e

i

i
M
i
e
SaED

%
i
S
e

e

R

Survey and Taxonomy
of Layout Compaction
Algorithms

T

e

1
E. T.

&

Anido,
Oliveira, C.




A Survey and Taxonomy of Layout Compaction Algorithms

Anido, M. L. and Oliveira, C.E.T.
Niucleo de Computagdo Eletronica - Universidade Federal do Rio deJaneiro
Email: {mlois,carlo}(@nce.ufrj.br

Abstract

This paper presents a survey and a taxonomy of layout compaction algorithms, which are an
essential part of modern symbolic layout tools employed in VLSI circuit design. Layout compaction
techniques are also used in the low-end stages of silicon compilation tools and module generators.
The paper addresses the main algorithms used in compaction, focusing on their implementation
characteristics, performance, advantages and drawbacks. Compaction is a highly important
operation to optimize the use of silicon area, achieve higher speed through wire length
minimization, support technology retargeting and also allow the use of legacy layouts. Optimized
cells that were developed for a fabrication process with a set of design rules have to be retargeted

Jfor a new and more compact process with a different set of design rules.
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1. Introduction

The rapid design of VLSI systems plays an important role in the progress of science and technology.
In general, several important problems can be described in VLSI CAD systems. They are typically
design specification, functional design, logical design, circuit design, physical design, and
fabrication (technology design). To link these problems, we must perform functional and logical
simulation, circuit analysis, extraction and verification. Physical design automation of VLSI systems
consists of six major problems. They are partitioning, placement, assignment and floorplanning,
routing, symbolic layout and compaction, and verification.

Compaction is the translation of a layout designed from a generic technology (such as CMOS) to a
particular fabrication technology’s design rules. It translates symbolic layout (described in graphical
or textual form) or translates the output of the detailed-routing phase into mask data and has to
convert the circuit elements into the appropriate mask elements and minimize the chip area. The
goal is to minimize the area of the layout, while preserving the design rules and not altering the
function of the circuit. This goal gives this process the name compaction. Compaction changes the
geometry of the topological design to produce as small a layout as possible while enforcing the
design rules.
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Figure 1. Using compaction to translate symbolic layout into physical layout (a) and using
compaction to retarget a layout from a fabrication process P1 to a fabrication process P2 (b)

2. Introduction to Layout Compaction

The layout designer is driven by two conflicting demands. The first is to find the layout with an area
as small as possible, in order to minimize manufacturing cost and maximize circuit performance.
The second is to create the layout quickly to minimize design time and cost. Compaction may also
be required when one wants to convert a layout from an older fabrication process to a new one
(using legacy layouts), as illustrated by figure 1b.

The designer usually develops the layout during two major layout phases [1,2,3].

1. Topological design, after which the relative placement of components and wires are defined.
2. Geometrical design, after which the geometrical (physical) positions of all the layout elements
are defined.

The designer uses different design methodologies to solve the problems of these two phases.
Symbolic Layout and compaction are two closely related design methodologies that encourage the
separation of topological design and geometrical design and help to automate geometrical design.
Symbolic layout allows the topological designer to work with transistors, wires, and cells as
primitives, rather than manipulating the individual polygons used in fabrication. A symbolic layout
can be drawn as a stick diagram, which uses line segments and components as symbols, or as a
layout display with wires and devices drawn as rectangles similar or identical to those used in the
layout. The stick diagram may clarify the cell topology, while the layout display gives the designer a
feel for the relative sizes of layout elements. The compactor usually moves subcells only in the
plane, preserving the designer’s topology for the cell.



Figure 2 (a) illustrates a symbolic layout using a virtual grid and figure 2 (b) illustrates its
corresponding physical layout. Figures 2(c) and 2 (d) illustrate a more realistic example.

Compaction performs a translation from the graph domain into mask geometry. Compaction is more
than just an optimization problem. Compaction is quite a difficult problem not only from a
combinatorial, but also from a systems point of view. Advanced compactors aim at separating
combinatorial and technological issues as much as possible. Compaction algorithms use the
information from the design-rule database to compute the mask features. The structure of
information that the compaction algorithm has to extract from the design-rule database can be quite
complicated. It involves not only simple numerical parameters, such as minimum width and
minimum distances between features of different masks, but also connectivity information and
electrical information. The positioning of tubs around transistors and substrate contacts are
additional problems to be dealt with. Most of the steps in the compaction process are made much
simpler by working with a symbolic description of the layout.

Combining compaction with symbolic layout creates advantages for the computer-aided design
developer as well. Several companies provide symbolic layout systems [30,31,32].
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Figures 2a and 2b - Symbolic Layout

The most common method used to implement symbolic layout on systems which do not support the
concept of true symbolic layout (and there seems to be only one that does — the US$ 100,000.00+
Compass ROSE system) is the “unit cell approach”. In this method, many small cells such as poly
contact, via, N- and P-transistor, etc. are constructed. If the user wishes to have several different
sizes or shapes of a particular part, he either constructs more different kinds of unit cells or else he
places many small unit cells close together so that they will overlap and create the larger area
needed. The difficulties caused by this method may be readily seen: First, the unit cells are not truly
symbolic; that is, they are icons which “represent” functional elements, they “are” the functional
elements. As such, they must be individually redefined and rebuilt for each technology with which
they are used. They do not simplify the layout, but, in fact, complicate it by adding all kinds of extra
detail, especially if arrays of unit cells are used to construct larger elements.
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Figures 2¢ and 2d - Symbolic Layout — a Realistic Example

A much better way to use the “unit cell” approach (as used in the PILGREM system [32]) is to draw
a figure, or icon, such as a circle, diamond, square, or cross, on a special layer and define it as a cell.
Thus, a green circle might be used to represent an N-Transistor, while a blue circle could mean a P-
transistor. Similarly, a green cross might stand for a contact between N-diffusion and metal and a
blue one for contact to P-diffusion. If the sizes of the symbolic shapes are chosen judiciously, the
symbol-to-symbol spacings can be simplified down to two or three cases, thus making the system
simple to use. With this method, it is necessary to use a computer program to analyze the physical
layout data, searching out the cell placements and converting them either to true symbolic placement
entities, as in the PILGREM system [32], or replacing them with the desired polygons on the correct
layers to construct the actual layout database.

