Relatério Técnico

Reviewing the Curriculum
of Computer Science
Undergraduate Courses to
Incorporate Communication
and Interpersonal
Skills Teaching

V. M. Teles
C. E. T. de Oliveira

Computacdo Elet

Nucleo de

Universidade Federl -o- Ri. de Janeiro

Reviewing the curriculum of computer science undergraduate courses to
incorporate communication and interpersonal skills teaching

Vinicius Manhdes Teles
Universidade Federal do Rio de Janeiro
Nicleo de Computagdo Eletrénica
vinicius@improveit.com.br

Abstract

The major problems of software development projects
are not so much technical as sociological in nature. The
industry seems to agree very much with this statement
while the university seems to give it little importance. The
article begins analyzing some related work and proposes
change in the computer science undergraduate course 10
accommodate new ways of teaching and to incorporate
professional skills teaching. It also describes a course on
extreme programming where some techniques will be
used and evaluated. :

1. Introduction

The main emphasis in Computer Science courses is on
the development of technical skills by the students
undertaking the course (IEEE/ACM apud Pham, 97).

This focus on technical skills poses problems for the
future professionals when they are supposed to build
information systems where their activities are part of a
team effort. According to DeMarco et al. [1] since they
work in teams and projects and other tightly knit working
groups, they are mostly in the human communication
business. Their successes stem from good human
interactions by all participants in the effort.

Researches conduced in Australia seem to confirm the
statement above. In this country, surveys of employers
have shown that the qualities they consistently rate most
highly in graduates relate to their communication skills,
their ability to work together in teams and their technical
writing skills, besides their basic technical knowledge.
(Business Higher Education Round Table and
Department of Employment, Education and Training
apud Keen, 98)

The Business/Higher Education Round Table,
Australia conducted a survey in 1992 in which both
business and universities were asked to rank the desired

Carlo Emmanoel Tolla de Oliveira
Universidade Federal do Rio de Janeiro
Niicleo de Computagao Eletrénica

carlo@ufrj.br

characteristics of university graduates. The results are
shown in Table 1. [2].

Desired Characteristics of Rank University
Graduates Business

Communication skills 1 7
Capacity to learn new skills and 2 5
procedures
Capacity for cooperation and 3 8
teamwork
Capacity to make decision and 4 3
solve problems
Ability to apply knowledge to 5 4
workplace
Capacity to work with 6 6
minimum supervision
Theoretical knowledge in a 7 1
professional field
Capacity to use computer 8 2
technology
Understanding of business 9 12
ethics
General business knowledge 10 11
Special work skills 11 9
A broad background of general 12 10
knowledge

Table 1. Desired Characteristics of University

Graduates (where 1 is the most desired)

This survey indicates that business and universities
differ in their ranking of the importance of characteristics
in the graduates in two major areas:

1. Communication skills, a capacity to learn new
skills and procedures, and a capacity for
cooperation and teamwork. In each of these cases
the universities rankings and well below those of
business, particularly in the area of
communication skills.

2. Theoretical knowledge in a professional field and
a capacity to use computer technology. In these
cases universities have rated these characteristics
much higher than has business. [2]

These results are consistent with the views of some
authors, like DeMarco and Lister [1], Goguen and Linde
[15] and Goguen [9]. They believe that software
development is strongly affected by social issues. So, it
cannot be treated in a purely technological way.

Other researchers have been studying methods to
improve the education of software engineering in order to
address these social issues. In this paper, the authors
review some recent developments in this area and
proposes a review in the computer science curriculum in
order to accommodate these methods. In particular, they
start proposing the introduction of an extreme
programming course which will use some of the
techniques presented in this article.

2. Related work
Researchers are working in two different propositions:

e Changes in the teaching of technical content
e Introduction of professional skills teaching

Each of these alternatives are described in the sections
ahead.

2.1. Changes in the teaching of technical
content

The Software Factory

Tvedt et at. [13] propose the “Software Factory”, an
eight-semester sequence of courses. These courses expose
students to large-scale, team-oriented development in a
software development organization. Each course
represents a specific software engineering role or job
within the development organization.

The eight semester sequence progresses the students
through the following roles: (1) Software Factory process
and tools trainee, (2) software system testes, (3 & 4)
software developer and maintainer, (5) requirements
analyst and test planner, (6) software designer and (7 &
8) software project manager.

