
QUEUEING NETWORK MODELS

FOR LOAD BALANCING IN

DISTRIBUTED SYSTEMS

E.DE SOUZA E SILVA

H. GERLA *

NCE-06/88

Abril/88

UnlVersldade Federal do R1O de Janelro

Núcleo de Computação Eletrônlca

; Calxa Postal 2324

20001- R1O de Janelro -RJ

BRASIL

* UCLA Computer Sclence Department

Esta pesqulsa contou com o apolo financelrO da NSF-USA INT-8514377 e

CNPq.

Este trabalho foipubllcado como re1atórlO técnlco do Departamento de

Ciência da Computação da UCLA CSD-87{~069, Novembro 198?

ReBumo

Em sistemas distribufdoB, o balanCea1llento de ca.rga pode melhorar a eficiência. de um .

sistema se jobs executando en1 computadores com elevada carga. de trabalho forem trans.
feridos para computadores com menor carga. Neste artigo apresenta.moB unl método para
o ba.la.nceamento 6tinlo de carga. eln um ambiente estático. Um modelo de redes de filas é
usado para avaliar o tempo de resposta e técnicas de programação matemática são usadas:
para. se 2.char a aloca.ção de carga. que minjmiza .o tempo médio de resposta. O método
não é proposto como substituto para polftica.s heurfsticas dinâmicas de ba.lanceamento de
carga; entretanto, o método é visto como uma ferranlenta útil pa.ra alocação de recursos e

,
planejamento de capacidade enl sistemas distribuidos, e como um complemento promissor
a politicas dinâlnicas em estratégiaB hibridas de balanceamento de carga.

O método pode ser aplicado a diversas classes de problemas, incluindo: classes distintas
dejobsj jobs com múltiplas tarefas, e; jobs que originam múltiplas tarefas. Vários exemplos

ilustrando estas aplicac;ões são a.presentados.

Abstract

In distributed systen1S, load ba.lancing can improve efliciency by nligrating jobs from
heavily loaded to lightly loaded sites. In this paper we present a niethod for optimalload
alloc.ation in a. sta.tic environment. A queueing network model ia used to eva.luate response
time; and mathematical programing techniquea are used to find the load allocation that
minimizes 3.\..erage response time. The method is not proposed as a s.ubstitute for dyna.mic,
heuristic load balance policies; rather, it is perceived as a useful tool for resource allocation
and capacity planning in distributed systenls, and as a proniising complement to dynanlic

policies ín hybrid load balance stra.tegies.
.

The method can handle very general classes of problell1B, jncluding: distinct class~
of jobs, multitasking within each job, and; jobs with spawned tasks. Several examples

ilIustrating the8e a.pplica.tion8 are reported.

crif~ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
~ NúcLeo De coMruTAç"o ELeTRONlcA

1 Introdu'ction

The past few years have witnessed an increasing number of distributed computer system
imp1ementations based on 10cal area networks. In these systems a number of resources
(CPU's, fi1e servers, disks, etc") are shared among jobs originating at different computer
sites. In a distributed system environment, it is desirable to equalize the usage of resources
(ba1ance the load) in order to reduce the response time of jobs and improve the utilization
of the resources" This can be achieved by migrating jobs to the lightly loaded sites. An
example of system permitting job migration is the LOCUS operating system [POPE81],
where processes generated by users at one site in the network are allowed to run on other

sites"

The load balancing problem in a distributed resource system is not new and can take
~- different forms for different problems. For example, in a long haul packet computer net,vork

(where the resources are the channels), load balancing becomes the routing problem. The
goal there is to find optimum paths on which to distribute the packets, 50 that some well

defined performance criterion (overall delay, for inst.ance) is optimized.

In a distributed computer system, the loa.d balancing problem may be formulat~d as
the problem of distributing the execution of processes throughout the network in such a
way that the overa1l user response time is minimized. This load ba1ancing problem is more
complex than the routing problem for th~ following reasons:

(a) Optimal selection of the execution site and optimal routing from the originating
site to the executio.n site must be simultaneously accomplished (although the routing
problem may become trivial when a bus or ring network is used since in this case

.there is only one path bet,veen origin and execution site)"
..(b) A job in general consists of à sequence of tasks" The selection of the best site on

which to run a task must be made on a task-b)'.-task basis.

.. (c) Multiple job classes must be considered (e.g", interactive, batch, et.c") with dras-
tically different reso1.Irce usage characteristics. In partic1.1.lar, some classes behave
as «closed" classes, in that their pop1.1.lation remains constant during the life of the
system (e.g., the number of interactive jobs in a multiprogrammed s)'.stem). Other

,
classes are best modeled as «open", in that the number of users jn the class fl1.1ctuat.cs
statistically due to random inputs (e.g", database inqtures originating from a vcry

large terminal population).

(d) Some classes may be restricted to run on a subset of sites.

(e) A job ma)" occasjonally "spawn" other jobs. For example, an jnteracti,:e \ls('r {'n-
gagcd in editiQg a filc l11ay periodically sul)mit a text formatting (c.g", TnoFF o.r.

1

TEX) job to .one of the servers. Since some of the users may be homed on server sit.es,
properbalancing of spawned jobs is necessary to minimize user delay (and maxilnize

user throughput).

Load balancing can be static or dynamic. Static load balancing implies finding the
optimal job assignment at steady state. Dynamic load balancing requires that the job
(or task) allocation to a site be made when the job (task) is generated, depending on the
current traffic conditions. Needless to say, dyn.amic load balancing is much more difficult
to analyze than static load balancing. In this paper, we limit ourselves to the static load
balancing case, i.e., we assume that the system will reach steady state, and we seek the best
distribution of jobs among sites at steady state, so that a proper performanceJlleasure,
typically, the average delay, is optimized. The solution to the static load balancing problem
is probabilistic in nature, in that it specifies the fraction of jobs in a given class which
must be allocated to a given site. That is, VYith probability equal to that fraction, a job
sho\1ld be routed to that site. This is analogous to the optimal static routing solution
in computer communication networks, where the traffic between origin and destination is

probabilistically split among multiple paths ("bifurcat.ed routing").

It may be argued that the usefU1:ness of static load balancing solutions is very limited
since operational systems implement dynamic procedures. The controversy is the same as
that between static and dynamic routing policies in packet networks; and the answer is
the same: they are both necessary, since they play different roles. First, static niódels are
computationally effective for system sizing (e.g. allocation of resources, identification of
bottlenecks, sensiti\rity studies, etc)~ while dynamic models are not s\Útable for this func-
tion (analytic models can handle only very smal1 size s)Tstems; simt.uation models are t.oo
time consuming). Secondly, static solutions ma)T actually be exploited {or dynamic load
balancing: a net,vork management center can monitor loads and traffic patterns, period-
ically recompute the optimalload distribution, and dispatch load balancing instructions
to the hosts. This periodic computation of optimalload balancing can be calTied out also
in a distlibuted fashion, ".jthout the net,vork management center, as is done in opt.imal,
distributed routing algorithms [GALL77]. The possibi1ity also exists of combining the op-
timal static policy ,vith the heuristic, dynamic policy: the static policy is used to optin1Íze
loads according to long term traffic trends, ,vh.ile the heuristic policy is used to. react to

sudden traffic changes and temporary perturbations.
,

The above arguments assume that static, optimal solutions are consiste1lt wit.h dynan~c,
heuristic solut.ions. so that a s)Tstem can be sized \1Sing static models and then cxpcct.ed
to perform wel1 wlder heuristic nucs. There is e,idence that t.his is the case in di5tributcd
systems (as it happens also for optin:ial and heuri5tic routing in packct nctworks); howevcr,
additional) more s)'stcn1atic expelimentation is req\llrcd in this dircction to corroborate

the claim.