A second method for the implementation of symbolic layout on non-symbolic systems is the
“symbolic layer” approach. With this method, which is the basis of the previously mentioned ROSE
system [31], a set of special layers is defined, one for each type of symbolic entity. Points, lines,
and rectangles placed on these layers are used to define functional elements of varying sizes and
shapes. This “stretchable” method is very powerful because it decreases the amount of effort
required to define long or wide transistors, interconnect paths, various sizes of capacitors, resitors,
and so forth. The number of different symbolic entities is kept to a minimum, because a single
definition serves for all different sizes of that particular element. Finally, the amount of data
required for a design is very small.

The only disadvantage of the “symbolic layer” system is its lack of identifying icons, but this can be
alleviated by combining the “unit cell” and “symbolic layer” methods in the same design. Unit cells
are used for minimum size elements and to mark the corners or ends of stretched elements, which
are implemented with the “symbolic layer” scheme. Interconnect is usually shown as “symbolic
layer” lines or rectangles without icons so that the overall appearance of the layout is one of icons
wired together with lines. More details of this can be found at http://www.ic-dc.com.




3. Taxonomy of Compaction Algorithms

The most common classification scheme is based on the direction of movement of the components
(features): one-dimensional (1-D) and two-dimensional (2-D) and is presented below[1]. A second
approach to classify the compaction algorithms can be based on the technique for computing the
minimum distance between features (constraint-graph based compaction and virtual grid
compaction). In addition, compaction algorithms can also be classified on the basis of the hierarchy
of the circuit. If compaction is applied to different levels of the layout, it is called hierarchical
compaction. Any of the methods to be described can be extended to hierarchical compaction.

3.1. One-Dimensional Compaction (1-D)

3.1.1. Virtual Grid Algorithm
A. Basic Virtual Grid Algorithm.

Virtual grid layout approach to symbolic design uses a virtual grid to establish the relative
placement of circuit elements and does not correspond to a physical grid [4,5,6]. In the virtual grid
approach the compactor gives locations to the virtual grid lines, not to the circuit elements
themselves. This imposes an arbitrary constraint on a virtual grid design; all elements that fall on a
virtual grid are given the same location. This is illustrated by figure 3.

Virtual grid compaction begins by first examining spacings in one direction only (e.g. use the X
direction as the first compaction pass). Each X grid line is compared with parallel neighboring X
grid lines for spacing requirements. A spacing is required with a neighboring X grid if elements on
two neighboring X grids have the same Y coordinate value. The final spacing on an X grid will be
the greatest spacing it has encountered with respect to its parallel neighbors. In order to
accommodate spacings that exert their influence over a number of symbolic grid lines, backtracking
must be done. The grid line to be placed is compared with previously placed columns until the
distance between the current column and the prior column exceeds some worst-case process value.

During Y compaction (the second compaction pass) corner spacings are accomodated. An element
being placed during Y compaction is spaced against diagonal neighbors within the worst-case
process window as well as against its adjacent neighbors. All diagonal spacing requirements are
handled during the second compaction pass.

The virtual grid algorithm finds the subcell 14
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Figure 3 — Virtual Grid Layout



B. Fence Compaction Algorithm.

Fence compaction [6] eliminates the need to do backtracking in a virtual grid compaction and is
linear in run time. The fence compaction technique is similar to the shadow-propagation method
[1]. The fence algorithm, in effect, combines the graph building step with analysis of the critical
path. The virtual grid limits the potential locations of the symbolic elements. This permits the use of
a “picket fence” data structure for each grid line.

A “picket fence” data structure records the last placement of each layer for the given process, and
thereby keeps track of the necessary parallel neighbor information. There is a fence data structure
for each Y grid line. Each fence, in turn, has one “picket” for each layer of the process that is being
compacted for. Each picket contains a rectangle that represents the last placement of a rectangle of
the corresponding layer along the fence structure’s grid line. The contour of a given layer is captured
by the pickets for that layer.

During the second compaction pass Y grid lines are placed in much the same way as grid lines were
placed during X compaction. Diagonal constraints are handled during this compaction pass and the
actual Euclidean distances for the corners being spaced are used. Figure 4 illustrates the contents of
a picket fence for a certain Y grid line. Picket Fence Rectangle to be
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(c ) Most Recent Layers Table

Compaction starts by assigning the leftmost virtual grid the mask position 0. The other virtual grid
lines are assigned mask positions in order by looking at the components that have already been
placed[6]. Consider the situation shown in figure 4, where the virtual grid VGy; is being assigned a
mask position and VGy; trough VGy.1y have been assigned mask positions. The inner loop of the
spacing algorithm determines the required spacing from rectangle A (fig. 4b), a rectangle VGxi, and
the rectangles to its left. Therefore, the most recent rectangles in the grid line form a picket fence



against which distances to rectangle A have to be compared. The most recent layers table keeps
track of the position of the last mask element seen on each layer. For example, the most recently
seen diffusion element was on VGys; the required spacing is measured from the element’s right
edge, which is at 12um. That element hides an earlier diffusion element on VGyi.