Students from all courses in the Software Factory
sequence meet simultaneously to fulfill their roles in the
software organization. The enrollment in the program
allows for multiple teams within the organization.

The Software Factory approach is rather interesting
since students begin to work in a long term project early,

exercise teamwork and face non-technical issues.
Furthermore, it seems to bring students closer to what
happens in the “real-world”. On the other hand, the
adoption of this approach has considerable impact on the
way faculty staff is used to work and demands a
significant infrastructure.

Large-scale software development

Sebern [16] also works with the idea of large-scale
software development. It proposes a software
development laboratory in which student teams work for
extended periods on large-scale, ongoing projects in the
context of a standardized and evolving development
process. It’s composed of a three-course sequence.

Students in this course believe they have achieved the
objectives related to teamwork, process improvement and
software development practice.

As in the case of Tvedt [13] this sequence reflect much
of the experience in the “real-world”. But it is also hard to
be implemented by faculty staff.

The Activity Weekends

Ratcliffe et al. [11] describe the adoption of an integral
activity weekend as part of the faculty’s introductory
software engineering course and a second weekend to
reinforce industrial awareness in the student’s second
year.

These weekends have been developed to improve
motivation and staff-student relations, emphasizing on
life skills and adaptability. The idea is to introduce
students to the concept of team skills. With specific
attention to personal challenge and team dynamics, these
weekends where carefully designed to both improve
motivation and enhance the general employability of the
students.

They follow a series of specially tailored outdoor
activities that are designed to promote self and inter-
personal skills through a series of shared group
experiences. The activities are personally challenging and
are heavily teamwork oriented. They cannot be carried
out successfully without group co-operation and group
encouragement.

Ratcliffe et al. {11] state that the response from the
weekends is overwhelming. The students obviously enjoy
themselves a great deal but more importantly they learn a
great deal about themselves and working with others. It
seems that the students learn far more about team
working in one weekend than could have been taught to
them through a whole series of class projects.

Although the approach is very interesting and
effective, the costs are high. Considering the limitation of
resources that affect many universities, it’s necessary to
find a way to implement these weekends with lower costs.

Case Studies

The use of case studies, a pedagogical approach which
has been used successfully for many years in a variety of
business schools (Alfred Aho apud Joan Krone et al., 02)
is also proposed by some authors.

Krone et. al. [17] developed a course in which
students work with both an industrial partner (or an
industrial case study) and a faculty member to apply
theory and current research to real problems. This
approach goes far beyond the usual internship by setting
up a partnership in which students, faculty and industrial
partners work together, each bringing a special
perspective to a particular problem.

The course is heavily based on case studies which
have to be prepared in advance. The industrial problems
are documented as case studies, using a specific format.
The problem statement and background material are
created along with a proposed solution.

This course seeks to tighten the loose connection
between theory and practice in computer science
education by utilizing a partnership between academia
and industry to document industrial problems with non-
trivial technical issues and to transfer that knowledge into
the classroom.

Fuller et al. [18] also use case studies to teach
technical content. But they focus on the teaching of
software risk management. They propose the use of case
studies, based on the history of real projects. The case
studies will be drawn from industry and students will be
asked to perform risk assessment based on data that was
available at certain times throughout the project. The
students’ assessment can then be compared with actual
outcomes. In this way the student constructs their own
experiential background, becoming progressively more
familiar with all kinds of risks and their impacts on
particular types of projects.

Open Ended Group Projects

Daniels et al. [10] describe the use of Open Ended
Group Projects (OEGP). OEGP is a form of experimental
learning (Kolb apud Daniels et al., 02) which can, in
principle, be used to advantage to teach any subject with a
practical application.

Daniels et al. [10], state that in addition to supporting
knowledge acquisition, OEGP can be used to help the
students gain and improve skills. The most obvious skill
areas which are involved are interpersonal
communication and group working. However, a suitably
designed OEGP can ensure that students must consider
the problems of communication with manager and client
and can help improve both report writing and presentation
skills. OEGP also assist in getting students to analyze
problems and synthesize solutions while examining, and

trying to mitigate the risks of things going wrong, all
valuable skills for the software engineering project
managers of the future.

