Relatório Técnico

Chordal (2,1) - graphs -

Pavol Hell Sulamita Klein Fábio Protti
Loana Tito

NCE-01/2000
Universidade Federal do Rio de Janeiro

Chordal (2, 1)-graphs

Pavol Hell ${ }^{*} \quad$ Sulamita Klein ${ }^{\dagger} \quad$ Fábio Protti ${ }^{\ddagger} \quad$ Loana Tito ${ }^{\S}$

Abstract

A graph is said to be (k, l) if its vertex set can be partitioned into k independent sets and l cliques. The class of (k, l) graphs appears as a natural generalization of split graphs. In this paper, we describe a characterization for chordal $(2,1)$ graphs. This characterization leads to a $O(n m)$ recognition algorithm, where n and m are the numbers of vertices and edges of the input graph, respectively.

Keywords: (k, l) graphs, chordal graphs

1 Introduction

A graph is a split graph [6] if its vertices can be partitioned into an independent set and a clique. Split graphs are a well known class of perfect graphs. They can be recognized in polynomial time and admit polynomial time optimization algorithms [8]. Recently, generalizations of split graphs have appeared in the literature. Brandstädt [1] introduced the concept of (k, l) graphs, graphs that can be partitioned into k independent sets and l cliques. Notice that split graphs correspond to the case in which $k=l=1$. The case $k=3$ and $l=0$ corresponds to the graph 3-colorability problem [7].

[^0]When $k \geq 3$ or $l \geq 3$, recognizing (k, l) graphs is a NP-complete problem [3]. In particular, Brandstädt studied the $(2,1)$ and $(2,2)$ graphs [2]. He gave a polynomial-time algorithm for the recognition of these generalized split graphs, however this algorithm is not correct [4]. A new version of it [3] has been proposed which runs in $O\left((n+m)^{2}\right)$ time, where n and m are the numbers of vertices and edges of the input graph, respectively. Feder et al. [5] studied the complexity of the more general problem of partitioning a graph in dense and sparse subgraphs (independent sets induce sparse graphs and cliques induce dense graphs). One of their results yields a polynomial-time algorithm for recognizing $(2,1)$ and $(2,2)$ graphs. Hoang and Le [9] proved that $(2,1)$ and $(2,2)$ graphs satisfy the Strong Perfect Graph Conjecture of Berge [8] and designed a polynomial-time algorithm to recognize perfect $(2,2)$ graphs.

In this paper we consider the class of chordal $(2,1)$ graphs. We describe a characterization for it that leads to a $O(n m)$ recognition algorithm.

Throughout this paper all graphs are finite, simple (i.e. without self-loops and multiple edges) and undirected. Let G be a graph. Denote its vertex set by $V(G)$ and its edge set by $E(G)$, and assume that $|V(G)|=n$ and $|E(G)|=m$. For a set X of vertices of G, denote by $G[X]$ the subgraph of G induced by X.

Denote by $N(v)$ the open neighborhood of a vertex v. If $S \subseteq V(G)$, denote by $N_{S}(v)$ the set of neighbors of v belonging to S, and define $\delta_{S}(v)=\left|N_{S}(v)\right|$. For $R \subseteq V(G)$, define $N_{S}(R)=\cup_{v \in R} N_{S}(v)$.

Let $S_{1}, S_{2} \subseteq V(G)$. We say that S_{1} and S_{2} are isolated if $S_{1} \cap S_{2}=\emptyset$ and $N_{S_{1}}\left(S_{2}\right)=\emptyset$. In other words, S_{1} and S_{2} are disjoint and there is no edge linking a vertex of S_{1} to a vertex of S_{2}.

A clique is a subset of vertices $C \subseteq V(G)$ inducing a complete subgraph. A triangle is a triple of vertices of G inducing a K_{3}. Write $T=x y z$ to mean that T is a triangle formed by vertices x, y, and z.

A graph is chordal if it does not contain chordless cycles with length greater than three. A graph G is chordal if and only if G has a perfect elimination scheme [8]. A perfect elimination scheme is an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of G such that $N\left(v_{i}\right) \cap V\left(G_{i}\right)$ is a clique, where $G_{i}=G\left[v_{i}, v_{i+1}, \ldots, v_{n}\right]$ for $1 \leq i \leq n$.

2 The characterization

In this section, we consider chordal graphs and present a characterization for chordal $(2,1)$ graphs. The following lemma is a key result for our characterization.

Lemma 1 Let G be a chordal graph. Let T be a triangle of G, and let C be a clique of G disjoint from T. Then at least one vertex of T is adjacent to all the vertices of $N_{C}(T)$.

