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ABSTRACT

We examine edge transitivity of directed graphs. The class of
local comparability graphs is defined as the underlying graphs
of locally edge transitive digraphs. The latter generalize
edge transitive orientations, while local comparability graphs
include comparability, anti-comparability and circle graphs.
Recognizing local comparability graphs is NP-complete, however
they are differences of comparability graphs. We define
dimension so as to generalize that of an edge transitive
digraph. Connected proper interval graphs are characterized as
exactly the class of local comparability graphs of dimension
one. Finally, a characterization of circle graphs is given also
in terms of edge transitivity.

RESUMO

Examinamos transitividade em arestas de grafos direcionados.
A classe dos grafos de comparabilidade local e’ definida como
as grafos subjacentes dos digrafos localmente transitivos em
arestas. Estes ultimos generalizam orientacces transitivas em
arestas, enquanto que grafos de comparabilidade local incluem

os de comparabilidade, anti-comparabilidade e <circulares.
Reconhecer grafos de comparabilidade local e’ NP-completo,
contudo eles constituem diferencas de grafos de
comparabilidade. Definimos dimensao de meodo a generalizar a de
um digrafo transitive em arestas. Os grafos conexos de

intervalo proprio sao caracterizados exatamente como a classe
dos de comparabilidade local de dimensao um. Finalmente, uma
caracterizacao dos grafos circulares e’ apresentada em termos
de transitividade em arestas.
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1. Introduction

We examine a special orientation of an undirected graph,

called locally edge transitive, a generalization of
edge transitive orientation. For simplicity, we write
instead, locally transitive and transitive orientation,

respectively. The graphs admiting such an orientation form the

class of local comparability graphs. They include
comparability, anti-comparability and circle graphs. As a
motivation, we mention that there are special methods for

finding the maximum clique and counting the number of maximal
and maximum cliques of a local comparability graph, given a
locally transitive orientation of it [14]. Both these problems
can be solved by algorithms requiring a number of steps of the
order of the product of the sizes of the vertex and edge sets
of the graph. Clearly, in general finding a maximum clique is a
classical NP-hard problem (3], while the enumeration problem is
#P-complete [16]. It is worth noting that the number of maximum
cliques of a local comparability graph can grow exponentially
with the number of vertices. In fact, the examples of Moon and
Moser [9] of graphs having a maximum (exponential) number of

maximum cliques are circle graphs.

The recognition problem for local comparability graphs is
NP~complete. It might then be difficult to find a good
characterization for the class. However, every graph of it can
be obtained as the difference of two suitable comparability
graphs. This is the subject of Section 3. Further, we consider
the dimension of a local comparability graph, a generalization
of partially ordered set dimension. In Section 4, we describe a
characterization of proper interval graphs in terms of
dimensions. That is, proper interval graphs are exactly the
local comparability graphs of dimension one. Other
characterizations of proper interval graphs have been described
by Duchet [4]1, Fishburn [B] and Roberts [13]. Next, we consider
circle graphs. Read, Rotem and Urrutia [12] proved that the

complement of a circle graph can be split into two subgraphs



=m=atisfying certain conditions of transitiwvity. In Section 5,
we s=how that adding a few restriction=s to those of [12] leads
to a set of necessary and sufficient conditions for circle
graphs. Other characterizations of circle graphs are those of

Bouchet [2], Fournier [6], Gabor, Supowit and Hsu [7] and Naji

(101, That of I[7] corresponds to the recognition algorithm
with the least complexity. Section 2 contains basic
definitions, while the formulation of related problems form

the last section.