The virtual grid can be placed immediately because the constraints on it are part of an acyclic graph.
Once VGy; has been placed, the most recent layers table can be updated and the algorithm can place
the next virtual grid.

After both x and y compaction, virtual grid compactors use an xy compaction step to reduce the cell
size because the rectangular barrier introduced around the components is too pessimistic at the
corners of the cell. The xy compaction step looks for adjacent components that can be moved closer
together and adjusts the positions of their virtual grid lines. The xy compaction step is usually
performed simultaneously with the second x or y compaction step since it must look at the same
constraints.

C. Split Grid Compaction Algorithm

This method allows objects on a virtual grid line to move independently, but does not allow
connections with slopes. Split-grid compaction produces layout closer in quality to a constraint-
graph algorithm compaction, at the cost of more CPU time than required for simple virtual grid
algorithms.

A split grid compactor starts with a virtual grid layout. The virtual grid is retained to organize the
topology of the circuit. The grid lines are split apart into distinct circuit gro.ps which are collections
of circuit elements that lic on the same grid line and are electrically connected. The compactor
gives locations to groups of circuit elements rather than virtual grid lines. Split grid compaction is a
hybrid approach to compaction; it retains the simplicity and speed of virtual grid compaction and
produces area results that are similar to those produced by a graph based compactor — DASL
Compactor[7,8].

In the approach presented in [8], groups are identified and placed as close to the fence as possible.
Upper bound constraints are handled for the element rectangles in this approach by using “layer
decoupling”. Layer decoupling allows wires and contacts to slide with respect to a groups center line
(contacts and wires can be offset).

A modified “picket fence” data structure is used in [7]. A topological data structure termed grid
point data structure (GPDS) is used to facilitate nearest neighbor access (figure 5b). Fast group
identification as well as fast compaction is possible since nearest neighbor information can be
obtained in constant time. The X compaction pass is similar to the X compaction pass presented
above for virtual grid compaction except that groups are being placed instead of virtual grids (the
fence structure is the same for both). During the Y compaction pass there is one fence structure for
each X group (not each X virtual grid). Y group placement is similar to Y grid placement. Run
times as fast as those reported for a virtual grid compactor and area results as small as those
produced by constraint graph compactor have been reported [7].
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Fig. 5a — Virtual Grid Symbolic Inverter

Fig. 5b — Grid Point Data Structure (GPDS) for
the cell of figure 5a.
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In the split grid compaction method, the compactor places distinct circuit groups that fall on the
same virtual grid separately, splitting apart the virtual grids where appropriate.

At the center of the split grid compactor [8] is a data structure that allows fast access to the circuit .
elements. Each occupied grid point is allocated a grid point data structure (GPDS) which contains a
list of elements appearing at that point. A wire appears at a grid point if it ends or makes a turn at
that point. Contacts and pins appear at a single grid point each. Devices (P and N transistors) appear ‘
at each grid point they cover, depending on their length and width. This means that it is possible to
specify different size transistors using symbolic layout and a split grid representation. A device will
cover at Jeast three grid points (for unit devices) permitting connection to the device’s source, gate
and drain. Each occupied point is linked to its nearest horizontal and vertical occupied neighbors so



that nearest neighbor information can be determined in constant time. Access to the GPDS matrix is
provided by two “edge vectors” (X and Y edge vectors). A pointer slot is provided for each virtual
grid line. A given slot will be empty if no elements fall on the virtual grid line, otherwise the first
grid point to have an element on it will be pointed to (figure 5b).

As illustrated in figure 6a, a group is defined as a collection of circuit elements falling on the same
virtual grid line that need to be placed together. There are two situations that can result in the
elements on this grid line being grouped together. The first situation is if the elements are connected
by a vertical wire segment. The second is if the elements are connected to a vertical transistor.
Figure 6b illustrates some vertical groups. These elements will be placed together, when converting
from virtual grid coordinates to real coordinates. Groups are identified by traversing each grid line.
Each GPDS on the grid line is visited once. When a new layer is encountered, a new group is
initialized. Devices are an exception to this. A device takes up at least three grid points. The three
points of a device are given the same group number. A group is ended when no layers associated
with the group extend to the next GPDS.

The first compaction pass (X in this description) proceeds in a similar way to vertical grid
compaction. A group is compacted by determining the spacing necessary for each element at each
GPDS in the group. Elements are spaced with respect to elements in the neighboring X groups (the
fence) sharing the same Y virtual grid coordinate. Vertical wires are kept track of dynamically, so
that only occupied virtual grid points (GPDS points) are visited. The fence is checked for all points
that a wire segment crosses.

After the first compaction pass each of the X groups is given a fence data structure. The fence is
sorted in order of the physical placement of the groups. Each X group points to its fence data
structure which is linked to its physical neighbors (figure 7).

Grou Group
Fence Gr(())up A ) p N N R Gr;)up

X Group 0 1 2 3
Number

Fig. 7 — Fence for the Y compaction of the circuit of figure 6a.
After X compaction assume the X groups are in the following
order — 0,2,1,3 (location of group 1 is great than group 2).
Each group points to its fence data structure.