2

,-~,.

Most static load balancing problems can be rormulated as non-linear, multicommodit).
flow problems. If the objective runction is convex, a downhill search technique can be
efficiently used ror their solution. If the s).stem includes only open classes and does not.,
contain specjal reatures (such as site restriction, job multitasking, job spawning, etc), thcn
any of the methods available ror routing optimization in computer networks can be succcss-
fullv used. In particular, the Flow Deviation method, a downhill search method specially
d/:.signed for open qucueing networks may be employed [FRAT73,KLEI76], Furthcrmore,
if the distributed system has a special structure (namely, there is only one class of jobs and
the local nctwork can be modeled by a single queue) the optimal eq1.lilibrium point may be
obtained directly by solving (numerically) a set of non-linear equations, rather than using
an iterati\.e downhill descent method. An elegant "direct" solution method ror this spccial
structure was presented in [TANT85]. Unfortunately, tbe direct solution does not easily
extend to mu1tiple classes, site constraints, and general interconnecting networks.

~- If the distributed system under consideration includes only closed chains (i.e., closed

class~), then an extension or the Flow Dcviation m('thod due to Koba)-ashi and Gcrla
[KOBA83] can be efficiently used. However, the delay function in this case is not convex,
therefore, the routing problem ,vith mu1tiple closed chains typically leads to local minima.
Thus, a further search for the minimum or the local minima is required.

In this paper we consider the more general situation o{ mu1tiple mixed classes of jobs.
A job in general consists of a sequence of tasks. As mentioned before, tasks of t~e same
job can be run (in scquence) at different sites. A task, however, must be run to çompletjon
before the job is reallocated to another site.

Open classes correspond to jobs subrnitted from a large number o{ tc~nals or work
stations, or spawn from .other tasks (such as text formatting jobs spawn úom interactive
uscrs, as mentioned before). These jobs may be perrnitted to execute remotel).. At issue
is the optima1 selection of the remote site, and the optimal path to it. Restrictions may
apply in the remote dispatcher. Closed classes corrcspond to jobs running locally on a
computer sitc. The computer site is itself modeled as a network of queues (central server

model).

The objective or our load balancing problem is to minimize a ,yeighted sum of d('la).s
(over open and closed chains). N ote that only the opcn chains nced to be rerouted for]oad
balancing. Routing is fixed witllln the 't;loscd chains. It can be shown that tlus guarantecs
the existcnce of only one local n1il1imum, \vhich is also thc globrtlll1)nimum.

In summary, the main col1tllbuti~n of f,his paper is to pro\idc an cfficient (ugollthm for
thc solution ofa very general class ofstatic load baJancing problelns. Key capabilitics of thc
a]gorithm is the handling of mul(.ita.5king, sites constraints al1d job spa,vnil1g. Exarnplcs
\\,ill be presented to illust.ratc all the fc{\turcs. .

3

-.c-. -

-~

,
In the follo,,'Íng, in section 2 we describe in detail the model which will be used. In

section 3 we prcsent the solution approaeh. In sections 4 and 5 we demonstrate the appli-
cation ()f our method to a few selected examples including site constraints, multitasking
and spa,vned jobs. In section 6 we present our conclusions.

~

.

..

4

~,.

2 The Módel.

We con:sider a distributed system of the type shown in Figure 1. In tms system each site

Communica.tjon
Network

~ Figure 1: A Distributed System.

supports a number ofresources (CPU's, disks, etc.), wmch are used by local processes. Sites
may have different resource configurations, different capacities, etc. Each site is connected
to a number of terminals which generate jobs with different processing reqtÚrements. A job
consists of one or more tasks. Each task may require specialized resources, and therefore
may execute only on a subset of the sites, since not all sites possess all needed resources.
Tasks within a job are executed in sequence and, ror each task, a "run site" is chosen.
If the "run site" of a task is different from the site where the task was generated then
all the information necessary for the task to run in tms "foreign site" is transferred via
the communication network. We assume that, once a "run site" is chosen for a task, it
runs until completion on that site and no further transrers are allowed. A job completes
execution arter all indi,idual tasks are executed.

This type or configuration may arise in a database app1ica tion such as an air1ine reser-
,-ation system where requests from local terminals may be rorward to roreign sit.es. In
addition, some of these sites are processing local application programs. We assume that
application programs cannot execute in a roreign site. We refer to these applications as
the "localload" of a site.

Our goal is to balance the load in the computer net,vork, so th.at the overall delay is
nllnilnized. As a byproduct~ the modEil wil1 permit us to investiga.te several performance
issues. For lnstance, we ,vill be able to st udy the influence of localloads on the dispatching
of databa..c;e requests to sites; the effect of the cornn1unication net,vork speed on load
distribution, etc.

We 1llodcl our distribut('d system as a collcction of "centra1 scrver models", one ror
each site, intcrconnccted by the colnmunication net\vork queucillg model. rrh.is kjnd of
model 'V,l.S first prop,oscd jn [GOLD83] to model the LOCUS dist.ributed system.

5

.,

.Local application programs (corresponding to the localload) are modeled by one or
more closed chains for each site, as iDdicated in Figure 2. (In this figure we àssume that
these jobs are generated by a finite popu1ation of iDteractive .users.) The remaining jobs

SITE 1

local load

Termjnals

J?~ Jobs transferred cj(. arnvIDg

t .t 1 ..o SI e
at s)te 1 .

Communication
SITE Network

I

Figl1fe 2: The model.

are generated by a large number of termjnals, and so can be modeled as open chains Vv;th
Poisson arriva1s and total throughput A o. (In section 5 we will investigate the case where
jobs are generated from the local interactive popu1ation.) Jobs representing the localload
are restricted to run on the site where they were generated. All other jobs in the model
(represeDted by open chains) may execute at more than one site. .These jobs require the
execution of severa:l tasks in sequence before completion. Suppose that a request ri is
composed by tasks tl, ..., tM. Upon arri,-al at site i, say the first task of ri (t1) may be
executed locally or the request may be immediately íorwarded to one of the other sit.es in
the system which can execute task t1. Task t1 runs until completion in the chosen site.
Then, a new site is chosen to execute task t2, aDd the job completes when all M tasks are
executed. We assume that the decision of running a task in a site is independent of the
state of the net\vork. Furthermore, the network is composed by single server fixed rate
(SSFR) and infinite server (IS) ser\,;ce centers, and ql1cue disciplines and service demands
are such that they satisfy product form reql1irements.

The modeling of multiple tasks is handled as follows. Let 11S assume that each opf'n
chain job is composed by only one task \vl1ich can be assigncd to one of the sitcs that is
able to execute this t.a.c;k. In this case, the "routjng" of a job tbIOUgh the net,vork is v('ry

6

simple since, once 'assigned to a site, a job executes until it completes. Figure 3. shows the
possible paths for a job of an open chain v in a distributed s~stem with three sites (1, 2
and 3) and a communication network. We assume that site 1 is the loca1 site of chain v

SI

ION

Figure 3: Possible paths of chain v jobs with on1y one task.

