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Resumo

Em sistemas distribufdos, o balanceamento de carga pode melhorar a eficiéncia de um
sistema se jobs executando em computadores com elevada carga de trabalho forem frans-
feridos para computadores com menor carga. Neste artigo apresentamos um método para
o balanceamento 6timo de carga em um ambiente estético. Um modelo de redes de filas ¢
usado para avaliar o tempo de resposta e técnicas de programagao matematica sdo usadas
para se achar a alocagio de carga que minimiza o tempo médio de resposta. 0 método
ndo é proposto como substituto para politicas heurlsticas dindmicas de balanceamento de
carga; entretanto, o método é visto como uma ferramenta Wtil para alocagio de recursos e
planejamento de capacidade em sistemas distribuidos, e como um complemento promissor
a politicas dindmicas em estratégias hibridas de balanceamento de carga.

O método pode ser aplicado a diversas classes de problemas, incluindo: classes distintas
de joks; jobs com miltiplas tarefas, e; jobs que originam miltiplas tarefas. Virios exemplos
ilustrando estas aplicagbes s3o apresentados.

Abstract

In distributed systems, load balancing can improve efficiency by migrating jobs from
heavily loaded to lightly loaded sites. In this paper we present a method for optimal load
allocation in a static environment. A queueing network model is used to evaluate response
time; and mathematical programing techniques are used to find the load allocation that
minimizes average response time. The method is not proposed as a substitute for dynamic,
heuristic load balance policies; rather, it is perceived as a useful $ool for resource allocation
and capacity planning in distributed systems, and as a promising complement to dynamic
policies in hybrid load balance strategies.

The method can handle very general classes of problems, including: distinct classes
of jobs, multitasking within each job, and; jobs with spawned tasks. Several examples
illustrating these applications are reported.
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1 Introduction

The past few years have witnessed an increasing number of distributed computer system
implementations based on local area networks. In these systems a number of resources
(CPU'’s, file servers, disks, etc.) are shared among jobs originating at different computer
sites. In a distributed system environment, it is desirable to equalize the usage of resources
(balance the load) in order to reduce the response time of jobs and improve the utilization
of the resources. This can be achieved by migrating jobs to the lightly loaded sites. An
example of system permitting job migration is the LOCUS operating system [POPES1],
where processes generated by users at one site in the network are allowed to run on other
sites.

The load balancing problem in a distributed resource system is not new and can take
different forms for different problems. For example, in a long haul packet computer network
(where the resources are the channels), load balancing becomes the routing problem. The
goal there is to find optimum paths on which to distribute the packets, so that some well
defined performance criterion (overall delay, for instance) is optimized.

In a distributed computer system, the load balancing problem may be formulated as
the problem of distributing the execution of processes throughout the network in such a
way that the overall user response time is minimized. This load balancing problem is more
complex than the routing problem for the following reasons:

(a) Optimal selection of the execution site and optimal routing from the originating
site to the execution site must be simultaneously accomplished (although the routing
problem may become trivial when a bus or ring network is used since in this case

~ there is only one path between origin and execution site).

(b) A job in general consists of a sequence of tasks. The selection of the best site on
which to run a task must be made on a task-by-task basis.

(c) Multiple job classes must be considered (e.g., interactive, batch, etc.) with dras-
tically different resource usage characteristics. In particular, some classes behave
as “closed” classes, in that their population remains constant during the life of the
system (e.g., the number of interactive jobs in a multiprogrammed system). Other
classes are best modeled as “open”, in that the number of users in the class fluctuates
statistically due to random inputs (e.g., database inquires originating from a very
large terminal population).

(d) Some classes may be restricted to run on a subset of sites.
(e) A job may occasionally “spawn” other jobs. For example, an interactive user en-

gaged in cditing a file may periodically submit a text formatting (c.g., TROFF ar-
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TEX) job to one of the servers. Since some of the users may be homed on server sites,
proper balancing of spawned jobs is necessary to minimize user delay (and maximize
user throughput).