The experience of group project work prepares the
students for their subsequent careers where group
working is the norm. Undertaking open ended projects
also appears to have the benefit that they force the
students to think about the problem rather than spending
time searching for the ‘correct’ answer.

It is also noted that OEGP appear to have measurable
beneficial effects on student performance in other
academic subjects. Improved motivation and greater
enthusiasm seem to carry over into general performance,
confidence levels go up and problem solving skills
improve so that students are more willing to attempt
difficuit tasks. OEGP can also be used to encourage
students to apply theory which should lead to a better
understanding of the theory and thus to improved
performance in examinations.

Daniels et al. [10] describe several projects run in the
classroom and they describe the students’ reaction.
Firstly, feedback from the students has been generally
very positive. In all of the OEGP with which the authors
have been involved there has been positive feedback from
the students both during the module and afterwards. It is
also noticeable that the levels of motivation of the
students appeared to be higher with better completion
rates, less plagiarism and very few drop outs or failures.

But OEGPs raise some criticism. Daniels et al. [10]
explains that the main concerns that are expressed when
the use of OEGP is suggested relate either to the use of
group projects at all (“weak students get ‘carried’, good
students get ‘pulied down’”) or to the fact that the
outcome for an OEGP is inherently unknown i.e. that
there is no ‘right’ answer. The necessity for group
working is, however, becoming more widely accepted
now (Ford apud Daniels et al., 02), thus it is the concerns
about the open ended nature of the project and the need
for fair assessment based on problems for which there is a
correct answer, which are addressed here.

The obvious counter argument is that OEGP mirror
real life software engineering projects which do not
usually have known ‘right’ answers and there is a need to
assist students to learn this before they start to work. Part
of this learning process includes the intrinsically difficult
process of finding out what the client thinks is required
(Veryard apud Daniels et al., 02), negotiating with the
client to agree what can be done and, later, explain what
has actually been done and how it relates to the
requirements. An alternative argument is that, uitimately,
all criteria are established and judged by people and are,
therefore, subjective. Objective criteria are only regarded
as objective because there is agreement about the
‘correct’ way in which something should be done, or said.

History suggests that most such agreements change over
time and current ‘right’ way may well be revised later.

A different perspective on the fair assessment of
OEGP can be provided by considering the way in which
science and engineering are advanced. All research
projects have unknown outcomes but the methods used to
undertake and present research are common. Thus it is
possible to provide a fair assessment process for OEGP
by focusing on the process which the students use rather
than the product they produce [10].

2.2. Imtroduction skills

teaching

of professional

Lamp et al. [3] state that changes to the traditional
systems development life cycle towards use of package
software, prototyping, distributed computing, JAD etc
have all placed a further demand on interpersonal skills as
opposed to technical skills.

They described a major revision of the undergraduate
teaching programme of the Department of Computer
Science at the University of Tasmania, Australia.

This review introduced the teaching of professional
skills. The objectives were:

e to introduce students to a range of professional skills
considered essential for their effective operation as
IT professionals;

e to develop skills and attitudes in students appropriate
to IT professionals;

e to ensure that all times the acquisition of these
professional skills are seen by the students as
relevant to the technical and theoretical programmes
which they are concurrently receiving, and as being
essential for the well grounded graduate.

The second objective ensured that the professional
skills training was a genuine skills-based programme, and
not just an attempt to impart knowledge. Students are
required to actively participate and to acquire appropriate
levels of skills through experiential learning.

The programme encompass subjects that are taught
along four years distributed as follows:

First Year

What is the role of an IT professional?
Ethics in computing

Study skills

Report writing

Cross cultural communication

Legal Issues

Basic Communications Concepts

Information gathering
Interviewing

Organizations: groups & teams
Meetings & decision making
Marketing, presentation skills
Presentations by students

Second Year
Working in groups and teams

Groups and Teams
Information Gathering
Interviewing and ethics
Interviewing
Interviewing Exercises
Metaphors

Groups dynamics
Meetings

Team decision making
Group problem solving
Presenting a proposal
Group presentations

Third Year

Teamwork

Team leadership

Presentation skills
Assertiveness

Negotiation, conflict resolution
Career visualization
Skills/education for life
Contract negotiation

Detailed case study analysis

Honours

Advanced ethics, legal issues
Critical analysis

Research skills

Presentation skills

Thesis writing
Organizational contexts

According to Lamp et al. [3] the inclusion of the
professional skills programme complements the social
and human aspects of information systems by giving real
experience in organizational and team based activities,
and focuses understanding of the impact of information
technology at the interpersonal level.