-jobs and that they can be executed in any of the three sites. In this figure, we see that
on1y three paths are possible: a job may execute in its loca1 site (1) or it may be sent
,ia the communication network to foreign sites 2 or 3. If a job has multiple tasks to be
executed, the route of this job through the distributed. system is more complex, since the
job can visit severa1 sites before completion. It is easy to see that the route of a chain v job
through the system can be modeled by introducing classes for that chain, with one class
mapped to each task of a job. Since a queueingnet"'ork model with chains having mu1tiple
classes can be solved by an equiva1ent system "ith the same number of chains but with
on1y one class [LA VE83], the introduction of classes does not increases the computational
complexity of the model. Ho"ever, the algorithm has to take il1to account a more complex
routing structure. This is illustrated in Figure 4. In that figure, we assume that chain v
jobs are composed ()f two tasks (t1 and t2). Task t1 can only be executed in sites 1 or 2
and task t2 can only be executed in sites 2 or 3. We see that there are four possible paths
of execution for a job. In one of these paths, a job is sent through the communication
network to have its first task executed at sit.e 2. Then the job is sent again through the
communicat.ion network to have its second task executed at site 3.

The follo\\;ng notation "ill be used ~hroughout the paper:

J = tota1 number of service centers in t.he lletwork, including cent.crs repre-
s('nt.ing t.he comrnullicatioll net,vork.

K = total number of chains in the network.
j(k) = a specified ser\.ice CCl1t.('r visited by chain k.
Bjk = visit ratio of chain k jobs to center j, scaled so that Bj(k)k = 1.

7

.
T;k = me..an service time or ch:un k jobs at. center j .
ajk = 8jk.Tjk.
Pj = utilization of center j.
J.Ljk = l/Tjk.
).jk = 8jk.).k = throughput or chain k jobs at center j, where).k =).j(k)k.

L;k = mean number or chain k jobs at center j.
W jk = mean waiting time (queueing time + service time) of chain k jobs at

center j.
êJ; = k-dimensional vector ,\,hose k-th element is one and whose other elements

are zero.

In addition a superscript c denotes a qua1ltity for a closed chajn and a superscript o denotes
a quantity for an open chain. For simplicity of notation we assume that there is at most
one closed chain in each site representjng the localload. Therefore, the jndex of the closed
chain jdentifies the site. The resu1ts, however hold for multiple closed chains at a site. Let
Nk be the n\1mber ofjobs in the closed ch(un ofsite.k, and j.j = (N1,:..,NKe).

sil.e
1 net

comm sil.e
net 2

slte ~Ite slle conun
2 3 2 net

site
..' .-.,- 3

COMPLETI0N

Figurc 4: Possiblc patl1:; l)f ~.hain t' jobs ,vjth t\VO tasks.

8

.-
.We define the ~verall delay D(N) as the foUowing weighted sum of all chain delays:

Ko Ke
wo~ '\~D~(N)+ WC L ÀfC(Nk)Dk(Nk)

D(N) = tl=1 Ko kR~ (1)

WO E ,\~ + WC L '\fC(Nk)
,'=1 k=1

where: (1) D~(N) and Dk(Nk) represent the responsetime of open chain v jobs and closed
chain k jobs, respectivelyj (2) ,\~C(Nk) repres~llts the "nominal" throughput or a closed
chain k obtained when all open chain throughputs are set to zeroj (3) WO and WC are
arbitraI"Y constant weighting factors for open and closed chains, respectively. The use of
the nominal (instead of actua1) throughp\1t as a weighting fa.ctor is justified as follows: ir
the nominal throughput for a closed cha.in is repla.ced by the a.ctual throughput, and the
weights are set to 1, the expression abo,e gives the tota1 a,erage delay. However, using
tota1 average dela.y as the objective function leads to unfajrness to closed chains, since
an increase in open chain utilization at a site causes an increase in loca1 chain delay, and
also a. decrease in loca1 chain throughput (t.he product remains const.ant by Little's result).

--This implies tha.t for ,-eI"Y heavy loads from externa1 sources the impact of closed chain
delays on the objective function becomes negligible with respect to the open cha.in dela.ys.
For this reason, we chose to assign a -fixed coefficient, the nomina1 throughput, to each
closed chain. In a.ddition, we introduced t.he ~-eighting fa.ctors { w} to refiect the relative
importance or open and closed cha.ins in the model. Without loss of genera.lity we assume
WO = WC = 1 throughout the rest of the paper.

The goal oí load balancing is to minimize the non-linear nmction D(N) byoptimally
distributing the open chain traffic among the various sites. This is equi,a.lent to optimizing

-

D(N) with respect to the fiows {'\jtll}' Vj, Vt, where the subscript t identifies a task of an
open chain v job.

9

3 The Solution Approach.

We define our load ba1ancing problem as follows:

.Given:

-The number of tasks in each job.

-The service demands of jobs (and their tasks) from all chains at all service
centers in the network.

-The .visit ratios or the closed chain jobs (loca11oad jobs) of a site at each service
center at that site, as well as the visit ratios of open chain jobs at centers of a
site.

.-The number of interactive jobs representing the loca11oad at each site.

-# The throughput rate of each open chain v.

-The set of sites where task t of open chain v jobs can execute.

-The "loca1" site of each open chain job.
-

.Minirnize: The overall delay D(N).

.With respect to: The flows at each service center).jvc. (Where the subscript t
identifies a task of an open chain v job.)

The solution method we use is a downhill techmque based on the "flow deviation"
method [FRAT73,KLEI76]. We restrict the development to a single closed chain per site
as pre\iously indicated, for notationa1 convemence. However, the approach is applicable
to multiple closed chains at each site. To compute the steepest descent direction for the
do,vnhill technique ,ve need to compute the (partjal) deri\ãtjves of the overa1] delay function
wjth respect to each open chain flow at each service cellter. For that we mampulate the
expression for the overall delay jn equation (1) as follows.

From Little's resl1lt: J o -
D~(N).. = ~~ (2)

tI
and

DC(N) = NI: -).k(NI:)Tt~rm.~
(3)k I:).k(Nk)

,vhere TI~rm.k is the avcrage tlunk timc of an interactive closed chajn k job at the terrni-
nal, and).k(Nk)Tt~rm k gjves the average numbcr of closcd chain k jobs at the terminaIs.

..

10

.-.

~-

;
.Substituting (2) and (3) into (1),

J Kc
L Lj(j:j) + L).fC(Nk)(Nk/).~(Nk) -Tt~rm.k)

D(j:j) = ;=1 k=l Kc (4)

Ao + 2:).fC(NA:)
k=l

-

Then, we observe that a mixed product form queueing network wjth SSFR and IS
service centers can be reduced to an equivalent closed queueing network where the service
request T;k of closed chain k jobs at center j is given by the followjng expression [LA VE83]:

T 'c -Tjk ().k -5) 1.o
-Pj-.,.- ,-

We note that in our model, closed chain jobs (localload) at a site do not interfere with
closed chain jobs from another site. Therefore, we can decompose our model into Kc
independent mixed network models each with one closed chain, plus the queueing model
of the communication network.

Final1y, we recall that in a mixed network the open chain population at center i, Lf ,
can be expressed in terms of the closed chain by [LA VE83]

L O
(N) - { ~[1 + Li(Nk)J i E site k or i E commun. network, i =t= IS cehter

()i k -1 -Pi 6
pi i E site k or i E commun. network, i = IS center

where the vector not.ation was dropped due to the reduction of the problem to Kc + 1
independent single chain mixed networks.

Therefore, equation (4) can be rev..ritten as:

D(N) =
J o J Kc

2: A[l + Li(Nk)] + 2: P~ + 2:).trC(Nk)[Nk/).k(Nk) -Tt~rm.k]
i=l PI i=l k=l
i~IS i=lS Kc (7)

1\.0 + 2:).:C(Nk)
k=l

The independent va.riables in our optimization problem are the {). jv, }. Recalling that
pj = Ev,).jvIT;v" we note that \ve can also use the pj as iJ1dcpeJ1dent "ariables. In the

-
follo\viJ1g, forconvenience, \\e takc the dcllvative of D(N) with rcspcct to t.he tot.A.l utiliza-
tion of open chain jobs at c("nter j (pj). In this compntat.ion we exploit t.he ract that: (1)

11

the performance ~easures of site (or commumcation network) u are not 8.ltered when we
vary the open chain throughput at a. center j in site (or commu~cation network) k, k :I u;
and, (2) the total open throughput remains constant as do the nomin8.l throughputs of the
closed chains. For convemence of notation, we label the centers belonging to the same site

(or communication network) as center j as I, ..., L.