2. Freliminaries

G dencotes a simple undirected graph with vertices V(GE) =
{Vl... LV and edge set E(&G). Lat Gi and Gz be two graphs
zsharing 2 common vertex set. The differsnce G:- Gz iz the graph
having the =ame vertices as Gi and those edges belonging to

E{Gi} = E'.CGZJ. Let G be an acyclic orientation of G, and Vo vJ

e V(G). If & contains a v -v path them v 1i= an ancestor of
e L

V.. and x-'j a descendant of W Dencte by (Vi.’v_1> the subset of
1

vertices simultanecuzly descendants of v and ancestors of v
ks J

in &. When necessary we write <wv v }3 instead. & is
= ]

transitive whenever {v‘,vj) e E(3 and (v .vk.‘l e E(B) = {VL‘VL:}

= E(f_—nu-}. and is anti-transitive when (vm.jv_} = E:Cé) and Cv_.vk}
s EB = (vav,) « EC®. 6 is ; compa.rat:ilit_}i’ or
antt-comparability graph when it admits a transitive or
anti-transitiwve orientation, respectivel y. The transitive
closure of & is its minimum transitive supergraph, while the
Hasse diagram is the anti-transitive subgraph of &, which

preserves the transitive closure.

Let & be a transitive digraph. A linear extension of & is a

maximum spanning transitive supergraph of it. Let e ']:h be
i

linear extensions of G. The dimension (dim) of & is the least

integer k such that E{If.i} O ererer Ec[ik) = EC&). The dimension

of its subjacent comparability graph G ils defined as equal the

dimension of &. This is not ambiguous, since whenever G , @2
i

are transitive orientations of G, then dim Gi equals dim az



(Trotter, Mocore and Summer [15], Gysin [Bl).

Now, let 5 be a family of non-emptLy subsets SL of zome set.
The intersection graph alS) is the one having vertex set = and
edge= {SUEa} i f Si i S; #= ¢ for 1 # j. The overlap graph of
S, denoted [(S), has again wvertex =set S and edges {Ei.ER
whenever Sllﬁ s,is different from both ¢ and SL L Sf Suppose
S ls a st of intervals of a real line L. Then alS) is called
an tnterval graph, while (35} is a circle graph. Observe that
Lthe overlap graphs of the intervals of a line coincide with the
intersasction graphs of the chords of a circle. If neo interval
of £ properly contains ancther cne then alS) = A(S) and the
graph 1s called oroger tnterval Cuntt tnterval f=5 of
indt f ference?. In any case, we refer Lo = as an itnterval
representation for a(3) or R05). Each interval S s =

L

corresponds to a vertex v of alS) or (E) and is represented
T

as [v'.v”], where v and v are the esxtreme points which
L L LS L9

determine S_L 15 - P We dencte by S(v:) and S(VUJ the
distances from v: and v:. respectively Lo some fixed origin,
located in L at the left of the first interval. Then s(v:} L4
s(vr), faor all v;, Without loss of generality, we assume that

no two extreme points coincide in L.

Let G be a graph, H a subgraph of it and R a linear ordering
Vb of the vertices of G. An orientation H of H is

™
induced by R when {vl.u}} e ECHH »i ¢ g

Finally, let 5 be an interwval representation for some
interval or circle graph G, and H a subgraph of G. Let E be a

linear ordering Vo res e of the vertices of G, such that i < j

if and only if =s(v') £ =(v"). Then R iz callad a canonical
e J

ordering and the orientation H induced by it is a canonical

oritentation for =.
3. Locally Transitive Orientations

Let & be an acyeclic orientation of an undirected graph G. 3 is

called lecally transitive when the subgraph induced in it by the
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subset of vertices <v,w> is transitive, for all edges (v,w) €
EC®. In this case, 6 is a local comparability graph. For
example, figures 1(b) and 1(c) are orientations of the graph of
1Ca). That of 1(c) 1is locally transitive, while 1(b) is not.

Hence 1(a) is a local comparability graph.