To place a Y group, a given element in the group is checked against the corresponding group fences
that fall within a design rule window of the location of its X group fence. This design rule window
is dependent on the process being compacted for and is wide enough to account for any possible
corner design rule interaction encoded in the process file. Since a given process will have some
minimal resolution, the number of group fences in the design rule window will be N in the worse
case, where N is the design rule window size divided by the process resolution. For diagonal
spacing at most N groups will be checked, leading to a linear algorithm.



D. Compression-Ridge Method

This method was pioneered by Akers [9]. In this approach, a region of empty space is identified in
the geometric layout, which separates the layout into a left and a right part. Such a region is
subsequently removed by translation of the right part of the layout to the left by as much as the
spacing constraints will allow. This step is repeated until no more compression ridges are found. A
major problem with this algorithm is finding connected regions of white space that can be removed
from the layout. Another major disadvantage of this method is that it progresses from the top to the
bottom of the layout which amounts to a search through the layout with backtracking (if the
compression-ridge method cannot progress further) and thus is computationally complex.
Furthermore, it finds only horizontally convex compression ridges. Figure 8 illustrates the
compression ridge method. Although this algorithm is historically important as the first compaction
algorithm, modern systems have abandoned it for more powerful methods.

Compression ridges have the following properties:

1. Compression ridge is a constant width band of empty space stretching from one side of the
layout to the other side.

2. Compression ridge can intersect wires that are perpendicular to it. However, it cannot intersect
those wires that are parallel to it.

3. The width of a compressing ridge is such that when the space is removed, no design rules should
be violated in the resulting layout.
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Fig. 8a — Compression ridge Fig. 8b — After compression

The compression ridge is shown by the shaded regions of figure 8a. In this technique, these
compression ridges are subsequently removed from the layout until no more ridges are found. One
method for finding the compression ridges is to use the virtual split-grid method. The vacant space
along the grid line can be replaced by a rectangular compression ridge. The width of this ridge is the
minimum compression that can be achieved along the grid line. Figure 8b shows the layout after
removing the compression ridge.

3.1.2. Constraint-Graph Based Compaction

A. Constraint Graph Compaction Principles

In the constraint graph approach the designer typically places circuit element symbols on a fine
grained physical grid. The compactor brings circuit elements as close together as design rule spacing

requirements will allow. Some constraint graph compactors can also push apart circuit elements that
are too close together. Locations are typically given to each circuit element. Some constraint graph

10



compactors, however, group together circuit elements whose center lines share the same physical
grid line, and who are connected geometrically (electrically connected) and give the groups
locations. Constraint graph compactors are one-dimensional compactors and require at least one X
compaction pass and one Y compaction pass.

In this approach, the layout topology and spacing constraints are represented by a weighted directed
graph called the constraint graph (see figures 9a and 9b). The construction of this graph is the time
consuming step of constraint graph compaction. Among the approaches that have been used to
construct this graph are the shadow propagation method [10] and the scanline algorithm [11].
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Fig. 9b — Wheighted graph associated to figure 9a Fig. 10b — Connectivity Constraints —
graph with backward edge

The constraint graph G (V,E), is a weighted graph. Each vertex v € V represents a component while
edges represent constraints. There are two types of constraints that should be satisfied in the process
of compaction: separation constraints and physical connectivity constraints. Both separation
constraints and physical connectivity constraints can be incorporated into a graph representing a 1-D
compaction problem. A separation constraint can be represented by a directed edge with a weight
equal to the minimum separation (figure 10a). Assuming that A is to the left of B in a coordinate
system, this rule can be written as Bx = Ax + d, where Ax refers to the x-location of element A. It
can also be written as x2 > x1 + d, where x2 represents Bx and x1 represents Ax. Figure 10b shows
the connectivity constraints that require two components to be within a distance d of each other. The
equation for this is: [x2-x1| < d. Figure 10b illustrates the case that requires a wire to be within a
distance d of the center of the contact, and vice-versa. A physical connection can be represented as a
cycle of two edges.

11



The constraint graph includes two additional vertices, L and R, which represent two physical
boundaries (Left and Right). L can be thought of as a source of the constraint graph and R can be
considered as the sink of the graph.

B. Constraint Graph Generation

The first step necessary in constraint graph compaction is to build the constraint graph. This is the
most time-consuming part and is O(n”) in the worst case. This is due to the fact that, in the worst
case, there is an edge between every pair of vertices in the constraint graph. Only a small subset of
the potential edges are actually needed for constraint graph compaction. A circuit component group
typically will only have spacing requirements with its nearest neighbors. Many techniques for
generating the constraint graph efficiently have been proposed [10,11]. In construction of a
constraint graph, the connectivity constraints are generated first. The connectivity constraints can be
generated by scanning all legal connections in the symbolic layout. The connectivity information is
usually stored in a table and the compactor looks up the table to generate all the constraints.
Different types of connectivity constraints include wire-wire, wire-via, wire-source connectivity
constraints. ‘

Separation constraints are generated once per compaction step. The constraint generation method
used should ideally generate a non-redundant set of constraints since the cost of solving the
constraint graph is proportional to the number of edges in the graph, or the number of constraints.