-
8D(N) -8p~ -

~ , o

i+Li{Nk) ~ -!!L~ S(.) ~fC(Nk)N~~(1 () 2 + L... 1 o 8 o) (\ C (N)) 2 8 °

.," " ~ Pj i=1 -Pi Pj /\k k Pj
,;~.;:., o -'::-: i;fIS - J...,L IS (8)'. ~ " .., Ao ANc(N) r

.'. ..., "'...~;~;:c ,i;~,:i-~,";'~;.' + .= IS

~ , ;.~'7!"'. "~,~b-h ANc(N) J

.";..:;Cf:: .-
belongs to site k or the commumca.tion network, ANC(N) =

:; pK~ :xl'AC(c'~T~j;:~:.~i;if~o. "

,c~',;cL.;.k~:Pk .J ~,&~'t~~;r";$

., ,;i:"C~;.~:J:;-..~'1'c; C
(.) - { 1 j ft communica.tion network

-.""'~"c c , o -';",:c"j"";"' ";.;11c"{i'..(c",c'*,.,,;,\,;,,) O otherwise

It remains 'to find the deri a.tives of the closed cha.in throughputs and queue lengths
\\--jth respect to the utilization of open chain jobs at center j. To this end, we use the

following theorems and corollary:

Theorem 1 In a product form, mixed queueing network model

(a)

~=~ (9)
8pj (1 -pj)

(b)
8LI(Nk) = ~ (10)

8JJj (1 -pl)

where VjC(Nk) is the variance of the queue le71.gth of closed que'lLe jobs at center j of .~ite k

and Vil(N k) is defined as the covaTiance of queue lcngths of closed chain job.~ at ccntcTs j

and 1 of site k.

12

--

Corollary 1 In a; pTod'Uct form mixed q'Ue'Ueing network model, the variance" and covari-

ance" in (9) and (10) above can be ea"ily obtained '!L-'ing mean val'Ue analysi" (MVA) and the

followi~g Tec'Ursive eq'Uation" (the ,,'Ubscript k in N k was dropped to "implify the notation):

Vj(N) =).(N)~([l + L;(N -1) -L;(N)][l + L;(N.-l)] + V;(N -1» (11)
1-p. J

V;,(N) =).(N)-!:!- ([1 + L;(N -1) -L;(N)][l + L,(N -1)] + Vj/(N -1» (12)
1- P,

where Vj(o) = V;, ~ O.

Theorem 2 In a prod'Uct form, mixed q'Ue'Ueing network model

~~ ~- ~ = ~
[L~(Nk -1) -L~(Nk)] (13)8pj 1 -pj J J

where 3ervice center j i3 ass'Umed to be in site k.

A prooí of the above theorems and corollary can be íound in [DeSO84a] and is included

in the appendix íor completeness. For a general discussion of partial deri'\-a.tives or queue-

ing measures \\rith respect to parameters in closed queueing network models we refer to

[DeSO84b].

...
Finally, substituting (9), (10) and (13) into (8) and noting that 8D(N)/a).jtll =

...
(1/ J.ljtll)8D(N)/ 8pj, where the subscript t identifies a class oí open chain v, we obtain:

...

~ = (14)
a;\ itll

~ + ~ + t ~ + 8(j)~Nk[Li(Nk) -Lj{Nk -1)]
1-P J.l-P J.,=1 1-pi).k(Nk)

'~i,~IS ..-
J.ljtll(l -pi)(AO + ANC(N» .

j ~ IS
.

J.ljtll(A ~ i AN~(N») j = IS

Equation (14) is given in terms of mean values of t.hroughputs and queue lengt.hs,
variance and co\ariance of queue lengt.hs which can be easily obtaincd from M'r.;\: rccursion

and equations (11) and (12).

13

The key to thé flow deviation method is to associate a length or weight foi an open
chain job to each queue, given by:

..
def' 8D(N) .ljllt = 8;\~ J = 1, ..., J f15)

J"t

However, due to the particular characteristics of our problem, we can further simplify the
solution by noting that, once a task is assigned to a site, its behavior is preestablished
by the routjng probabilities given as input par~meters for that site. In other words, the
"route" of tasks within a site is fixed. This obser,ãtion anows us to define a "site" wejght,
as:

lsitkllt ~ L 8jlltljll, (16)
jek

where the index k represents the site and index Vt, class t of open chain v. In the same
way, the weight of the commumcation network (lnettlt) can be defined. The weight given

by (16) represents the linear rate at which D(m incr~es ~ith an infinitesimal increase

of the flow of open chain v, class t at ~ite k. We also define lsitktlt ~ 00 if task t of chain
v jobs is not allo,ved io execute at site k. .

We outline a flow deviation algorithm for load baJancing (FDLB) in a distributed
computer network of the type described in section 2. The algorithm is similar to the one
described in [KLEI76].

..
We define the assignment tri-dimensional matrix .4. where element Aktlt gives the per-

centage orjobs or type v, task t, assigned to site k. Similarly we define the network matrix
..

F where element F tlt gives the percentage or jobs of type v, task t, assigncd to a foreign
site, i.e., F "t = Ek}ihome site or tI Aktlt We assume that we have an initial reasible assjgnment,

i.e., imtial ,ãlues for Ã so that pi < 1 ror all service c{'nters in the network which are not
IS centers.

FDLB aJgorithm 1:

Step 1: let n = O and let Ã(O) be an imtial feasible assignment. Identjfy ().ll possible .

execution paths ror jobs or a particu1().r chain (see Figlue 4 for an ex().rnple).
.

Step 2: Compute weights ljtlt using MVA and equations (11) and (12) for comp11ting vari-
ances and co\ariances of queue lengt.hs. Compute the ,,'eights or each site (l.9itkvt)
and the wejght of the net"Tork (l.nt:ttlt) using equation (16).

lThe description of the algorithm follows similar dcscriptions given in [KLEI76J. IIowevcr, in the imple-
mentation, \\,e deviate the flow for one chain at a time, sincc it \\,as observed that thi$ equivalent ."\pproach
tel1ds lo reduce the overall number of itéralions.

14

Step 3: For each c1ass of open chain jobs, find the cheapest way to execute the job, i.e., find
-

the ma.trix A-. If ea.ch job in the system has only one task, then this computation is
trivial. If jobs have multiple tasks, an). known optimum path algorithm can be used
(e.g., see [KLEli6]). Find F as defined above.

Step 4: Compute the increniental delay b(n) and b* for the assignment Ã(n) and cheapest
assignment -i.., respectively:

'b(n) = ~ [~ 18it kv x tJ (n) + ~net x F(n)
]L.., L..., t Pkvt Vt Vt

tlt k

b(n) = ~ [L 18itkv, x A~, + lnet111 x F:t
]tlt k

Step 5: Stopping rule:
i{ Ib(n) -b*1 < f, wpere f > O is a properly chosen tolerance, stop. Otherwise go to

Step6.
-

Step 6: Find the value a. in the range O $ a ~ 1 such that the assignment -4.' = (1 -

Q)Ã(n) + a..r. nunimizes D(N).
-Let Ã(n+l) = Ã'.

Step i: Let n = n + 1 and go to Step 2.