Proof. Let $X=N_{C}(T)$, and assume that $|X|=l$. The result is straightforward if $l \leq 2$. Assume $l>2$ and write $X=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. Write $T=a b c$. Assume by contradiction that no vertex of T is adjacent to all the vertices of X, that is, $\delta_{X}(y)<l$, for $y=a, b, c$. Therefore, there exists $i \in\{1, \ldots, l\}$ such that $\left(a, v_{i}\right) \notin E(G)$. Since $v_{i} \in X$, it has at least one neighbor in T. Assume w.l.o.g. that $\left(b, v_{i}\right) \in E(G)$. Since $\delta_{X}(b)<l$, there exists $j \in\{1, \ldots, l\}$, $j \neq i$, such that $\left(b, v_{j}\right) \notin E(G)$. Since v_{j} has at least one neighbor in $T,\left(a, v_{j}\right)$ or (c, v_{j}) must belong to $E(G)$. But $\left(a, v_{j}\right) \notin E(G)$, otherwise v_{j}, v_{i}, b, and a would induce a C_{4}. Therefore, $\left(c, v_{j}\right) \in E(G)$. Moreover, $\left(c, v_{i}\right) \in E(G)$, otherwise v_{j}, v_{i}, c, and b would induce a C_{4}. Since $\delta_{X}(c)<l$ and $l>2$, there exists $k \in\{1, \ldots, l\}, k \neq j, k \neq i$, such that $\left(c, v_{k}\right) \notin E(G)$. If $\left(a, v_{k}\right) \in E(G)$, then v_{k}, v_{j}, c, and a induce a C_{4}. Therefore, $\left(a, v_{k}\right) \notin E(G)$. Similarly, $\left(b, v_{k}\right) \notin E(G)$, otherwise v_{k}, v_{j}, c, and b would induce a C_{4}. This leads to a contradiction: $v_{k} \in X$ but $\left(y, v_{k}\right) \notin E(G)$ for $y=a, b, c$.

Let $C \neq \emptyset$ be a clique in a graph G. If $C \cap T \neq \emptyset$ for every triangle T of G, say that C is a t-clique of G. We are now ready now to present the main result of this work:

Theorem 2 Let G be a chordal graph. Then the following three statements are equivalent:
(i) G is $(2,1)$;
(ii) there exists a t-clique C in G;
(iii) G does not contain two isolated triangles.

Proof. The equivalence (i) \leftrightarrow (ii) is immediate, since G is $(2,1)$ if and only if there exists a clique $C \subseteq V(G)$ intersecting every odd cycle of G. The implication (ii) \rightarrow (iii) is also simple, since (ii) implies that any two distinct
triangles either intersect or are joined by an edge. The remainder of the proof consists of showing that the implication (iii) \rightarrow (ii) is true.

Assume that (iii) holds. Let $t(G)$ denote the number of triangles of G. We will prove that there is a t-clique C in G, by induction on $t(G)$. If $t(G)=0$, the result holds trivially. Assume that the result is valid for all chordal graphs G such that $t(G)<k$. Let us show that it is also valid when $t(G)=k \geq 1$. Since G is chordal, G has a perfect elimination scheme $v_{1}, v_{2}, \ldots, v_{n}$. Let i $(1 \leq i \leq n-1)$ be the smallest index such that $t\left(G_{i+1}\right)<t\left(G_{i}\right)$. Observe that there indeed exits such an index i, since $t\left(G_{n}\right)=0$ and $t\left(G_{1}\right)=k \geq 1$. Moreover, $t\left(G_{i}\right)=t\left(G_{1}\right)$.

Clearly, G_{i+1} is chordal and does not contain two isolated triangles (otherwise, G_{i} and G would also contain these triangles). Moreover, $t\left(G_{i+1}\right)<k$. Therefore, G_{i+1} satisfies the induction hypotheses, that is, there exists a tclique C in G_{i+1}. Now we will show how to obtain from C a t-clique in G_{i}.