3. Proposal

Based on the evidences given before, the authors of
this paper are working on a research project in order to
change the way computer science is taught at Federal
University of Rio de Janeiro.

They will try some of the techniques presented in this
paper both changing the way technical subjects are taught
and introducing professional skills teaching.

At the present moment, experiments are underway in a
technical course on Extreme Programming. The authors
are using concepts presented in this paper such as:

e The adoption of a large-scale project
¢ The involvement of an external client
¢ Open Ended Group Project

Their approach is to change the curriculum gradually.
They will experiment the techniques in different subjects
and introduce new ones especially for the professional
skills teaching.

3.1. The Extreme Programming Course

This is a semester long course for a class composed of
20 students. The content is based on the books of Beck
[4], Beck and Fowler [14] and Jeffries et al. [7].

The introduction of extreme programming teaching to
computer science undergraduate courses is not new. It has
already been described in the works of Shukla and
Williams {12] and Miiller and Tichy [6].

Shukla and Williams [12] describe a course based on a
16-week semester class where the students completed
four Java programming projects during the course of the
semester. Three of the projects were completed as the
students were learning and using more traditional
software development practices. These practices were
based on the Collaborative Software ProcessSM
(CSPSM) developed by Williams.

They found that one semester is not long enough to
teach two very different methodologies nor for the
students to perform meaningful assignments using two
very different methodologies.

Furthermore, the students didn’t work at all times co-
located and with a customer on site. So, the experience
didn’t reflect the work of a real extreme programming
project where co-location is extremely recommended and
the customer should be present.

Miiller and Tichy [6] developed an extreme
programming course where, in the first three weeks
students solved small programming exercises to
familiarize themselves with the programming
environment and to learn XP practices. The exercises

introduced jUnit (the testing framework used throughout
the course), pair programming, the test practices of XP
(write test cases before coding, execute them
automatically with jUnit), and refactoring. The remaining
eight weeks were devoted to a project on visual traffic
simulation. The course language was Java. All students
had experience with Java from their early undergraduate
courses.

As in the case described by Williams, the students
didn’t work at all times co-located and with a customer on
site which brought some problems.

The proposal of this paper tries to overcome the
problems found in both cases. Firstly, it focus only in one
methodology, the extreme programming. Secondly, the
students will work only in one project through the course.
And they will develop a software during the classes, so
they will always be co-located and will always have the
customer on-site.

The project will be the development of a software to
support the dissertation of a graduate student who will act
as the customer all over the course. This approach is
interesting, because the teacher won’t act as the customer.
He will act as the coach of the team. This project will use
Java as it’s development language.

The class will be divided in two to form two teams of
10 students each. In each team, the students will always
work in pairs. They will practice pair-programming at all
times following the recommendations of Williams et at.
[51(8)-

The students will be evaluated in two ways, according
to their individual achievements and their behavior
working in the team.

Every week the teacher will propose a reading
assignment for the students. They will have to read a text
and answer the questions posed by the teacher in the next
class. The texts are used so that students can learn more
about each characteristic of the methodology. This
evaluation will represent half of the week grade.

The other half is based on teamwork. Students will be
observed while they work in pairs and the teacher will
grant the marks according to the way they communicate
with the pair and the other teammates.

The teacher won’t evaluate the final product, but only
the process in which students build the product. So, the
student’s are not supposed to work on the project when
they are not in class.

These are 4 hour classes once a week. In the first hour
the teacher will ask the students about the text they’ve
read along the week before the class. In the second hour
the teacher will give a lecture on the subject of the class.
And in the remaining two hours the students will work on
the project.

The authors expect to overcome the probiems found in
previous experiments of this type. And hope the students
will improve their communication and teamwork skills.

4. Conclusion

This paper began describing the concerns of the
industry with graduate standards in the areas of
communication and interpersonal skills. Both empirical
research and anecdotal evidence confirms that industry
remains strongly concerned over the teaching of this area.