In order to find a reasible initial assignment or, more generally, to determine whether
a feasible solution exists ~.e can apply one oI the several met.hods already developed for
rout.ing in op('n net,\"orks [KLEI76].

--
The FDLB algorithrn finds the global minimum for D(N) due t.o the convexity of D(N)

with respect to t he OJ)en chain flo,,"S and the convexity of the space of t~e íeasible flo,vs.
The convexit.y of D(.jV) ('an be deduced from the fact that the function D(N) in (4) is a s1lm
or collvex funC'tions o\"t'r the open chain flows. An intuitive (but not rigorous) explanation
for that can b(' gi\"('n as follo".S: we observe that equation (4) can be decomposed into
a weighted SU1ll of the n1lmber of open chain jobs in a site p}us the response time of the
C10sed l.hain jobs in that site. We can verify that both the number of open chain jobs .in a
site and the r('Sponse time of closed ch~in jobs in that site are increasing "rithout bo\md
(and ,\"ith a non-dl'.rl':\sing rate) as a fun('.tion of the open chajn floW at that site. T}l'1S,
the d(,lay o{ t.a\h sit(' is a convex incrca..c;jng function over the open chain floWS, and the
,\"eightl'd sum t)f tht's(." delays is als0 ('on\"cx. Convcrgence is guaranteed by the fact that
each it('ration l'rl)\.idt's nn improv('mcnt in the objcctive runction.

Tht." amo\lnt l)fcOl11putation rcquired by cach it.cration of the J.'DJ.JB a}gorit.hm is on}y on
thc ()r\lt'r 0{ tht' t.\)1111'ut:\tion of the ((l(),v('st cost. pat.h" in Step 3, ando1l the order of the cost

15

of the MVA algorithm for site k V k, since the closed chains at each site are independent,
.plus the cost of solving the queueing model of the communication network. Note that in
Step 6 the MVA algorithm is repeated se'Veral times, and the MVA computationbecomes
the dominant term.

-

, .

"'

,

16

4 Applications.

In this section we present two applications which rollow directly írom the theory developed
in previous sections, i.e., jobs which can execute at more than one site are independent of
the localload and are composed by one or more tasks. In the next section we extend the
theory to account ror jobs which are spawned írom jobs representing the localload.

-

In the first application we apply the FDLB algorithm to a distributed computer system
.

consisting or 3 sites linked by a slotted ring, as illustrated in Figure 5. For the slotted ring,
we used the closed chain model proposed by Bux [BUX81].

SITE 1 SITE 2
cl c2

r}
Termina1s Termina1s

o)

SITE 3

Communication
Net".ork

(slotted ring)

0

Figure 5: Application: a distributed computer system with 3 sites. .

,

There are 2 classes or open chain jobs 01 and 03 arri\;ng at sites 1 and 3, rcspectivcly.
Class 01 can request ser,;ce from any of the 3 sites, but class 03 can only request scrvice
from sites 2 and/or 3. Sites 1 and 2 arc r\mning local application programs, mOO(']cd as
closcd chains cl and c2 respecti\.e]y. TC\ble 1 sho".s the \;sit ratios and sen.ice req\úrements
ror each class of job at each ser\;cc c(..ntt..r jn thc net"rork, as w('ll as other input param('t('rs.

~..
17

~ JOB SITE CENTER TYPE VISIT SERVICE

CLASS RA TIOS TIMES (msec)
01 1 CPU PS 5 30

6 jobs/sec disk(l or 2) FCFS 2 50
2 CPU PS 5 21

disk FCFS 4 15
3 CPU PS 5 30

disk(l ...4) FCFS -1 140
Com. net. PS 10

03 1 CPU PS 5 50
3.5 jobs/sec (*) disk(l or 2) FCFS 2 50

2 CPU PS 5 35
disk fCFS 4 15

--3 CPU PS 5 50
disk(l ...4) FCFS 1 140

Com. net. PS 10
-c1 1 termina1s IS 1 4000
5 jobs CPU PS 10 90

disk(l or 2) FCFS 5 50
c2 2 termina1s IS 1 3000

X jobs CPU PS 10 40
('\-ariable) disk(l or 2) FCFS 10 15

(*) To illustrate the case where class 03 is not restricted to run at site 1.

Table 1: Parameters {or the first application.

As an ill11stration, let us con.'5ider the beha'\ior o{ jobs 01 and c1 at site n11mber 1. A
job or class 01 spends an a\"erage of 30 msec at the CPU before issuing an 1/0 request.
The ser\;ce time or each 1/0 de,\;ce is 50 msec. On the average, a job of class 01 '\isits the
CPU 5 times and the 1/0 de,\;ces 4 times before completion. On the other hand, a job of
class cl spends an a\"erage of 90 msec at the CPU and 50 msec at each 1/0 de"ice, and it
,isits the CPU and 1/0 de,\;ces 10 times before a ...;sit to the terminals.

Figure 6 shows the percentage of {oreign jobs processed at site 2- (arter ba1ancing the
10ad) when t.he number o{ jobs at site 2~ reprcsenting the localload (N2) varies from 0 to
20. When N2 = 0, site 2 processes 80% or the jobs or class 01 and 36% of the jobs of
class 03. When N2 = 20, site 2 proccsses only 37% and 4% of the jobs of class 01 and
03, respecti\"ely. It is interesting to mention that when jobs of class 03 are allo\ved to be
processed at site 1, and load balancing is app1ied, 22% or th('se jobs arc processed at site
1 and 15% at sitc 2 (\"hen N2 = 0). F\lrthernlore, all jobs of class 01 are sent to site 2.

18

,..~
O.Q

o.!
-c
.-

~N 0.1
!!
~ : 0.6
~..

~ ~ 0.5

.~
~ b. 0.'

"'-
00

..
~ ~ 0.3
-uu

'õ'õ O "~ .~
!...
'õ'õ 0.1

!~ O I
i § 0 2 , ~ & 10 I: 1~ I~ I' :') :-'
U~~~ !I b.'. '..' j~b. ...:11~.. a

~-

Figure 6: Percentage of íoreign jobs processed at site 2.

Figure 7 shows the effect of load balancing on overall delay as a íunction of N2. The
effect is illustrated by plotting the relative djfference between .the delays when ioad bal-
ancing is not used and when it is used 2. For instance, when N2 = O and load ba1ancing is
used the average overall delay is 0.95 sec in contrast with 9.2 sec when load balancing is
not used (the relative djfference is 870% in this case).

The second app1ication presents results for a djstributed system model in which one
class of jobs has multiple tasks which can execute in djfferent sites. The model is sirnilar
to the one considered íor the previous app1ication. We assume that there is only one class
of open chain jobs. Jobs in this class have the same parameters as jobs írom class 01 in the

previous app1ication. However, each job írom this class is formed by two tasks ,vhich have
to be executed in sequence before completion of this job. "~e assume t.hat the two tasks
have identical computational requirements, but the first task (t1) can only be executed in
sites 1 or 2 and the second task (t2) can only be executed in sites 2 or 3. The possjble
paths of execution for chain 01 jobs is illustrated in Figure 4.

Table 2 shows the optimum load. balancing strategy for the network described above
for three cases: when the number of jobs representing the localload of site 2 (N2) is equal
to 1 and the time to transrer a task over the communication network is assumed to be 10
msecj ",hen N2 is equal to 20j and when the t.ransfer time over the communication net"ork

2We define the re)ative difference between delays as: (Delay without loaà balancing -Delay wit.h load
ba)ancing) / De)ay ".ith)oad balancing).

19

,.-. .-c.

~ --

~

.
.--~.

.-1

!
I 600

!
.~
~
.
~
~ 400
~
.~

-= 300
.

