
by C. This implies that the subgraph induced by Wl, W2, 4, t2 is a C4, a

contradiction.
b) if (Wl,W2) ft E(G), then the subgraph induced by Wl,W2,4,t2,Zl,Z2

contains either a C4, a C5, or a C6, another contradiction. This completes

the proof. D
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3 The algorithm

AIgorithm: recognition of chordal (2,1) graphs
Input: a perfec elimination scheme Vl, ..., Vn for a chordal graph G
1 Qf- {Vn}
2 if-n-1
3 while i ~ 1 and C # 0 do
4 let p = INi(Vi)1

5 ifICnNi(Vi)l~p-1
6 then
7 if-i-1
8 else
9 let x, y E Ni(Vi)\C
10 let T be the triangle ViXY
11 L f- Nc(T)
12 if IC\LI ~ 3
13 then
14 let Tl be a triangle formed by three vertices in IC\LI
15 C f- 0 ,

16 else
17 T f- triangles of Gi+l containing no vertices of L
18 V(T) f- vertices belonging to triangles of T
19 W f- {w E V(T) I w E N(T) and w E Tl for all Tl E T}
20 if (T = 0) or (T # 0 and W # 0)

21 then
22 ifW # 0 then
23 let w E W
24 W f- {w}
25 let r E { x, y} such that L U W U { r} is a clique
26 C f- L U W U { r }
27 i f- i -1
28 else
29 let Tl E T such that T1 is isolated from T
30 C f- 0
31 end-while
32 if C = 0

33 then return T, T1 { two isolated triangles }
34 else return C { a t-clique in G }
35 end-algorithm
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The algorithm takes as input a perfect elimination scheme Vl, V2, ..., Vn
for a chordal graph G, and returns either a t-clique C in G, if G is (2,1), or
two isolated triangles in G, otherwise.

At the beginning, C = { Vn} is set as a t-clique for Gn. Next, the scheme

is scanned backwards from Vn-l to Vl, if n > 1. Each new iteration in the
body of the main loop (lines 4-30) tries to update C in such a way that
it becomes a t-clique-for Gi. If the tentative succeeds, i is decreased and
the process continues. Otherwise, two isolated triangles are found, and the
algorithm stops.. The correctness of the algorithm is dealt with in the next
theorem.

Theorem 3 Given a chordal graph G and a perfect elimination scheme
Vl, ..., Vn for it as input, the algorithm returns either a t-clique in G if G is
(2, 1) , or two isolated triangles in G otherwise.

Proof. First, assume that G is (2,1). We then need to show that the
algorithm returns a t-clique C for G. The proof is by induction on n. If
n = 1, then the algorithm sets C = { vn} in line 1, skips the while in lines

3-31, and finally returns C in line 34. If n > 1, then the algorithm finds a
t-clique C for G2, which is a chordal (2,1) graph with n-1 vertices. Consider
now the last iteration, in which i = 1. By Theorem 2, one of the Cases 1,
2.1, or 2.2 must occur, since G1 = G does not contain two isolated triangles.

Moreover, the test in line 12 cannot be true, since otherwise the triangle T 1
defined in line 14 is isolated from T. Therefore, one of the tests in lines 5
(corresponding to Case 1) or 20 (corresponding to Cases 2.1 and 2.2) must
be true. If the test in line 5 is true, then C does not need to be updated,
since it is also a t-clique for G1 = G. On the other hand, if the test in line
5 is false, then the test in line 20 must be true, and C is set to L U { r} (if
W = 0) or to Lu {r,w} (if W # 0). In either case, C is set as a t-clique
for G1 = G, and the algorithms returns it in line 34.

Assume now that G is not (2,1). Thus, by Theorem 2, G contains two
isolated triangles abc and def. Take a, b, c, d, e, f in such a way that they are
the six rightmost vertices forming two isolated triangles in the perfect elim-
ination scheme Vl, ..., Vn. Let Vi be the leftmost vertex in the scheme such
that Vi E A = { a, b, c, d, e, f} .Assume without loss of generality that vi = a.

7



Observe that Gi+l is (2,1), by the choice ofA. Therefore, the algorithm finds
a t-clique C for Gi+l. When starting the next iteration, in which the vertex
vi = a is included, there exist two isolated triangles in Gi. This implies that ;
none of the tests in lines 5 and 15 can be true, since otherwise C would be ,

updated as a t-clique for Gi, which is a contradiction by Theorem 2. Hence,
the algorithm executes either the block then in lines 13-15 or the block else
in lines 28-30 (which corresponds to Case 3 of Theorem 2). In either case, a
triangle T1 E T isolated from T = ViXy = abc is chosen in line 14 or 29, and

the algorithm returns T and T1 in line 33. D

A straightforward analysis of the algorithm shows that it runs in O(nm)
time. It is sufficient to show that the complexity of a single iteration in the
body of the main loop (lines 4-30) is O(m). Lines 4-11 clearly require O(n)
time. After computing L in line 11, observe that if the set C\L contains
three distinct elements, then the triangle T 1 defined in line 14 is isolated
from T, and the algorithm must stop. Thus, if the algorithm reaches the
else in line 16, C\L contains at most two elements, say Zl and Z2. Moreover,
every triangle of T, if any, is either of the form ZlZ2W, where Zl #'Z2 and
w E N(Zl) n N(Z2), or of the form ZWIW2, where z E C\L, Wl, W2 E N(z),
and ( wl , W2) is an edge. Therefore, computing T requires O( m ) time. Lines
18-30 require time no greater than this.

Acknowledgements: We would like to thank Prof. Yoshiko Wakabayashi
who provided a valuable suggestion which improved the presentation of the

algorithm.
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