In particular, if 3 is transitive so is every of its induced
subgraphs. Therefore every comparability graph is local
comparability. On the other hand, if & is an anti-transitive
orientation of G then <v,w> = {v,w>, for every edge (v,w) &
ECE. It follows that & is locally transitive. In addition, we
know that G does not contain triangles, otherwise & would have
an edge implied by transitivity. Conversely, if G is a
triangleless local comparability graph then any locally
transitive orientation of it is anti-transitive. Otherwise, &
would contain an edge (v,w) implied by transitivity, that is
j<v,w>| > 2 and any v-w path of length greater than 2 would
correspond to a triangle in G, a contradiction. Therefore, the
classes of anti-comparability graphs and triangleless local
comparability graphs coincide. Recognizing anti-comparability
graphs is NP-complete (Nesetril and Rodl {111]). Consequently,

the same is true for local comparability ones.

From the above observation it follows that i1t might be
difficult to formulate good characterizations for local

comparability graphs. A necessary condition is given below.

Theorem f: Let G be a local comparability graph. Then G is the

difference of two comparability graphs.

Proof: Since G is a local comparability graph it admits a
locally transitive orientation 3. Let a‘ be the transitive
closure of & and éz = é;— é. Clearly, C1 is a comparability
graph. We show that the same is true for Cz' Let (v,w),(w,2) €
Ecéz>. Then (v,wWw),(w,2) & E(a‘). That is, & contains both v-w
and w—-2 paths, i.e. w € <v.z>a. Because 61 is transitive, it
follows (v,2) & EC€). If (v,z) < E(® the fact (v,w).(w,2) &
EC3) implies that the subgraph induced in & by <v,z> is not



transitive, which contradicts & being locally transitive.
Therefore ((v,z) & ECCz). that is Cz is transitive. Since

G = C‘ - Cz. the theorem fcllows.n

4. Dimension.

In this section we discuss the dimension of a local

comparability graph, a generalization of that of a comparability

graph.

Let G be a local comparability graph, 3 a locally transitive
orientation of it and & the transitive closure of & Define
dim 3 = dim &, and dim G to be the minimum dimension of any

locally transitive orientation of G.

Observe that unlike the case of comparability graphs, the
dimensions of different locally transitive orientations of a

same local comparability graph are not necessarily equal.

It is well known that the comparability graphs of dimension

one are precisely the complete graphs, those of dimension two

are the permutation graphs, while it is NP-complete to
recognize comparability graphs of dimension three
(Yannakakis [17>. The theorem below characterizes local

comparability graphs of dimension one.

Theorem 2: G is a local comparability graph of dimension one

if and only if G is a connected proper interval graph.

Proof: ( ) Let G be a2 dim 1 local comparability graph. Then
it admits a dim 1 locally transitive orientation 3. Let & be
the transitive closure of 3. Then & has a Hamilton path

VsV . That is, the Hasse diagram of & is APUREII 4 and

™
such a path is also present in & Then G is connected. Now, we
construct an interval representation for G, as follows. Each

v. € V(BG) corresponds to an interval [(v’,v"] such that
1S 1 L

s(v;) = n, s(v:) =n + 1, and for each j, 15j<n,

s(v’) = j and s(v}) =k + jn,
J



where k is chosen so as to satisfy {v].vk} e EC® and (v_.vk 1}
1 +

& E(G). Let us consider the relative position of two interwvals
{v:.v"l and [v].,v:i']. i € J. Then SEV:J L4 s(v;.‘l, LT s(v:} =
s(v*), there must be an edge (v,v) e E(3) such that (v.v) &
ECG), j < k. However, v e <vi.vk> and therefore the subgraph
induced in & by <viav> Jj.s transitive, which implies (vJ.vk) &
EC&), a contradiction. Hence no interwval properly contains any
other. It remains to shew tLhat. [v:.v:'J. Cv! ,v"] intersect iff
{VL.VF.}' e E(G). When the intervals int.ersactlt.hén 's(v:) ¢ =(v")

1

¢ s(v")., Thal is, following the construction of the intervals,
L

there is an edge (vl.vk) e E(& satisfying 4 <€ j <€ k. Again,
because v = <v v> and & is locally transitive 1t follows