.1.
200

100O 2 4 6 & 10 I~ '4 16 I~ 20 22
~ of jr~ ')t ,:I.sç cZ

~

Figure 7: Relative difference (%) of the overall delays.

is increased to 160 msec, for N2 equa1 to 1. As we can observe írom the results, in the
first case site 1 processes 33.9% of tasks t1, since its loca11oad is considerably large. Site
2 processes the majority of tasks t1 and almost ha1f of tasks t2. As the loca11oad of site
2.increases to 20 jobs, we see a decrease of the percentage of tasks processed at this site.
Now the majority of tasks t1 is processed at site 1 and t.he majority of tasks t2 is processed
at site 3. In the third case, when the communication delay increases significantly (N2 is
equa1 to 1 in this case), we obser'\.e that tasks aIe migrated so t.hat t.he communication
network stays with the IPinimum utilization possible as we can obsef\.e by the value of the
throughput in the communication network, which is equa1 to the a1ue of the throughput
of chain 01 jobs. Fina11y, it is interesting to observe again the importance of load balancing.

& For the first case above, (N2 equa1 to 1 and the communication delay equal to 10 msec), if
a11 tasks t1 are executed in the first site and tasks t2 are split equal1y between sites 2 and
3, the overa11 delay is 12.6 sec, a 556% increase in relation to the same net\vork \vhen load~ ba1ancing is used.

,

20

-

Percentage of tasks of jobs commun. net. overall
from class 01 processed at a site throughput delay

tasks site 1 site 2 site 3 (jobs/sec) (sec)
c2: 1 job t1 33.9 66.1 7.08 1.92

time to transfer t2 48.2 51.8
a task: 10 msec
c2: 20 jobs t1 67.3 32.7 6.96 5.95

time to transrer t2 17.2 82.8
a task: 10 msec
c2: 1 job t1 42.4 57.6 6.00 8.75

time to transfer t2 57.6 42.4
a task: 160 msec

Table 2: Optimalload balancing íor the second application.
~

-

~

21

5 Jobs with Spawned Tasks.

In the previous section we considered jobs with single and/or multiple tasks which execute
in sequence. These jobs were assumed to be generated by a large number of terminals and
were independent of the closed chain jobs representing the "localload" .In this section we
consider jobs which can spawn other jobs consisting of one or more tasks. These tasks then
execute in sequence and do not require synchronization atany point during executjon. In a
distributed environment similar to the oue portrayedin Figure 1, these spawned tasks may
represent background load generated by interactive users. As an example, in our current
LOCUS configuration some interactjve user generated batch jobs (e.g., compilation, troff
and others) are routed to one of the "server nodes" dedicated to this type of background
processing. Spawned jobs in queueing networks, generated by jnteractive users, have been
approximately modeled by Heildelberger and Trivedi [HEID82] as open Poisson SO1UCes

-: -\\"Íth arri,\-aI rate dependent on the (closed chain) rate of the "parent" job. Comparison ,,"Íth

simuJation shows that their approach is sufficiently accurate for load balance optimiz:i.tjon
.(errors in server utilization are--within a few percent for typical cases).

In this section we combine the basic approach o{ [HEID82] with the method deveJoped
in pre,\.]ous sections to calculate the optimum (i.e., minimum delay) routing strategy for
spawned jobs. The assumpt.ions are the same as in previous sections. We define the overall...
delay D(N) as follows:

Kc Kc
w. L .'\fC(..;Yk)PkD~(k)(N) + WC L .'\fC(Nk)Dk(Nk)

D(N) = k=1 Kc k=l (17)

L .'\fC(Nk)[u,C + U'. Pk]
k=l

,vhere superscript s jndicates a spa,,'ned job. Pk is defined as the probability that a job rrom
closed chain k spa\\-ns a job, after ,;siting a designated service center (say, for instance,
the node representing the terminals for chain k in OtIr distributed system model). v(k)
is the subscript representing a job spawned by a closed chain k job. Dk(Nk) represents
the response time of closed chajn k jobs and D~(k)(fJ) the response time for jobs spawned

by closed chain k jobs. .'\fC(N k) js the nomirial throughput of closéd chain k jobs ,vhen
Pk = O V k, i.e., no jobs arc spa,vned. t1J. and WC are arbjtrar)' constant wejghting factors

for the spawned jobs and jnteractjve jobs, respectively. ..\.s explajned jn section 2, wc t1Se
the nominal throughputs as waiting factors to avoid unfairness to the closed chain jobs.

We assume that the interactive jobs (modeled as cJosed chains) can run only in thcir
local sites. This assl1mption could actually be ensjly r('laxed \vjthout change in the sol1ltion
approach. The spawned tasks, on the other hand, can bc reassigned t.o a s1lbset of the
sites in thc nct\vork (i.c., the 'Iserver sites"). Thcrerorc, silnilarly to the prc\,io1ls s('ction,

22

the model is reduced to Kc independent mixed network models, each which one or more
closed chains. For notational convenience we assume that the behavior or interactive jobs
in a site can be represented by a single closed chain, and that spawned jobs are composed
of a single task. Furthermore, we assume w. = WC = 1. Applying Little's result and using

equation (6), we obtain:

D:(k)(N) = t ~~ :f- t ~
j=l 1-Pj >.k(Nk)Pk j=l >.k(Nk)Pk
j#IS j=IS
J .o J

= ~ ~[1 + Li(Nk)] + L ajtl(k) (18)
J=l PJ j=l
j#1S j=IS

since Piv(k) = >.k(Nk)Pkajv(k). (Also recall that k is the index of the single c1osed chain t.hat

'\isits center j.) Substituting (18) in (17) and exchanging S11mm;ltions:

J l+LC:(Nk) J Nc [N
J~ 1 ~ ..'Ij + L 'Ij + L >.fC(Nk) >.C

(~) -Tt~rm,k
J=l PJ J=l k=l k k

D(N) = j#IS j=ISK~ (19)

L >.fC[l + Pk]
-k=l

where T j = Ef~l T jv(k) and 'I jv(k) = >.fC(Nk)Pkajv(k)

.The independent variables in our optimization problem are the {>.jv(k)}. Therefore,
smce

8'Ij -1 8Tj Tjv(k)--=

8>.iv(k) >.~(k) 8Bjv(k) >.jv(k)

8 p -:
J -T.

~ -jv(k)
jv(k)

and from Theorem 1,

8Lj(Nk) TJv(k) Vj(Nk)-

8>.jv(k) -(1 -pj)

"~e finally have:

, ~1 + ~2 ...J. IS

Nc) T

8D
(N) Jljv(k){l + pj) L >.fC[l + Pk]

= .k=l (20)

Ô>.-:v
(k) T jv(k) -.- ISJ Nc) -

Pjl'(k)Jljv(k) L >.fC[l + PA:]
k=l

23

-~

.where

..6.1 = [~ + -.!L,] [1 + Li(Nk)] + -.!L,Vi(Nk) + L ~~j(Nk)

PjtJ
(k) 1- Pi 1- Pi i~j 1- Pi

i~IS

and N
.6. = 6(j».k C(Nk)N [LC:(N) -T .(N -1)]2).~(Nk) k J k , k

Equation (20) is the key to the flow deviation method. We associate a length or weight
for a spa,,'ned task v(I) to each site, given by:

I .def '""' e.aD(N)sztekv(1) = L-.. itJ(l) .
~~- iek a).itJ(l)

and, similarly, lnettJ(l) is defined for the communication network.

The fiow deviation algorithm for Ioad balancing spawned tasks remains basically the
same as outlined in pre\ious section. In the initialization step (Step 1) the open chain rates
are initialized to the nominal thxoughput of correspondent closed chain jobs. Furthermore,
after deviating the fiow for an open chain v(k), the throughput of the open chajn v(k) is
updated to).:(k) =).kPk. A t the end of the algorithm,).:(k) converges to).k v k in the

network.