Load balancing can be static or dynamic. Static load balancing implies finding the
optimal job assignment at steady state. Dynamic load balancing requires that the job
(or task) allocation to a site be made when the job (tasl) is generated, depending on the
current traffic conditions. Needless to say, dyr‘x.amic load balancing is much more difficult
to analyze than static load balancing. In this paper, we limit ourselves to the static load
balancing case, i.e., we assume that the system will reach steady state, and we seek the best
distribution of jobs among sites at steady state, so that a proper performance measure,
typically, the average delay, is optimized. The solution to the static load balancing problem
is probabilistic in nature, in that it specifies the fraction of jobs in a given class which
must be allocated to a given site. That is, with probability equal to that fraction, a job
should be routed to that site. This is analogous to the optimal static routing solution
in computer communication networks, where the traffic between origin and destination is
probabilistically split among multiple paths (“bifurcated routing”).

It may be argued that the usefulness of static load balancing solutions is very limited
since operational systems 1mplement dynamic procedures. The controversy is the same as
that between static and dynamic routing policies in packet networks; and the answer is
the same: they are both necessary, since they play different roles. First, static models are
computationally effective for system sizing (e.g. allocation of resources, identification of
bottlenecks, sensitivity studies, etc), while dynamic models are not suitable for this func-
tion (analytic models can handle only very small size systems; simulation models are too
time consuming). Secondly, static solutions may actually be exploited for dynamic load
balancing: a network management center can monitor loads and traffic patterns, period-
ically recompute the optimal load distribution, and dispatch load balancing instructions
to the hosts. This periodic computation of optimal load balancing can be carried out also
in a distributed fashion, without the network management center, as is done in optimal,
distributed routing algorithms {GALL77]. The possibility also exists of combining the op-
timal static policy with the heuristic, dynamic policy: the static policy is used to optimize
loads according to long term traffic trends, while the heuristic policy is used to react to
sudden traffic changes and temporary perturbations.

The above arguments assume that static, optimal solutions are consistent with dynamic,
heuristic solutions, so that a system can be sized using static models and then expected
to perform well under heuristic rules. There is evidence that this is the case in distributed
systems (as it happens also for optimal and heuristic routing in packet networks); however,
additional, more systematic experimentation is required in this direction to corroborate
the claim.



Most static load balancing problems can be formulated as non-linear, multicommodity
flow problems. If the objective function is convex, a downhill search technique can be
efficiently used for their solution. If the system includes only open classes and does not
contain special features (such as site restriction, Job multitasking, job spawning, etc), then
any of the methods available for routing optimization in computer networks can be success-
fully used. In particular, the Flow Deviation method, a downhill search method specially
designed for open qucueing networks may be employed [FRAT73,KLEI76). Furthermore,
if the distributed system has a special structure (namely, There is only one class of jobs and
the local network can be modeled by a single queue) the optimal equilibrium point may be
obtained directly by solving (numerically) a set of non-linear equations, rather than using
an iterative downhill descent method. An elegant “direct” solution method for this special
structure was presented in [TANTS85). Unfortunately, the direct solution does not easily
extend to multiple classes, site constraints, and general interconnecting networks.

If the distributed system under consideration includes only closed chains (1 e., closed
classes), then an extension of the Flow Deviation method due to Kobayashi and Gerla
[KOBAS83] can be efficiently used. However, the delay function in this case is not convex,
therefore, the routing problem with multiple closed chains typically leads to local minima.
Thus, a further search for the minimum of the local minima is required.

In this paper we consider the more general situation of multiple mixed classes of jobs.
A job in general consists of a sequence of tasks. As mentioned before, tasks of the same
job can be run (in sequence) at different sites. A task, however, must be run to completion
before the job is reallocated to another site.

Open classes correspond to jobs submitted from a large number of terminals or work
stations, or spawn from other tasks (such as text formatting jobs spawn from interactive
users, as mentioned before). These jobs may be permitted to execute remotely. At issue
is the optimal selection of the remote site, and the optimal path to it. Restrictions may
apply in the remote dispatcher. Closed classes correspond to jobs running locally on a
computer site. The computer site is itself modeled as a network of queues (central server

model).

The objective of our load balancing problem is to minimize a weighted sum of delays
(over open and closed chains). Note that only the open chains need to be rerouted for load
balancing. Routing is fixed within the tlosed chains. It can be shown that this guarantees
the existence of only one local minimum, which is also the global minimum.