Let $N_{i}\left(v_{i}\right)=N\left(v_{i}\right) \cap V\left(G_{i+1}\right)$, and let $p=\left|N_{i}\left(v_{i}\right)\right|$. Since $t\left(G_{i+1}\right)<t\left(G_{i}\right)$, v_{i} forms a triangle with two vertices of G_{i+1}. Therefore, $p \geq 2$. Let us divide the proof in cases.
Case 1: $\left|C \cap N_{i}\left(v_{i}\right)\right| \geq p-1$.
If C contains at least $p-1$ neighbors of v_{i} in G_{i+1}, then C is also a t-clique in G_{i}, since C intersects all the triangles of G_{i+1} and also all the triangles containing v_{i}.
Case 2: $\left|C \cap N_{i}\left(v_{i}\right)\right| \leq p-2$.
Assume that C contains at most $p-2$ neighbors of v_{i} in G_{i+1}. In this case, C contains in fact exactly $p-2$ of such neighbors, since the existence of three vertices in $N_{i}\left(v_{i}\right) \backslash C$ would imply that C does not intersect the triangle formed by them, a contradiction.

Let $x, y \in N_{i}\left(v_{i}\right) \backslash C$. Let T be the triangle $v_{i} x y$, and let L be clique formed by the set of vertices in C which are neighbors of v_{i}, x, or y, that is, $L=N_{C}(T)$. Note that L contains $p-2$ neighbors of v_{i} in G_{i+1}. Occasionally, L might be empty. Let \mathcal{T} be the collection of triangles of G_{i+1} containing no vertices of $L, V(\mathcal{T})$ the subset of vertices belonging to triangles of \mathcal{T}, and $W=\{w \in V(\mathcal{T}) \mid w \in N(T)$ and $w \in Q$ for all $Q \in \mathcal{T}\}$.
Case 2.1: $\mathcal{T}=\emptyset$.
In this case, $W=\emptyset$ and L intersects every triangle in G_{i+1}, that is, L is a t-clique in G_{i+1}. By Lemma 1, there exists a vertex $r \in T$ which is adjacent
to all the vertices in L. Thus, $L \cup\{r\}$ is a clique intersecting every triangle in G_{i}, that is, $L \cup\{r\}$ is a t-clique in G_{i}.
Case 2.2: $\mathcal{T} \neq \varnothing$ and $W \neq \emptyset$.
Let $w \in W$. Then there exists $t \in T$ such that t is adjacent to w, by the definition of W. We claim that $L \cup\{w\}$ is a clique. Clearly, $w \notin C$. Assume by contradiction that there exists a vertex $u \in L$ such that u is not adjacent to w. Let $z \in C \backslash L$ such that z is adjacent to w. There indeed exists such a vertex z, since w belongs to some triangle $T_{1} \in \mathcal{T}$ and T_{1} is intersected by C. In addition, z is not adjacent to any vertex in T, since $z \notin L$ by the definition of \mathcal{T}. Since $u \in L$, there exists $t^{\prime} \in T$, not necessarily distinct from t, such that u is adjacent to t^{\prime}. Observe that the subgraph induced by w, t, t^{\prime}, z, u contains either a C_{4} or a C_{5}. This is a contradiction, since G is chordal. Therefore, $L \cup\{w\}$ is indeed a clique. Moreover, $L \cup\{w\}$ is a t-clique in G_{i+1}. By Lemma 1, there exists a vertex $r \in T$ which is adjacent to all the vertices in $L \cup\{w\}$. Thus, $L \cup\{r, w\}$ is a t-clique in G_{i}.
Case 2.3: $\mathcal{T} \neq \emptyset$ and $W=\varnothing$.
The following argument shows that this case leads to a contradiction, and thus cannot occur. Since G does not contain two isolated triangles, every $Q \in \mathcal{T}$ contains a vertex belonging to $N(T)$. Since $W=\emptyset$, there exist distinct $T_{1}, T_{2} \in \mathcal{T}$ and distinct vertices w_{1}, w_{2} such that $w_{1} \in T_{1}, w_{2} \in$ T_{2}, and $w_{1}, w_{2} \in N(T)$. Let $t_{1}, t_{2} \in T$, not necessarily distinct, such that $\left(t_{1}, w_{1}\right),\left(t_{2}, w_{2}\right) \in E(G)$. Observe that $w_{1}, w_{2} \notin C$. Let $z_{1}, z_{2} \in C \backslash L$, not necessarily distinct, such that $\left(z_{1}, w_{1}\right),\left(z_{2}, w_{2}\right) \in E(G)$. These two vertices must exist, since T_{1} and T_{2} are intersected by C. Moreover, z_{1} and z_{2} are not adjacent to any vertex in T, since $z_{1}, z_{2} \notin L$. We conclude this case by observing that:
a) if $\left(w_{1}, w_{2}\right) \in E(G)$, then $t_{1} \neq t_{2}$, since otherwise the triangle $w_{1} w_{2} t_{1}$ would not be intersected by C. Moreover, $w_{i}(i=1,2)$ cannot be adjacent to t_{1} and t_{2} simultaneously, since otherwise $w_{i} t_{1} t_{2}$ would not be intersected by C. This implies that the subgraph induced by $w_{1}, w_{2}, t_{1}, t_{2}$ is a C_{4}, a contradiction.
b) if ($\left.w_{1}, w_{2}\right) \notin E(G)$, then the subgraph induced by $w_{1}, w_{2}, t_{1}, t_{2}, z_{1}, z_{2}$ contains either a C_{4}, a C_{5}, or a C_{6}, another contradiction. This completes the proof.