AppIication:

As an application of the approach, consider the distributed system model illustrated
in Figure 5. However, in this example, the open chains represent tasks which are spa,vned

~ by closed chain jobs. Site 3 is reserved as a "server" site (similarly to the scheme used at

UCLA-LOCUS). Therefore, no interactive users can login at that site and only batch t.asks
originating at other sites are allowed to run at site 3. Site 3 is assumed to have the same
CPU characteristics as site 1. We assume that interactive jobs which run at site 1 and
2 spawns batch tasks "ith probability 0.25 and 0.1, Iespectively. Batch tasks generated
írom site 1 and 2 have the requirements shown in Table 3.

~
Initially we assume that batch tasks can run in any of the sites. Figure 8 shows the

percentage of ba.tch ta.sks spawned from intera.ctive jobs of site 1, wl1ich run on site 2
(squares) and 3 (dots), after balancing the loa.d, as a function of the number of interactive
jobs of site 2 (N2). From the figure "'e can observe that if the number of interactive users
running at site 2 is less or equal than 5 then site 2 is the best site to run batch tasks
spawncd from sit.e 1. When the number of interactivc uscrs at sjte 2 incrcases. beyond 5,
then we see that a percentage of batch tasks from site 1 shotud also run on sitcs 1 or 3,

24

=
TASK SITE CENTER TYPE VISIT SERVICE .

RATIOS. TIMES (msec)
vl 1 CPU PS 5 300

disk(1 or 2) FCFS 2 50
2 CPU PS 5 150

disk FCFS 4 15
3 CPU PS 5 300

disk(l ...4) FCFS í 140
com. net. PS 10

v3 1 CPU PS 5 500

disk(l or 2) FCFS 2 50
2 CPU PS 5 250

djsk FCFS 4 15
3 CPU PS 5 500

-.c djsk(l ...4) FCFS 1 140
com. net. PS 10

Table 3: Computationa1 requirements of spawned tasks.

ror achieving minimal delay. "~en the number of interactive users at site 2 reaches 14, no
tasks spawned from site 1 should run on site 2. Simjlarly, Figure 9 shows the percentage
of batch tasks spawned from interactive jobs of site 2, which run on site 2 (squares) and
3 (dots), after ba1ancing the load, as a function of the number of interactive jobs of site
2 (N2). From the figure we can observe that if the number of interactive users running
at site 2 is equa1 to 1 then site 2 is the best site to run batch tasks spa\vned from this
site 2 interactive user. As the number of interactive users at site 2 increases, we see that
a percentage of bat.ch tasks from site 2 should also run on site 3, for achieving minimal
delay. When the number of interactive users at site 2 reaches 5, al1 tasks spawned from
site 2 should f1.m on site 3.

Fjgure 10 col1lpares the overa1l delay ,vhen batch tasks are allowed to run jn any site
and when the tasks are restricted to run only on the '.sef\'er" sjte. The cómparison js
illustrated by plotting the relative djfference between the delays when load ba1ancing js
not used and wh('n it is used. It can be easily observed that rest.ricting batch tasks to sez:ver
sites may greatly increase the overall delay. As we see from Figure 10, as the number of

.
interactjve useIS iIlcreases balancing the load becol1le increa.."ingly irnportant for the overal1
delay (relative difference increases). The slight decrcase in relative difference when N2 is
increased beyond 15 is explained by the fact that after this point the net\vork is near
saturation even ,vhen batch load is balanccd.

25

.-

~,c
--

1

perce;ntage

~ 0.5

(sitc 2)

0

0 5 10 15 20

number of interactive jobs at site 2

Figure 8: Percentage or spawned tasks from site 1.

-

1

percentage

~ 0.5

(site 2)

0

0 5 10 15 20

number Qf interactive jobs at site 2

Figure 9: Percentage or spawned tasks írom site 2.

26

-~

so

." relative 40.
difference

--between
delays 30

20

O S 10 15 20

number of interactive jobs at site 2

.'
Figure 10: Relative difference (%) between delays.

.

-.-'-

27

J

6 Conclusions.

We have presented ~n efficient method for static load balancing in distributed systems.
The main advantage or this method over previous schemes is its applicabi1ity to very
general models. Xamely, models ~;th mu1tiple classes, site constraints, job spa~.ning and
mu1titasking can be easily handled. The success or the method rests on the rollowing key
properties/ resu1 ts:

.the queueing network model is of product form type, or can be reasonably approxi-
mated as such.

.a computatjonal1y effici(-lt method for :finding "improving paths" was developed and
implemented in the steepest descent procedure.

.thelocal minimum is a global minimum (i.e., the objective function is convex).

The numerical resu1ts have demonstrated the efficacy of the method and have indicated
some of its potentia1 uses. Typical applications include comparisons of the different systems
and different resource al1ocation policies (e.g., how many servers sho1.ud be installed in the
s).stem, or; wruch site constraints shou1d be imposed .on different classes, etc), sensiti\-ity
studies (e.g., impact of background load on interactive job delays) and, more generally, ,
capacity planning. ,.

A possible limitation of our model in predicting the performance or a system yet to
be built is in fact that the model is a static load balancing model, while actual systems
apply dynamic load balancing, where the job/task relocation decision is based on a dy-
nainically changing system status rather than on prede:fined fraction allocations. However,
d).nainic mode1s ax:e very difficu1t to analyze (in the limit one must use simu1ation) and
very cumbersome to use in an interactive design process. Thus, static models, albeit inac-
curate, are the only practical approach to capacity planning and design. This is not un1ike
the situation found in ,,-ide area packet s,,;tched networks, where optimal, st.eady st.ate
routing schemes a1"e used for network topology design (while actual networks are driven
by dynamic routing schemes). For packet net\vorks, good agreement was found between
static (multipath) and dynamic routing perlormance [KLEli6J. An important issue for
future investigation is the consistency bet\veen static and dynamic load ba.lallce policies in
distlibuted systems. Another promising direction ror rurther rcsearch is the combination
or optima1 (static) and heuristic (dynamic) ntles in a hybl-id load management scheme.

The method presented here can be easily extendcd to account for scveral modifications
in the basic model. In particular, the pcrformance measure can be modificd to lninimize
delays or a subset of user classcs. Alternati\.cly, the delay mcasure may be replaced bya

28

proper {airness measure [GERL85J, where the intent is to "equalize" closed chain througb-
puts by distributing open cbain classes among the ~arious sites. Furtbérmore, the use of
multiple classes~ as done for modeling multitasking, can .also be used to model tasks which
may temporarily suspend execution at one site, start a remote process at anotber site (e.g.,
remote procedure call, request of a page/file transfer. etc) and tben resume executjon once
the remote process has terminated. Finally we note tbat complex interconnection networks
can a1so be handIed, assuming that they satisfy product form requirements.

~
~

29

Appendix. ,

Proof of Theorem 1:

In a product form mixed queueing nctwork model with SSFR and IS service centers,
the eq\úlibrium state probability for a site k is given by [LAVE83] (we are assuming single
closed chain network for simplicity):

, 1 L [.]n; L (c)n;
p:(nk) = c I1 ~ l1 ~ (21)

Gk(Nk) i;1 1- Pi i;1 ni!
i~IS i;IS

where centers which belong to site k are labeled I, ..., L and Gk(N k) is the normalization
constant ofthe queueing network model representingsite k, i.e., Gk(Nk) = E1n~I=N. Pk(iik),
nk = (n" ..., nL), Inkl = n, + ...+ nL.