(v ,.v) = EE%J Conversely, if (vav) e ECG) then i ¢ Jd and
L k| J

=lv!") 2 | + i-/n. Because s(v') = 1 and siv') = j it follows
L L ]
that [v',v"], [v',v"] intersect. Then G is a proper interwval
1 L ] J
graph.
{ « ) Let G be a proper connected interval graph and S an
interval representation feor it. Let VT S be a canonical
™

ordering and & a canonical orientation for S. Since G is
connected, (v ,v) e E(3), for some J: =i i+ i and 4 ¢ on. That
L)

gl |t i ) ¢ =20v!") { s{v"). Since s{v') ¢ s(v' ) =
L 1) L I i L+d

sCv') and siv") < sCv"” 1 = s(v") we conclude that [v',v"]1,
1 L L+4 1 L 1

[V;+1,v;'+1] intersect and therefore A is a Hamilton
path of &. We need to show that & is lecally transitive. Let
(v.v) € ECG) and i < k £ j. Then sCvi) < stvp) < styv?). Since
no interval properly contains any other, s(v;) < s{v'_'] < s:‘.v;:'.!
= =i{v"). Hence (v v) « E(&) and for J = k we havn {v.v.'ll =
ECS). :Hacausa v, € <vL.v']h the subgraph induced in 3 by <v v
i= transitive. Therefore G is locally transitive. Encausn it.
contains a Hamilton path its dimension is 1. This completes the

roof .
P o



5. Circle Graphs.

In this section we discuss aspects of circle graphs, related

to edge transitivity.

The following is a necessary condition for circle graphs, in

terms of locally transitive orientations.

Theorem 3 ([141): Let G be a circle graph, S an interval
representation of it and & the orientation of G canonical for

S. Then & is locally transitive.
Hence circle graphs are local comparability.
The next theorem is another necessary condition.

Theorem 4 (Read, Rotem and Urrutia [(121): Let G be a circle
graph. Then there exists an edge disjoint partition G =QuUlI
of its complement G and a linear ordering R of its vertices

such that the orientations 3, T induced by R satisfy:

for 1 < j < k.

i) (v,t.vj) e ECf) - (vi.vk) =3 E(f)

Cii)d (v_t.vj) e ECY and (vj.vk) e E(D + (v.v) e Qo))
1

It follows that the complement of a circle graph is an edge

disjoint union of a permutation and the complement of an

interval graph.

Next, we show that adding restrictions to theorem 4 gives

necessary and sufficient conditions for circle graphs.

Theorem 5: G is a circle graph if and only if there exists an

edge disjoint partition G = QU I of its compl ement G and a

linear ordering R of its vertices such that the orientations 3,

3 and T induced by R satisfy:



for i < j < k.,

i) Cvv) e Ec . > (v.v) e EcD
UL vav) e ECQ) and (vav) e ECD 4 (v.v) e ECD
(14i) Cvv) e E(3 and (vov) e ECS > (v.v) = ECD
Civd (v.v) e E(3 and (vov) « Ec) + (v.v) e Ec
(V) (v.v) e E(® and (vav) e EC® (v.v) = EcD
Proof: ( = ) Let G be a circle graph. S an interwval
representation of it and PRI A canonical ordering of its

vertices. Split the edges (v,L.vj) < E(G) into subgraphs Q and
I, as follows:

(v v) e ECQ) iff s(v"™) < s(v"™)
3} |8
(v v) e EC(ID iff s(v"™) < s(v?’)
L )