3 The algorithm

Algorithm: recognition of chordal $(2,1)$ graphs
Input: a perfec elimination scheme v_{1}, \ldots, v_{n} for a chordal graph G
$1 \quad C \leftarrow\left\{v_{n}\right\}$
$2 \quad i \leftarrow n-1$
$3 \quad$ while $i \geq 1$ and $C \neq \emptyset$ do
$4 \quad$ let $p=\left|N_{i}\left(v_{i}\right)\right|$
5
6
7
8
9
then $i \leftarrow i-1$
else
let $x, y \in N_{i}\left(v_{i}\right) \backslash C$
let T be the triangle $v_{i} x y$
$L \leftarrow N_{C}(T)$
if $|C \backslash L| \geq 3$
then
let T_{1} be a triangle formed by three vertices in $|C \backslash L|$ $C \leftarrow \emptyset$ else
$\mathcal{T} \leftarrow$ triangles of G_{i+1} containing no vertices of L
$V(\mathcal{T}) \leftarrow$ vertices belonging to triangles of \mathcal{T}
$W \leftarrow\left\{w \in V(\mathcal{T}) \mid w \in N(T)\right.$ and $w \in T_{1}$ for all $\left.T_{1} \in \mathcal{T}\right\}$
if $(\mathcal{T}=\varnothing)$ or $(\mathcal{T} \neq \emptyset$ and $W \neq \emptyset)$ then
if $W \neq \emptyset$ then

$$
\text { let } w \in W
$$

$W \leftarrow\{w\}$
let $r \in\{x, y\}$ such that $L \cup W \cup\{r\}$ is a clique
$C \leftarrow L \cup W \cup\{r\}$
$i \leftarrow i-1$
else
let $T_{1} \in \mathcal{T}$ such that T_{1} is isolated from T $C \leftarrow \emptyset$
end_while
if $C=\varnothing$
then return $T, T_{1}\{$ two isolated triangles \}
else return $C \quad\{$ a t-clique in G \}
end_algorithm

The algorithm takes as input a perfect elimination scheme $v_{1}, v_{2}, \ldots, v_{n}$ for a chordal graph G, and returns either a t-clique C in G, if G is $(2,1)$, or two isolated triangles in G, otherwise.

At the beginning, $C=\left\{v_{n}\right\}$ is set as a t-clique for G_{n}. Next, the scheme is scanned backwards from v_{n-1} to v_{1}, if $n>1$. Each new iteration in the body of the main loop (lines 4-30) tries to update C in such a way that it becomes a t-clique for G_{i}. If the tentative succeeds, i is decreased and the process continues. Otherwise, two isolated triangles are found, and the algorithm stops. The correctness of the algorithm is dealt with in the next theorem.

Theorem 3 Given a chordal graph G and a perfect elimination scheme v_{1}, \ldots, v_{n} for it as input, the algorithm returns either a t-clique in G if G is $(2,1)$, or two isolated triangles in G otherwise.

Proof. First, assume that G is $(2,1)$. We then need to show that the algorithm returns a t-clique C for G. The proof is by induction on n. If $n=1$, then the algorithm sets $C=\left\{v_{n}\right\}$ in line 1 , skips the while in lines $3-31$, and finally returns C in line 34 . If $n>1$, then the algorithm finds a t-clique C for G_{2}, which is a chordal $(2,1)$ graph with $n-1$ vertices. Consider now the last iteration, in which $i=1$. By Theorem 2, one of the Cases 1, 2.1 , or 2.2 must occur, since $G_{1}=G$ does not contain two isolated triangles. Moreover, the test in line 12 cannot be true, since otherwise the triangle T_{1} defined in line 14 is isolated from T. Therefore, one of the tests in lines 5 (corresponding to Case 1) or 20 (corresponding to Cases 2.1 and 2.2) must be true. If the test in line 5 is true, then C does not need to be updated, since it is also a t-clique for $G_{1}=G$. On the other hand, if the test in line 5 is false, then the test in line 20 must be true, and C is set to $L \cup\{r\}$ (if $W=\emptyset$) or to $L \cup\{r, w\}$ (if $W \neq \varnothing$). In either case, C is set as a t-clique for $G_{1}=G$, and the algorithms returns it in line 34 .