Several constraint graph generation algorithms have been proposed, and two of the most well known
are the Shadow-Propagation Algorithm [1,2,3,10] and the Scanline Algorithm[1,2,3,11].
C. Algorithm for Calculating the Critical Path in an Acyclic Graph

Once the construction step is complete, the constraint graph is used to assign x-locations to the
vertices so as to satisfy the constraints and minimize the layout width. This is achieved by assigning
x-values to the vertices so as to minimize the length of the longest L to R path(s) (the critical
path(s)). The length of a path is equal to the sum of the weights of those arcs traversed by the path.
Central to the constraint graph approach is the critical path algorithm. This algorithm is used to find
for each vertex v, the range of x-locations [I(v), r(v)] that can be tolerated by that vertex. Let
LengthFromL(v) be the length of the longest path from the source L to vertex v. Similarly, define
LengthToR(v) to be the length of the longest path from vertex v to sink R. Therefore, the range of
movement tolerance for each vertex v can be defined as follows:

I(v) = LengthFromL(v)
r(v) = LengthFromL(R) - LengthToR(v)

It can be shown that I(L)=r(L)=0, and I(R)=r(R) = LengthFromL(R), which is the length of the
longest path from the source L to the sink R. Also, based on the principle of optimality, for each
vertex v on one of the critical path(s), 1(v) = r(v). For acyclic graphs, the critical path problem is
straightforward. A semi-formal description of such an algorithm is given in Figure 11.
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Algorithm Critical-Path (L, R, G);
(* G: Constraint graph *)
(* L: source vertex of graph G *)
(* R: sink vertex of graph G *)
(* LengthFromL(i): length of longest path from L to vertex i *)
(* LengthToR(i): length of longest path from i to R *)
(* di,j : weight of edge (i,j) (spacing constraint between nodes i and D
(* T+(i): successor vertices of i *)
(* T-(i): predecessor vertices of i *)
Begin
1. (* Initialization: levelize graph *)
Let K be the number of levels, and Vi the vertices in level i;
Therefore, V1 = {L} and Vk = {R};
2. (* Forward trace *)
LengthFromL(L) = 0;
For K=2 To K Do
ForEachi € Vk Do
LengthFromL(i) <- max j 1.y {LengthFromL(j) + dj;i}
EndForEach
EndFor;

3. (*Backward trace and compute tolerance ranges *)
LengthToR(R) = 0;
For k=K-1 DownTo 1 Do
ForEachi € Vk Do
LengthToR (i) <- max j. 1+ {LengthToR(j) + d; i}
1(i) = LengthFromL(i);
1(i) = LengthFromL(R) — LenghToR(i)
EndForEach
EndFor;
End.
D. Example of Constrain Figure 11 — Calculating the Critical Path in an Acyclic Graph

Once the moving tolerances for all vertices have been computed, the next task is to assign locations
to the corresponding elements consistently with their tolerance ranges. To do that, we need to have a
moving strategy. There are three general moving techniques: the minimum, the maximum, and the
optimum strategies. The minimum moving strategy assigns each element closest to the right
boundary of the chip, i.e., for each vertex v, x(v)=r(v). This is the strategy used in the plowing
technique of Magic[12].

The maximum moving strategy assigns elements closest to the left boundary of the chip, i.e., for
each vertex v, x(v)=l(v). Both these strategies are simple and lead to layouts that are densely packed
on either side of the chip. This is undesirable since it leads to an increase in the overall wire length.

An optimum moving strategy attempts to assign x-locations to elements according to some
optimization criterion. A possible criterion would be to assign each element to the middle of iths
range of tolerance, i.e., for each vertex v, x(v)= (I(v)+r(v))/2. Another possible criterion is to use a
force-directed approach. In this case, the criterion would be to minimize the sum of the forces acting
on each element. The objective minimized in this case is the sum of the squares of the x-distances
between the element and its neighbors.
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The general steps of the constraint graph compaction approach are summarized in figure below.

Algorithm Constraint_Graph_Compaction;
1. Construct the constraint graph G(V,E);
2. Apply the critical path algorithm and find for each vertex v, [1(v),/(v)];
3. Move each element to within its range of tolerance;

End.
BackTrace¢
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Fig. 12a — Initial Layout Fig 12b — Constraint Graph of figure 12a

Consider the Layout of figure 12a with minimum horizontal distances centre to centre:
dA.D=5 ; dA,E=5 ; dC,E=5 ; dC,F=5 ; dD,G=4
dD,H=4 ; dE,H=4 ; dE,I=5 ; dF,I=5

Consider the following element width:
wA=4 ; wB=6 ; wC=4 ; wD=4 ; wE=4; wF=4;
wG=2 ; wH=2 ; wl =4

Since blocks B and C are connected by vertical wires, they are grouped to move equally in the x
axis. The same applies to blocks D, E, G and H.

The minimum distance di,j between two groups K; and K is defined as follows:
d ij = max {d a,b}
aeKi & beKj
Thus:
dA,DE=max{5,5}=5 ; dL,A=2 ; dL,BC=3, dBC,DE=6 ;
dBC,F=6 ; dDE,GH=4 ; dDE,I=5 ; dFI=5 ; dGH,R=1 ;
e d[,R=2.

The graph has 5 levels. Let Vi be the vertices of level i. Then, V1={L}, V2={A,BC}, V3={DE,F},
V4={GH,I}, e V5={R}.

The next step is to perform a forward trace of the graph, where, for each vertex i, the values LengthFromL(i)
are determined as described in the algorithm of figure 11. For this example, we obtain the following:

14
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Level 1:
LengthFromL(L)=0.
Level 2:
LengthFromL(4) = LengthFromL(L) + dL,A = 0+2=2;
LengthFromL(BC) = LengthFromL(L) + dL,BC = 0+3=3.
Level 3:
LengthFromL(DE) = max { LengthFromL(4) + dA,DE;
LengthFromL(BC) + dBC,DE } = max{7,9} = 9;
LengthFromL(F) = max { LengthFromL(BC) + dBC,F} = 9.
Level 4:
LengthFromL(GH) = LengthFromL(DE) + dDE,GH = 13;
LengthFromL(I) = max { LengthFromL(DE) + dDE,I ;
LengthFromL(F) + dF,1 } = max {14,14} = 14.
Level 5:
LengthFromL(R) = max { LengthFromL(GH) + dGH,R;
LengthFromL(I) + dL,R } = max {14,16} = 16.