Let é. 6 and T be the corresponding orientations of G, Q and
I which are induced by S. Then (i)-(ii) are true because they
are theorem 4. To show (iii), note that (v,.vA) e E(® and
(vj.vk) e E(® implies that s(v") > s(v") and s:J(v") > s(v'j‘).
That is, s(v;") > s(vf"). i. e. (v v) e ECd. Next.. we prove
C(ivd. If (v.v)) e E(B) and (vj.vk) & ECI> then s(vi) < sCv
and s(v'j‘) < s(v}’(). That is, s(vfl') < s(vl’c). i. e. (vi.vk) &
Ech. Finally, consider implication (v). Let (v,‘.vj) e EC® and
Cvj.vk) e E(3®. Then s(v'J') < SCV'L') and s(vl") < s(v'j‘). Hence

sCv}) < s(v"), meaning that (v,,v)) & EcT.
L

( «) Let G be a graph, G = QU I and such that there exists
an ordering Visee sV of its vertices for which the induced
orientations 3, @ and T satisfy (i)-(v). We prove that G must
be@ a circle graph. The argument is by induction on n. If n =1

there is nothing to prove. The induction hypothesis is that we

can construct intervals [v:.vl‘]. such that

for 1 < j < n

1) (v.v) & E(® iff sCv?) < SCVE) < sCv
J
2 (v,t.vj) e E(D iff s(vi) < scv’j).
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As a consequence of (1)-(2) it follows:
(3 (Vi.'vj) € E(é) iff s(v'j‘) < s(v;‘).

Implications (i)-(v) all remain valid when we restrict to
induced subgraphs of G uU G. Therefore we can apply the
induction hypothesis to G—vn and construct a set of intervals
S—vn. with intervals corresponding to the vertices Vere oV,
and such that (1)-(2) are satisfied. Next, we obtain a new set
of intervals S by properly inserting in S—vn a new interval
[v;.v:J corresponding to vertex v without changing the

relative positions of the other intervals, as follows.

(ad): Posttion of v;: Insert v; as to be the leftmost possible
extreme point at the right of v’ . such that no point
ne

v, (vt.vn) e ECI), lies at the right of v’.
L n

(b): Position of v'r:: Insert v: as to be the leftmost possible
extreme point at the right of v;. such that no point v,
14

(vi.vn) e EC® ., lies at the right of v'.
\a}

We prove that the induction hypothesis is valid for graphs

with n vertices. That is, we show that S satisfies:

4 (v,v) € E(® iff s(v?) < s(v'™ < s(v™
1 % N ™ 1 12l
(8) (v,v) & ECD iffe s(v™) < s(v’).
L ™

Proof for (42: ( = ) Assume (vt.vn) e« EC&. If s(v;) < s(v'_")
< s(v:) is false, since (b)) asures s(v;) < s(v:) it follows
s(v',") < s(v;) or s(v;:) < s(v',"). The latter does not occur by
(b)) and we show next that neither the former doces. There are

two possibilities:

Case 1: s(v") < s(v* )
L ™

Then by (2) of the induction hypothesis, (vi_.vn 1) e ECD.

Using (i), we know that (vi.vn ) e Ec implies (v ,v ) €
18 n

E(f). a contradiction. Therefore this case can not occur.



Case 2: s(v!") > s(v* )
A % bal

Then by (a) there exists v'J,' such that (vj.v ) e E(IY and
ial

s(v'") < s(v'") < s(v’).
! ] n
Case 2.1: 1 < j

If s(v') < s(v'_L‘) then by (1), (v,‘.v,) e Ecd). In addition,
because Jot‘ Ciwv) we conclude tha:. (v,L.vn) e ED, a
contradiction. Otherwise, s(v;) > s(vl‘) and by (2) it follows
(v,L.vj) e E(T). Because of (i) the latter implies (v_L.vn) €