The authors presented some works that try to address
those concerns. They do that changing the teaching of
technical content or introducing the teaching of
professional skills.

Finally, they propose the adoption of some of these
techniques in order to change the teaching of computer
science at the Federal University of Rio de Janeiro. They
start with experiments introduced in a course on Extreme
Programming which is underway.

11. Future Work

This experiment is the first of a series of experiments
the authors intend to put in action in their research which
looks for new ways of teaching computer science courses
in order to shorten the gap between industry expectation
and university expectation. The results of this experiment
will be available in the future in the form of a new paper.

References

[1] T. DeMarco, T. Lister, Peopleware Productive
Projects and Teams, Dorset House Publishing Co., New
York:, 1987.

[2] C. Keen, C. Lockwood, J. Lamp, “A Client-focused,
Team-of-Teams Approach to Software Development
Projects”, Proceedings of Software Engineering
Education & Practice (SE: E&P'98), IEEE Computer
Society Press Dunedin, 34-41

[3] J. Lamp, C. Keen, C. Urquhart, “Integrating
Professional Skills into the Curriculum®, Proceedings of
the First Australasian Conference on Computer Science
Education, Sydney, Australia, pp. 309-316, July 1996.

[4] K. Beck, Extreme Programming Explained — Embrace
Change, Addison Wesley, 2000.

[5] L. Williams, R.Kessler, W. Cunningham, R. Jeffries,
“Strengthening the Case for Pair Programming”, /[EEE
Software, vol. 17, pp. 19-25, July 2000.

[6] M. Miller, W. Tichy, “Case Study: Extreme
Programming in a University Environment”, Proceedings

of the International Conference on Software Engineering
2001 (ICSE 2001).

[7]1 R. Jeffries, A. Anderson, C. Hendrickson, “Extreme
Programming Installed”, Addison-Wesley, 2001.

[8] L. Williams, R. Kessler, “All I Really Need to Know
about Pair Programming [learned in Kindergarten,”
Communications of the ACM, vol. 43, pp. 108-114, May
2000.

[9] J. Gouguen, “Requirements Engineering as the
Reconciliation of Technical and Social Issues”, in
Requirements Engineering: Social and Technical Issues,
edited with Marina Jirotka, Academic Press, 1994, pp.
165-199.

[10] M. Daniels, X. Faulkner, I. Newman, “Open Ended
Groups Projects, Motivating Students and Preparing them
for the ‘Real World’”, Proceedings of the 15" Conference
on Software Engineering Education and Training
(CSEET’02).

[11] M. Ratcliffe, J. Woodbury, L. Thomas, “Improveint
Motivation and Performance Through Personal
Development in Large Introductory Software Engineering
Courses”, Proceedings of the 15" Conference on
Software Engineering Education and Training
(CSEET'02).

{12] A. Shukla, L. Williams, “Adapting Extreme
Programming for a Core Software Engineering Course”,
Proceedings of the 15" Conference on Sofiware
Engineering Education and Training (CSEET02).

[13] J. Tvedt, R. Tesoriero, K. Gary, “The Software
Factory: Combining Undergraduate Computer Science
and Software Engineering Education, Proceedings of the
International Conference on Software Engineering 2001 (
ICSE 2001).

[14] K. Beck, M. Fowler, Planning Extreme
Programming, Addison Wesley, 2001.

[15] J. A. Goguen, C. Linde, “Techniques for
Requirements Elicitation”, Proceedings of Requirements
Engineering (RE’'98), IEEE Computer Society, 1998, pp.
152-164.

[16] M. J. Sebern, “The Software Development
Laboratory: Incorporating Industrial Practice in an
Academic Environment”, Proceedings of the 15"
Conference on Software Engineering Education and
Training (CSEET'02).

[17] J. Krone, D. Juedes, M. Sitharam, “When Theory
Meets Practice: Enriching the CS Curriculum Through
Industrial Case Studies”, Proceedings of the 15"
Conference on Sofiware Engineering Education and
Training (CSEET'02).

[18] A. Fuller, P. Croll, L. Di, “A New Approach to
Teaching Software Risk Management with Case Studies”,
Proceedings of the 15" Conference on Software
Engineering Education and Training (CSEET02).