In summary, the main contribution of this paper is to provide an efficient algorithm for
the solution of a very general class of static load balancing problems. Key capabilitics of the
algorithm is the handling of multitasking, sites constraints and job spawning. Examples
will be presented to illustrate all the features.



In the following, in section 2 we describe in detail the model which will be used. In
section 3 we present the solution approach. In sections 4 and 5 we demonstrate the appli-
cation of our method to a few selected examples including site constraints, multitasking
and spawned jobs. In section 6 we present our conclusions.



-2 The Model.

We consider a distributed system of the type shown in Figure 1. In this system each site
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Figure 1: A Distributed System.

supports a number of resources (CPU’s, disks, etc.), which are used by local processes. Sites

~ may have different resource configurations, different capacities, etc. Each site is connected
to a number of terminals which generate jobs with different processing requirements. A job
consists of one or more tasks. Each task may require specialized resources, and therefore
may execute only on a subset of the sites, since not all sites possess all needed resources.
Tasks within a job are executed in sequence and, for each task, a “run site” is chosen.
If the “run site” of a task is different from the site where the task was generated then
all the information necessary for the task to run in this “foreign site” is transferred via
the communication network. We assume that, once a “run site” is chosen for a task, it
runs until completion on that site and no further transfers are allowed. A job completes
execution after all individual tasks are executed.

This type of configuration may arise in a database application such as an airline reser-
vation system where requests from local terminals may be forward to foreign sites. In
addition, some of these sites are processing local application programs. We assume that

application programs cannot execute in a foreign site. We refer to these applications as
the “local load” of a site.

Our goal is to balance the load in the computer network, so that the overall delay is
minimized. As a byproduct, the model will permit us to investigate several performance
issues. For instance, we will be able to study the influence of local loads on the dispatching

of database requests to sites; the effect of the communication network speed on load
distribution, etc.

We model our distributed system as a collection of “central scrver models”, one for
each site, interconnected by the communication network queucing model. This kind of

model was first proposed in [GOLDS83] to model the LOCUS distributed system.
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‘Local appﬁcatfon programs (corresponding to the local load) are modeled by one or
more closed chains for each site, as indicated in Figure 2. (In this figure we assume that
these jobs are generated by a finite population of interactive users.) The remaining jobs

"SITE1 ..
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== JO] Disks 1SITE—
FY 10— ]
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Jobs I
- atsitel to site 1
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Figure 2: The model.

are generated by a large number of terminals, and so can be modeled as open chains with
Poisson arrivals and total throughput A°. (In section 5 we will investigate the case where
jobs are generated from the local interactive population.) Jobs representing the local load
are restricted to run on the site where they were generated. All other jobs in the model
(represented by open chains) may execute at more than one site. These jobs require the
execution of several tasks in sequence before completion. Suppose that a request r; is
composed by tasks t;,...,%y. Upon arrival at site i, say the first task of r; (¢;) may be
executed locally or the request may be immediately forwarded to one of the other sites in
the system which can execute task ;. Task ¢, runs until completion in the chosen site.
Then, a new site is chosen to execute task #,, and the job completes when all M tasks are
executed. We assume that the decision of running a task in a site is independent of the
state of the network. Furthermore, thé network is composed by single server fixed rate
(SSFR) and infinite server (IS) service centers, and queue disciplines and service demands
are such that they satisfy product form requirements.

The modeling of multiple tasks is handled as follows. Let us assume that cach open

chain job is composed by only one task which can be assigned to one of the sites that is
able to exccute this task. In this case, the “routing” of a job through the network is very
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simple since, once iassigned to a site, a job executes until it completes. Figure 3. shows the
possible paths for a job of an open chain v in a distributed system with three sites (1, 2
and 3) and a communication network. We assume that site 1 is the local site of chain v

NAL

site comm
~ 1 net

COMPLETION

.. Figure 3: Possible paths of chain v jobs with only one task.