Taking the (partial) deri~.ative of Gk(..'Vk) ,,-ith respect to pi,

~ = ~ L nj ll.(~'n;x fr ~ j#IS (22)

8pj 1- Pj In~I=N~ ;al \1- Pj) i;l ni.

iyllS ;=IS

Gk(Nk) ~ p c(-
)= o L.., nj k nk (23)

1- p .
J In~I=N~

The summation on the right hand side of (23) is by defimtion the average queue length of
closed chain jobs at ser\-ice center j, ther(..fore:

8Gk(Nk) = ~L~ (N) ()8 o 1 o J k 24 .

Pj -Pj

To pro,e equation (9) we Take the deri\-ati\.e of (22) again ,,;th respect to pi,

8'Gk(Nk~ -Gk(Nk) ~ .pc (-)+ Gk(Nk) ~ 2pc (-
)8(0)2 - (1 -q)2 L.. nJ k nk (1 -~)2 L.. nj k nk

Pj PJ In.I=,\.. PJ lii..I=N.

= Gk(Nk) (LC (.V.) + Sf7(N)) (25)(1 -pjf J k J k

,vhere Sj(.1\..k) is the second moment of q<l<.'\lC leIlgths of the closed chain jobs at ccnter j
of site k.

Thc s('("ond dcll\ãtive of Gk(.;'Vk) wi~h rl'.-;p('Ct. t,o pi can a1so be obtained by taking thc
deri\'(\tivc of cquation (24) \vith rcspcct to pj. ,,~c obtain:

{)'Gk(.'\.1.:) =
{)(pi)l

30 .;;,.

t:.:

= ~G~(Nk)L~(Nk) + ~~L~(Nk) + ~G~(Nk)~L~(Nk)
(1 -pi) J 1 -pi apj J 1 -pj 8pj J

= (Gi(N:)2 (.Lj(Nk) + (Lj(Nk»)2 + (1- Pj)-;.Lj(Nk»
) (26)

1 -Pj) Pj

Now, equating (25) and (26) and using the definitio~of the variance of queue Iengths
of closed chain jobs at center j, (9) is obtained. Equation (10) can be proved in a sirnilar
way and we omit the detaiIs for conciseness. O .

Proof of Corollary 1:

Equations (11) and (12) are obtained from MVA equations and Theorem 1. We prove
the result for single closed chain networks, but the same approach can be used for multiple
chain networks.

The well known MVA equation which relates the mean queue lengths of cIosed chain
jobs at a service center as a function of queue Iengths of closed chain jobs \\rjth one less

-closed chain job in the network becomes, for mixed networks:

.-a.
Lj(N) =).(N)-L-[1 + Lj(N -1)] (27)

.l-Pj

where the superscript c was dropped to simplify the notation and j is a SSFR ser\rjce
.center.

In order to pro\"e equation (11) \ve take the deri\-ati\.e on both sides of equation (27)
with respect to pj:

8Lj(N) -8).(N) aj .
[L (N)]-1+ .-18pj 8pj 1 -pj J

+).(N)~[1 + Lj(N -1)] +).(N)~~ (28)
(1 -Pj) 1- Pj 8pj

Now, substituting (9) and (13) in {2]), equation (11) is obtained. Using similar steps,
the recursive expr('Ssion for the co\"ariance ~1(N) (equation (12» can be obtained, and \ve
omit the details for conciseness. O

Proof of Theorem 2

In order to find the derivati\.cs of the closcd chain thrOtlghput or site k ().k(Nk» ,vit.h
rcspcct to the op('n chain 11tilization at center j in k (Pj), \ve exprcss).k(.lVk) in t('rn15 or

31

the normalization constant, [LA VE83]:

).C(N) = Gf(Nk -1)
k. k G~(Nk)

Now, taking the derivative of (29) with respect to pi and using (24),

a,\~(Nk) aG~(Nk- l)/api Gk(Nk- 1) aGk(Nk)=- -

api (J~(Nf) (Gk(Nk))2 api

-(Jk(Nk -1) Li(Nk -1) -(Jk(Nk -1) ~
-(Jk(Nk) 1- pi (Jk(Nk) 1- pj

= ~ (Lj(Nk -1) -Lj(Nk»)
J

where ser\-ice center j is assumed to be in the same site of closed chain k. O

~

32

References

[BUX81] W. Bux, "Local-Area Subnetworks: A Performance Comparison", IEEE
Tran..action" on Communication3 COM-29, no.10, 1465-1473, 1981.

[DeSO84a] E. de Souza e Si1va and M. GerIa, "Load Balancing in Distributed Systems
with ~I\utiple Classes and Site Constrajnts", Performance 84 Proceedings, E.
Gelenbe (Editor), 17-33,1984.

[DeSO84b] E. de Souza e Silva and R.R. Muntz "SiI11ple Re]ationships Among Moments
in Product Form Queueing Network Models", UCLA Computer Science De-
partment, 1984, to appear in IEEE Transactions on Computers.

[FRAT73] L. Fratta, M. GerIa and L. Kleinrock, "The Flow De,;ation Method -An
Approach to Store-and-Forward Communication Network De..~ign", Network"
3, 19;3.

[GALL771 R. G. Gallager, "A Minimum Delay Routing Algorithm.Using Distributed
Computation", IEEE TTansactions on Communication3, COM-23, 73-85,
197;.

[GERL85] M. GerIa and H. W. Chan, Window Selection in Flow Controlled Net~Torks",
PToceca'ing.. of Data Communication Sym.po..ium, September 1985.

[GOLD83] A. Go]dberg, G. Popek and S.S. Lavenberg, "A Validated Distributed System
Perfornlance ~Iodel", Performance 83 Procecdings, A.K. Agrawala and S.K.
Tripathi (Editors), 251-268, 1983.

[HEID82] P. H('id('lb('rg('r and K. S. Tlivedi, "Queucing N etwork ~Iod('ls ror Parallel
Proc('~si1lg with Asynchronous Tasks", IEEE TTanJaction" on ComputerJ,
vol. C~31, pp.1099-1108, 1982.

[KLEI76J L. K]('inrock. ..Queueing S)Tstems, Volume II: Computer Applications", J1riley-
Intt:T.~cir.nce, N('w York, 1976.

[KOBA83J H. Kobayashi and M. Ger]a, "Optimal Routing in Closed Queueing ~et-
works.., .4 CM Transaction.. on Cornpu.tt:r Sy.~tern", vol. 1, no.4, 294-310,
Nove1Ub('r 19S3.

.
[LAVE83] S.S. Lavt'nb{..rg (Editor), "CoI11puter Pcrronl1ance Modeling Handbook"~ Aca-

dcmi(' rrc .~t:w York, 1983.

[POPE&l] G. Pop(.,k, D. "~aJker, J; Cho\v, D. Ed\,ards, C. Kline, G. Rudisin and G.
Thi('l. ..LOCUS: A Nct\,ork Transparcllt, High Rcliability Distllb1.lt('d Sys-
t.('I11", I'rocl'l',ling.~ of the Eighth S!/mpOJi1Jln on Opcrating Sy3tcm.~ PrincipIe..,
Cnljfl.'rni:\, D(.'l.\."'lllb('r 19S1.

33

'.--

[REIS80] M. Reiser & S.S. Lavenberg, "Mean Va1ue Ana1ysis of Closed Multichain
Queueing Networks" JouTnal of A CM, vol. 27, pp. 313-322, 1980.

[TANT85] A.N. Tantawi and D. Towsley, "Optima1 Static Load Balancing in Distcibuted
Compufer Systems", Journal of ACM, vol. 32, pp. 445-465, 1985.

,

34