The next step is to perform a backward trace of the graph. During this step, for each vertex v, the values
LengthToR(v), I(v) and r(v) are computed as described in the algorithm of figure 11. Hence, the following is
obtained for all vertices of the graph:

vertex R:  LengthToR(R) =0; I(R) =16, r(R)=16- 0=16;
vertex GH: LengthToR(GH) =1; I(GH) = 13, r(GH)=16-1=15;
vertex I LengthToR(l) = 2, D = 14; () = 16-2=14;
vertex DE: LengthToR(DE) =7; |(DE)=0, r(DE)=16-7=9;
vertex F:  LengthToR(F) =7, I(F)~=9, r(F) = 16-7=9;
vertex A: LengthToR(4) =12; 1(A)=2, . 1(A)=16-12=4;
vertex BC: LengthToR(BC) =13; 1(BC)=3, r(BC)=16-13=3;
vertex L:  LengthToR(L)=16; I(L)=0, r(L)=16-16=0;

The final step of the algorithm is to find the x-location of the center of each group. Let xmin(i), xmax(i), and
xopt(i) be the x-location of the center of group i according to the minimum, maximum, and optimum
strategies respectively. For this example, assuming that xopt(i)=(1(i) + 1(i))/2, these variables will be assigned
the following values:

vertex R:  xmin(R) = 16, xmax(R)=16, xopt(R) = 16;
vertex GH: xmin(GH) = 15; xmax(GH) = 13; xopt(GH) = 14;
vertex I:  xmin(l) = 14; xmax(I) = 14; xopt(l) = 14;
vertex DE: xmin(DE)=9; xmax(DE) = 9; xopt(DE) =9,
vertex F:  xmin(F) =9; xmax(F)=9; xopt(F) =9,
vertex A:  xmin(A) =4; xmax(A) = 2; xopt(A) = 3;
vertex BC; xmin(BC) =3; xmax(BC) =3; xopt(BC) =3;
vertex L:  xmin(L) = 0; xmax(L) = 0; xopt(L) = 0;
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Figure 13 — Resulting Compacted Layout when a horizontal
maximum moving strategy is adopted.

E. Wire Jogging

The wire jogging problem has similarities with the problem of routing and there are many papers in
this area [13,14]. One of the first approaches to jogging wires was reported by Hsueh [10]. In this
approach jogs in wires were introduced at “torque” points on a wire (see fig. 14). Wire jogging had
limited success because it could reduce the size in one direction while, potentially, increasing the
size in the other direction.

Several attempts have focused on reducing the critical path in a cell; jog points are only introduced
along the critical path. Jogs are introduced in the graph domain in [15]. The critical path is updated
after each wire is jogged and the new critical

path is then searched for the next wire to be

jogged. The process terminates when there are

no wires on the critical path, or there is not

enough room left to introduce a new jog. A

vertical jog is introduced in a horizontal wire if F
there is a gap in the X intervals between the fan- S
in vertices of the wire vertex and the fan-out
vertices. This, in a sense, puts a torque on the
wire vertex if the fan-in vertices and the fan-out
vertices are also on the critical path, or at least
tightly constrained.

F
€—

-

Figure 14 - Applying a torque to a wire results in
a wire jog and a more compact layout

F. Wire Length Minimization.

Elements not on the critical compaction pass will find themselves pulled toward a cell edged
because they are given their minimal legal spacing. This tends to increase wire length and reduce
performance.

One of the first methods used to reduce wire length was the “average slack” method described in
[10]. This approach uniformly distributed the empty space in a circuit among the elements that were
not on the critical path. A force-based heuristic is described in [16]. It not only considers the effect
of each wire layer but it also considers the cumulative effect of multiple wires connecting adjoining
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modules (vertices in SPARCS are hierarchical so that a vertex could represent a module). This is
effective in minimizing wires in a hierarchical cell.

The approach used in [ 17] “pulls back” elements that are not on the critical path as far back as they
can go. The different wiring layers of the technology are given different weight factors, so that the
diffusion layers, for example, are minimized preferentially. This method is iterative.

The method employed in [15] uses a non-iterative, event-driven algorithm to minimize the wire
length. Groups of circuit elements will have preferential upward movement due to a wire connecting
to it from above that needs its length to be minimized (wire widths are considered in this process as
well as wire layers). The group is moved up until it is stopped by another group. These groups are
merged if possible and moved up together. When the merged group is stopped the composite group
will be broken up and if the top group is not constrained it will continue upward if it has a
preferential upward movement. A global optimum is reported for this work and near linear run times
are achieved due to its non-iterative approach.

3.1.3 Mixed Constraint Graph and Virtual Grid Compaction

This method used in the DASL system uses a mix of constraint graph and virtual grid compaction
techniques [18,19]. This system differs from other systems in its ability to control de placement of
substrate contacts and tubs, requiring less (or no) user intervention to produce a process independent
design.

In constraint graph compaction if there is nothing to constrain and element’s placement, it will slide
as far to the left as possible (in X compaction). This is undesirable for substrate contacts which need
to be spaced at reasonable intervals. The method controls the size of the tubs and the placement of
the substrate contacts.