"~ jobs and that they can be executed in any of the three sites. In this figure, we see that
only three paths are possible: a job may execute in its local site (1) or it may be sent
via the communication network to foreign sites 2 or 3. If a job has multiple tasks to be
executed, the route of this job through the distributed system is more complex, since the
job can visit several sites before completion. It is easy to see that the route of a chain v job
through the system can be modeled by introducing classes for that chain, with one class
mapped to each task of a job. Since a queueing network model with chains having multiple
classes can be solved by an equivalent system with the same number of chains but with
only one class [LAVES3], the introduction of classes does not increases the computational
complexity of the model. However, the algorithm has to take into account a more complex
routing structure. This is illustrated in Figure 4. In that figure, we assume that chain v
jobs are composed of two tasks (t; and t;). Task t; can only be executed in sites 1 or 2
and task ¢, can only be executed in sites 2 or 3. We see that there are four possible paths
of execution for a job. In one of these paths, a job is sent through the communication
network to have its first task executed at site 2. Then the job is sent again through the
communication network to have its second task executed at site 3.

The following notation will be used throughout the paper:

J = total number of service centers in the network, including centers repre-
senting the communication network.

K = total number of chains in the network.
i(k) = a specified service center visited by chain k.
6x = visit ratio of chain k jobs to center j, scaled so that 8,y = 1.

7



Tk = mean service time of chain k jobs at center j.

ajk = k- Tjk.

P; = utilization of center j.

1k = 1T

Ak = 8;x. )i = throughput of chain k jobs at center j, where Ay = Aj(x)-

L = mean number of chain k jobs at center j. .

m = mean waiting time (qucueing time + service time) of chain k jobs at

center j. -

€x = k-dimensional vector whose k-th element is one and whose other elements
are zero.

In addition a superscript ¢ denotes a quantity for a closed chain and a superscript o denotes
a quantity for an open chain. For simplicity of notation we assume that there is at most
one closed chain in each site representing the local load. Therefore, the index of the closed
chain identifies the site. The results, however hold for multiple closed chains at a site. Let
" Ni be the number of jobs in the closed chain of site k, and N= (N1, .., Nke).

N

site ’ comm
1 net
comm site
net 2
site site site comm
2 3 2 net
site
~ 3
-
COMPLETION

Figure 4: Possible paths of chain v jobs with two tasks.
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* We define the overall delay D(ﬁ ) as the following weighted sum of all chain delays:
i o v
w z /\°D°(N) +w Z )‘f"(Nk)Dk(Nk)
D(N) = —= | (1)
. : oon+w ZANC(NE)

u=1

-

“where: (1) D3(N) and DS(N,) represent the response time of open chain v jobs and closed
chain k jobs, respectively; (2) AN¢(Ny) represints the “nominal” throughput of a closed
chain k obtained when all open chain throughputs are set to zero; (3) w® and w* are
arbitrary constant weighting factors for open and closed chains, respectively. The use of
the nominal (instead of actual) throughput as a weighting factor is justified as follows: if
the nominal throughput for a closed chain is replaced by the actual throughput, and the
weights are set to 1, the expression above gives the total average delay. However, using
total average delay as the objective function leads to unfairness to closed chains, since
an increase in open chain utilization at a site causes an increase in local chain delay, and
also a decrease in local chain throughput (the product remains constant by Little’s result).
This implies that for very heavy loads from external sources the impact of closed chain
delays on the objective function becomes negligible with respect to the open chain delays.
For this reason, we chose to assign a fixed coefficient, the nominal throughput, to each
closed chain. In addition, we introduced the weighting factors {w} to reflect the relative
importance of open and closed chains in the model. Without loss of generality we assume
w’ = w® = 1 throughout the rest of the paper.

The gbal of load balancing is to minimize the non-linear function D(N )} by optimally
distributing the open chain traffic among the various sites. This is equivalent to optimizing

D(N) with respect to the flows {12, }, V], vy, where the subscript ¢ identifies a task of an
open chain v job. :



3 The Solution Approach.

We define our load balancing problem as follows:

e Given:

-

| "~ The number of tasks in each job.

- — The service demands of jobs (and their tasks) from all chains at all service
centers in the network. i

— The visit ratios of the closed chain jobs (local load jobs) of a site at each service
center at that site, as well as the visit ratios of open chain jobs at centers of a
site.

_— The number of interactive jobs representing the local load at each site.
— The throughput rate of each open chain v.
— The set of sites where task ¢ of open chain v jobs can execute.