Assume now that G is not $(2,1)$. Thus, by Theorem 2, G contains two isolated triangles $a b c$ and def. Take a, b, c, d, e, f in such a way that they are the six rightmost vertices forming two isolated triangles in the perfect elimination scheme v_{1}, \ldots, v_{n}. Let v_{i} be the leftmost vertex in the scheme such that $v_{i} \in A=\{a, b, c, d, e, f\}$. Assume without loss of generality that $v_{i}=a$.

Observe that G_{i+1} is $(2,1)$, by the choice of A. Therefore, the algorithm finds a t-clique C for G_{i+1}. When starting the next iteration, in which the vertex $v_{i}=a$ is included, there exist two isolated triangles in G_{i}. This implies that none of the tests in lines 5 and 15 can be true, since otherwise C would be updated as a t-clique for G_{i}, which is a contradiction by Theorem 2. Hence, the algorithm executes either the block then in lines 13-15 or the block else in lines $28-30$ (which corresponds to Case 3 of Theorem 2). In either case, a triangle $T_{1} \in \mathcal{T}$ isolated from $T=v_{i} x y=a b c$ is chosen in line 14 or 29 , and the algorithm returns T and T_{1} in line 33.

A straightforward analysis of the algorithm shows that it runs in $O(n m)$ time. It is sufficient to show that the complexity of a single iteration in the body of the main loop (lines 4-30) is $O(m)$. Lines 4-11 clearly require $O(n)$ time. After computing L in line 11 , observe that if the set $C \backslash L$ contains three distinct elements, then the triangle T_{1} defined in line 14 is isolated from T, and the algorithm must stop. Thus, if the algorithm reaches the else in line $16, C \backslash L$ contains at most two elements, say z_{1} and z_{2}. Moreover, every triangle of \mathcal{T}, if any, is either of the form $z_{1} z_{2} w$, where $z_{1} \neq z_{2}$ and $w \in N\left(z_{1}\right) \cap N\left(z_{2}\right)$, or of the form $z w_{1} w_{2}$, where $z \in C \backslash L, w_{1}, w_{2} \in N(z)$, and $\left(w_{1}, w_{2}\right)$ is an edge. Therefore, computing \mathcal{T} requires $O(m)$ time. Lines 18-30 require time no greater than this.

Acknowledgements: We would like to thank Prof. Yoshiko Wakabayashi who provided a valuable suggestion which improved the presentation of the algorithm.

References

[1] A. Brandstädt. Partitions of graphs into one or two independent sets and cliques. Technical Report 105, Fern Universität, Hagen, Germany, january 1991.
[2] A. Brandstädt. Partitions of graphs into one or two independent sets and cliques. Discrete Mathematics 152 (1996) 47-54.
[3] A. Brandstädt. The complexity of some problems related to graph 3colorability. Discrete Applied Mathematics 89 (1998) 59-73.
[4] A. Brandstädt. Corrigendum. Discrete Mathematics 186 (1998), p. 295.
[5] T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph partition problems. In F. W. Thatcher and R. E. Miller, eds., Proceedings of the 31st Annual ACM Symposium on Theory of Computing - STOC'99, pages 464-472. Plenum Press, New York, 1999.
[6] S. Földes and P. L. Hammer. Split graphs. In F. Hoffman et al., eds., Proceedings of the 8th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 311-315. Louisiana State University, Baton Rouge, Louisiana, 1977.
[7] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NPcomplete graph problems. Theoretical Computer Science 1 (1976) 237267.
[8] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[9] C. T. Hoang and V. B. Le. Recognizing perfect 2-split graphs. Submitted manuscript, 1998.

[^0]: *School of Computing Sceince, Simon Fraser University, Burnaby, B.C., Canada, V5A1S6. E-mail: pavol@cs.sfu.ca
 ${ }^{\dagger}$ IM e COPPE/Sistemas, Universidade Federal do Rio de Janeiro, RJ, 21945-970, Brasil. E-mail: sula@cos.ufrj.br
 ${ }^{\ddagger}$ NCE, Universidade Federal do Rio de Janeiro, RJ, 20001-970, Brasil. E-mail: fabiop@nce.ufrj.br
 ${ }^{\S}$ COPPE/Sistemas, Universidade Federal do Rio de Janeiro, RJ, 21945-970, Brasil. E-mail: loana@cos.ufrj.br