The DASL system is an outgrowth of the MULGA virtual grid compaction system [7]. In the
MULGA virtual grid system tub generation was performed as follows: a minimal tub was assumed
to surround each diffusion element during compaction. After compaction the tubs were grown until
they intersected the “nearest” substrate contact. This approach works well for a virtual grid
compactor but does not work for a constraint graph compactor because substrate contacts tend to
slide toward the left (for X-compaction) along a horizontal power rail on which they are placed. This
may cause some tubs to be stretched an unnecessarily long distance in order to enclose a substrate
contact and can cause design rule violations since the final tubs are different than the tubs that were
present during compaction.
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The solution developed in the DASL system was to introduce “symbolic tubs” into the virtual grid
design that is the input to the DASL compactor. The symbolic tubs are automatically generated and
assure that design rule correct results are achieved because the compactor is dealing with the tubs
that will be present in the final layout. The substrate contact sliding problem is constrained by
minimizing the area of the tubs in a fashion described in [18].

(@) (b) (©)

Figure 15. (a) An inverter with minimum tubs around each diffusion element before constraint graph
compaction. (b) After compaction, the Vdd substrate contact slides down to the bottom of the Vdd
rail since there is nothing to stop it. When Ntubs are grown to include a Vdd substrate contact they
overlap the Ptubs. (c) The desired results are shown.

DASL compaction begins by splitting a virtual grid symbolic layout into distinct circuit groups. An
initial compaction is done during which time a constraint graph is generated and the groups are
given their minimal locations. The method employs the “newave” [19,20] constraint graph
generation technique that combines the perpendicular plane sweep approach [16] with the
shadowing technique[10]. The constraint graph is then used to place groups that are not on the
longest path in order to minimize the areas of selected layers (wire minimization).

The first step in the DASL compaction scheme is to identify distinct groups that are on the same grid
line. An X compaction group is composed of symbolic circuit elements that are connected along the
same vertical grid line and that need to remain together in the mask version of the cell. This is
thoroughly described in [7]. One of the grouping operations concerns grouping vertical symbolic
tub edges. Tub edges that share the same vertical grid line and overlap will be placed in the same

group.

The size of a tub cannot be predetermined because the tub must observe the correct overlap rules
with diffusion (or active area) elements and must also be tied to a substrate contact. Therefore, the
width and length of a tub is variable and is topology dependent. Since the size of a tub is not
predetermined, the edges of a tub are treated as distinct compaction groups and placed separately
(figure 16). The correct overlap of a tub to a diffusion element is accomplished by spacing a
diffusion element with respect to the tub edge

(tub group). /T“b \

/N

leading group trailing group

Figure 16. A device surrounded by a symbolic tub
is found in (a). The tub groups are found in (b).
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3.2. 1 %-Dimensional Compaction

A compactor based on simulation of zone refining is presented in [21, 22] ~ the Zorro compactor.
Although the compactor is based on simulation of an engineering process, it is a deterministic
algorithm and differs sharply from other simulation based approaches such as simulated annealing
and simulated evolution. The key idea is to provide enough lateral movements to blocks during
compaction to resolve interferences. In that sense, this compactor can be considered 1 2
dimensional compactor, since the geometry is not as free as in true 2-dimensional compaction.

The algorithm starts with a layout. Starting from one side, blocks are considered row by row and are
re-arranged after they have been moved across the open zone. During its movement in the free zone,
the blocks travel through the entire width of the layout and hence may be placed anywhere along the
boundary. Figure 17 illustrates the process of compaction by zone refining.

The algorithm maintains an XY adjacency graph. In an XY
adjacency graph, vertices represent blocks, while edges
represent horizontal and vertical adjacency. That is, two
blocks have a horizontal edge if they share a vertical —1
boundary. Similarly, two blocks have a vertical edge if they l_

share a horizontal boundary. The labels on the edges ] il
represent the minimum allowabel distance between blocks. * Ceiling
Four additional vertices are added to keep all the blocks ZONE |:|

within the required bounded rectangle. Note that free space l Floor

Top

is ignored in computing the nieghborhood edges between i
blocks. Figure 18a illustrates an instance of problem along
with its XY adjacency graph in figure 18b. —]

The algorithm assumes that the input is a partially
compacted layout, which can be obtained by two
applications of a 1-D compactor. It maintains two lists
called floor and ceiling. Floor consists of all the blocks
which are visible from the top and may become a neighbor
of future block. Ceiling is a list of all blocks which can be
moved immediately. That is, ceiling is the list of blocks visible from the bottom. The algorithm
selects the lowest block in the ceiling list and moves it to the place on the floor, which maximizes
the gap between floor and ceiling. This process is continued until all blocks are moved from ceiling
to floor.

Bottom

Figure 17 — Compaction by zone
refining

To illustrate the algorithm, let us consider the example of figure 18. Since C is the lowest block in
the ceiling list, it is selected for the move. Figure 18( c) shows that the gap is maximum at the
boundary between blocks A and B. Therefore, C is moved between A and B. The modified layout
and the XY-adjacency graph are shown in figures (d) and (), respectively.
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Ceiling
GiD| C F

G

Floor
A nil B

()

Ceiling
G|D| C [E |F

G

Figure 18 — Problem instance and its XY adjacency graph

3.2. Two-Dimensional (2-D) Compaction

In 2-D compaction, both x and y coordinates can be changed simultaneously in order to minimize
area, i.e. in 2-D compaction, a single step can move a component in both x and y. In 1-D
compaction, the cell is alternately compacted in x any y, while in 2-D compaction components are
selected to move as required to improve the layout. Most versions of 2-D compaction are NP-hard
[23,24]. The difficulty of 2-D compaction lies in determining how the two dimensions of the layout
must interact to minimize the area. To circumvent the intrinsic complexity of this question, some
heuristics are used to decide locally how the interaction is to take place.