— The “local” site of each open chain job.
¢ Minimize: The overall delay D(N).

o With respect to: The flows at each service center A%+ (Where the subscript ¢
identifies a task of an open chain v job.)

The solution method we use is a downhill technique based on the “flow deviation”
method [FRAT73,KLEI76]. We restrict the development to a single closed chain per site
as previously indicated, for notational convenience. However, the approach is applicable
to multiple closed chains at each site. To compute the steepest descent direction for the
downhill technique we need to compute the (partial) derivatives of the overall delay function
with respect to each open chain flow at each service center. For that we manipulate the
expression for the overall delay in equation (1) as follows.

From Little’s result:

J o (N ’
Dy = = Zal) )

and Ni = X(NW)Te
k™ Nk kJLterm k

: 3

(Vi) ®)

where T, ,, . is the average think time of an interactive closed chain k job at the termi-
nal, and AL(Ni)T, ., ;. gives the average number of closed chain k jobs at the terminals.

Di(Ni) =
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_ Substituting (2) and (3) into (1),

J K<
3 LAN) + 3 AN N/ A (NE) = Tiorrm )
D(ﬁ) — =1 k=1 :

e (4)
A®+ 3 AT(NG)

k=1

-

Then, we observe that a mixed product form queueing network with SSFR and IS
service centers can be reduced to an equivalent closed queueing network where the service
request TJ',"; of closed chain k jobs at center j is given by the following expression [LAVES3}:

Ty = & (5)
We note that in our model, closed chain jobs (loca] load) at a site do not interfere with
closed chain jobs from another site. Therefore, we can decompose our model into K¢

~ independent mixed network models each with one closed chain, plus the queueing model

of the communication network.

Finally, we recall that in a mixed network the open chain population at center ¢, L?,
can be expressed in terms of the closed chain by [LAVES3]
p? . . . . .
——|[1 + LN, te k . network IS cent
LNy =4 1 p?[ + L{(Ny)] i€ site k or i € commun. network, i # IS center

p? t € site k or ¢ € commun. network, ¢ = IS center-

(6)

where the vector notation was dropped due to the reduction of the problem to K¢+ 1
independent single chain mixed networks.

Therefore, equation (4) can be rewritten as:

D(N) =
J pO J K? 7
S Tl L) + X a7+ 2 MMM/ AE N ~ T
=1 H i=1 . k=1
i2IS =18 :

= (7
A+ ) AN(N)
k=1

The independent variables in our optimization problem are the {2, }. Recalling that

P; = 2w A3 T5,, we note that we can also use the p? as independent variables. In the
following, for convenience, we take the derivative of D(]\_f ) with respect to the total utiliza-

tion of open chain jobs at center j (p2). In this computation we exploit the fact that: (1)
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the performance measures of site (or communication network) u are not altered when we
vary the open chain throughput at a center j in site (or communication network) k, k # u;
and, (2) the total open throughput remains constant as do the nominal throughputs of the
closed chains. For convenience of notation, we label the centers belonging to the same site
(or communrication network) as center j as [,..., L.

-

L. pp BLYNy)

A AY(Ni )Ny OA5(Ni)
—p°  Hp° 6('7) ¢ 2 8p°
=L 1=p/ 0P (A&(Ne)) P;
: = ; £ IS 8
FCEWNT i# (8)
;=18

§G) = 1 j ¢ communication network
A7) = 1 0 otherwise

It remains to find the derivatives of the closed chain throughputs and queue lengths
- with respect to the utilization of open chain jobs at center j. To this end, we use the
following theorems and corollary: '

Theorem 1 In ¢ product form, mized queueing network model

(a) |
OLYNy)  Vi(INi)

a3 — (1-43

(9)

(b)
BL{(Ny) _ Vi(N)

a3 — (-pp)

(10)

where VF(Ny) is the variance of the queue length of closed queue jobs at center j of site k

and V§(Ny) ts defined as the covariance of queue lengths of closed chain jobs at centers j

and 1 of site k.