E(?), a contradiction.
Case 2.2: 1 > J

By (3) it follows (vj,v,) e EC® and by (v) we conclude that
18

(v, v) & Ech , a contradiction.
j i al

Therefore case 2 can also not occur and the only possibility

is s(v?’) < s(v") < s(v'.
N L n

( & ) Conversely, assume that s(v;) < s(v',L') < s( v; ) and let
us show that (vi.vn) e« E(®. Suppose the latter is not true.
Then by (b) we know that S contains an extreme point v such
that (vj.vn) e E(3 and s(v;) < S(VC) < s(v'J,') < s(v:). J"I'here
are two possibilities, below discussed. We show that neither of

them can occur. This implies that (v ,v ) e ECE.
1Y n
Case f: i < §

Then by (1), ( Vo vj) e E(&. Usi ng (iii), we conclude that
either ( v.‘ . vn) e EC® or < v_L . vn) e EDY. Neither of these
alternatives can occur, the former because of the initial

assumption and the latter by (a).
Case &: 1 >

Then by (3), ( VJ_ , vi) e ECQ). Since ¢ vj , vn) e E(B and usi ng
(1ii) it follows ( Vo vn) e E(CY. However, by the construction
(a) we know that (vi.vn) e EI>. Therefore, the only

10



possibility is (VL'Vn) e E(&, contrary to the assumption.

This completes the proof of (4).

Proof for (5):
( =« ) Assume (vt.vn) = E(f). Then by (a3, s(v™) < s(v’).
1 ™

( 4 ) Suppose s(vl‘) < s(v’) and let us show that (v ,v) &
™ * ™

E¢T). Consider the two cases below.

Case : s(v'") < s(v’ )
1 n

-1

Then i # n - 1 and by (@, (v,v_) e ECTY). Using (i), it
follows (v ,v ) e ECI).
|8 ™

Case 2: s(v") > s(v )
L ™

Assume ( Vo vn) &« E(T). Then by (a) there exists an extreme
point v'J_‘ such that (vj,vn) e EC(I) and s(v™ < s(v™) < s(v’). We
) L J n

discuss the following alternatives.
Case 2.1: 1 < j

If s(v’) < s(v‘i‘) then (v,\.vj) e E® by (1), and using {(iv)
)
we conclude that (v_L.vn) € E(f). a contradiction. Therefore
s(v’) > s(v™). In the latter possibility (v ,v) e E(f). by
J L L J

(2). Because of (i) it follows (vi.vn) < E(f). a contradiction.

Case 2.2: i > j

Then by (3>, ( Vj’ vi') e E®. If ¢ Ve vn) e EC® then because
of (ii) it follows ( V," vn) e EC®, a contradiction. Therefore
C Vo vn) e ECB. In the latter possibility, (v) implies that

(vj.vn) ™ 4 ECf). also a contradiction.
Therefore case 2 does not occur.

The only possibility is Cvi.vn) e E(f). which completes the
proof of (8).

y
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Hence the induction hypothesis remains true for graphs with n
vertices. In particular, (1) implies that G is a circle graph.

We have then proved theocrem S.D
6. Conclusions

We have considered the class of local comparability graphs, a
generalization of comparability, anti-comparability and circle

graphs. The following questions are related.

(i) The intersection and overlap graphs of the intervals of a
line are the interval and circle graphs, respectively. The
intersection graphs of the intervals taken on a tree are path
graphs. Which are the overlap graphs of the intervals of a

tree 7

(ii) The graphs which admit a transitive orientation having a
tree as its Hasse diagram are those not containing an induced
P‘ nor C‘ [1]J. Which are the graphs having a loccally

transitive orientation whose Hasse diagram is a tree 7?7

(iii) Local comparability graphs of dimension 1 are the
proper interval graphs, while it is NP-complete to recognize
local comparability graphs of dimension 3. Which are the local

comparability graphs of dimension 2 ?

(iv) Given a locally transitive orientation 3. is there an
efficient method for finding the maximum independent set of G,

and also the number of maximum and maximal of these sets 7

(v) Which are the graphs having an acyclic orientation such
that the distance from each vertex to any of its descendants is
at most 2 ? This class contains complements of circle graphs

(12], among others.

iz
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FIGURE ONE