Given a symbolic layout consisting of rectangular features, all the constraints (size, overlap and
separation constraints) can be written using linear constraint equations. After the generation of
constraints, the problem can be solved using integer linear programming technique. However, the
complexity of the linear programming technique is exponential thereby making it impractical even
for a moderate size problem.
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3.3. Hierarchical Compaction

Modern designs are modularized hierarchically. Hierarchical compaction works on cells that are
constructed from other cells as well as primitive layout symbols. Any of the techniques described so
far can be made hierarchical by applying the compaction algorithm to a leaf cell and the using the
compacted cell in a larger cell. Hierarchical compaction is also called cell assembly. A variety of
hierarchical compaction algorithms have been developed for both constraint-graph algorithm and
virtual grid algorithm compaction [25,26,27,28,29].

A hierarchical compactor can space fixed sized modules/elements with respect to other
modules/elements. Additionally, a hierarchical compactor can also perform pitchmatching, that is,
stretching cells so they can be connected by abutment (putting side by side). This can be performed
by recompacting the cells with additional ports to be at the same positions of the other cell.
Hierarchical compaction with stretchable cells requires the compactor to build a more complex
model of a subcell than that required for a fixed-cell assembly.

4. Comparison Among Symbolic Layout Systems and Benchmarks

Tables 1 and 2 illustrate comparisons among symbolic layout systems, describing their main
characteristics and benchmarks [33, 34].

COMPACTOR Hier. Layout Initial Positions 1D /1.5D /2D

Level Style MG CG VG R .

B C S M
CUT B S CG 1D
FLOSS C S R 1D
STICKS C S R 1D
SLIP B M MG 1D
CABBAGE B S R 1D
SLIM B M MG R 1D
MULGA B S VG 1D
Liao/Wong B S R 1D
Schlag et al. C S R 2D
SQUASH B S VG 1D
ROCHESTER B S R 2D
VPACK B S VG 1D
Wolf et al. B S R 2D
Plowing B M MG 1D
Kingsley C S R 1D
Shiele B M MG 1D
DASL B S 1D
Zorro B 1.5D
Symbolics
MACS
SPARCS
ROSE - Compass
PILGREM - I¢c-D¢ B
2?22 - Mentor
LAS - Cadence

Table 1 — Initial layout representation for different compactors

B = Bottom-Most Mask Level MG = Mask Grid Positions
C =Cell Level CG = Coarse Grid Positions
M = Mask Layout VG = Virtual Grid Positions
S = Symbolic Layout R = Relative Positions
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Cells / Compactor

Compactor Area (microns) CPU (seconds) Memory
afa
MACS 143 x 166 = 23768 9 1450K
SPARCS 157 x 180 = 28260 11 356K
Symbolics 160 x 189 = 30240 5 164K
Zorro 140.5 x 171=24025.5 430 647K
afavg
MACS 142 x 145 = 20590 5 1390K
SPARCS 157 x 151 = 23707 8 372K
Symbolics 154 x 154 = 23716 5 160K
Zorro
c132

MACS 627 x 354 = 221958 41 300K
SPARCS 685 x 339 = 232215 51 184K
Symbolics 675 x 330 = 222750 57 1040K
Zorro 660 x 322 = 212520 301 1413K

mul2x2
MACS 309 x 252 = 77868 16 2050K
SPARCS 343 x 255 = 87465 47 215K
Symbolics 370 x 270 = 99900 10 512K
Zorro 312 x 252 = 78624 838 614K

muldx4
SPARCS 649 x 601 = 390049 66 754K
Symbolics 654 x 638 = 417252 54 840K
Zorro 577 x 577.5=333217.5 1904 741K

mul8x8
SPARCS 1285 x 1285=1651225 89 2066K
Symbolics 1276 x 1352=1725152 245 3200K
Zorro 1138 x 1207.5=1374135 | 11738 7754K

mull6x16

Symbolics 2524 x 2780=7016720 1073 14400K

Table 2 — Compaction Benchmarks. The area is in microns square preceded by the x and y
dimension. Run times for the compactors are reported for running on a VAX 8650. The memory
usage is the peak memory needed for a given compactor to compact an example. This table was

taken from [33].
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5. Conclusions

Silicon area has always been a valuable resource, whichever technology is employed. Therefore,
minimizing the silicon area demanded by designs is a very important task. One method of achieving
this is through the use of layout compaction algorithms. These algorithms can be employed with
symbolic layout editors, silicon compilation tools, module generators and technology conversion
tools, among others.

This paper presented a survey and a taxonomy of layout compaction algorithms, focusing on their
implementation characteristics, performance, advantages and drawbacks. Most algorithms are One-
Dimensional (1-D) algorithms and compaction is usually performed in two phases — a compaction
phase in the X direction and another compaction phase in the Y direction. Most versions of 2-D
compaction algorithms are NP-hard.

Split grid algorithms present a performance that is comparable to constraint graph algorithms.
However, to achieve good compaction and performance results, other techniques such as wire
Jjogging, wire minimization and hierarchical compaction with pitchmatching have to be employed.
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