Corollary 1 In d product form mized queueing network model, the variances and covari-
ances in (9) and (10) above can be easily obtained using mean velue analysis (MVA) and the
following recursive equations (the subscript k in Ny was dropped to simplify the notation):

VAN) = A(N)s

i(V - 1) LML+ LN -]+ V(N -1)) (11)

Va(N) =

-1)- LJ(N)Hl +L(N -1+ Va(N -1))  (12)

where V;(0) = _,; = 0

Theorem 2 In a product form, mized queueing network model

‘m_ag‘l = %%[L;(M—n—ﬁ(”ﬂ] o

where service center j 13 assumed to be in site k.

A proof of the above theorems and corollary can be found in [DeSO84a] and is included
in the appendix for completeness. For a general discussion of partial derivatives of queue-
ing measures with respect to parameters in closed queueing network models we refer to

[DeSO84b).

Finally, substituting (9), (10) and (13) into (8) and noting that 8D(N)/8\2 % =
(1/p J-m)aD(N )/ 9p%, where the subscript ¢ identifies a clzss of open chain v, we obtain:

8D(N) _
s, : (14)
[ 1+ LYNy) P,VJ(Nk) p? :J(Nk) AN o rre (N
1 - p;? 1-— 'Zl: 6( ) /\C(N ) Nk[Lj(Nk) - Lj(Ak - 1)]
|¢IS
< (1 = P3)(A° + ATE(N))
J#1S
e i=Is
L 2w (A% + AT(N))

Equation (14) is given in terms of mean values of throughputs and queue lengths,
variance and covariance of queue lengths which can be easily obtained from MVA recursion
and equations (11) and (12).
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The key to the flow deviation method is to associate a length or weight for an open
chain job to each queue, given by:

dt aD(ﬁ)
Ijvz = 3)\"

Jue

j=1,...,J T @s)

However, due to the particular characteristics of our problem, we can further simplify the
solution by noting that, once a task is assigned to a site, its behavior is preestablished
by the routing probabilities given as input pargmeters for that site. In other words, the
“route” of tasks within a site is fixed. This observation allows us to define a “site” weight,
as:

Isity,, & 362, 1, (16)

jek

where the index k represents the site and index v,, class ¢ of open chain v. In the same
way, the weight of the communication network (Inet,,) can be defined. The weight given
by (16) represents the linear rate at which D(I¥) increases with an infinitesimal increase
of the flow of open chain v, class t at site k. We also define Isity,, & o if task ¢ of chain
v jobs is not allowed to execute at site k.

We outline a flow deviation algorithm for load balancing (FDLB) in a distributed
computer network of the type described in section 2. The algorithm is similar to the one

described in [KLEI76).

We define the assignment tri-dimensional matrix 4 where element Agy, gives the per-
centage of jobs of type v, task ¢, assigned to site k. Similarly we define the network matrix
F where clement F,, gives the percentage of jobs of type v, task ¢, assigned to a foreign
site, i.e., Fo, = 3t thome site of v Akv, We assume that we have an initial feasible assignment,
i.e., initial values for 4 so that p3 < 1 for all service centers in the network which are not
IS centers. »

FDLB algorithm !:

Step 1: let n = 0 and let A be an initial feasible assignment. Identify all possible
execution paths for jobs of a particular chain (see Figure 4 for an example).

Step 2: Compute weights l;,, using MVA and equations (11) and (12) for computing vari-
ances and covariances of queue lengths. Compute the weights of each site (Isity,,)
and the weight of the network (Inet,,) using equation (16).

}The description of the algorithm follows similar descriptions given in [KLEI76]. However, in the imple-
mentation, we deviate the flow for one chain at a time, since it was observed that this equivalent approach
tends to reduce the overall number of itérations.

14



Step 3: Foreach cfass of open chain jobs, find the cheapest way to execute the job, i.e., find
the matrix A". If each job in the system has only one task, then this computatlon 1s
trivial. If jobs have multiple tasks, any known optxmum path algorithm can be used
(e.g., see [KLEI76]). Find F as defined above.

Step 4: Compute the incremental delay 5™ and b* for the assignment A(™ and cheapest
assignment 4°, respectively:

-

= 3 [z Isite,, X Af1) + Inety, x F§" ’]
k

v

™ — > [Z Isitry, X A}, + Inet, x FJ‘]

v k

Step 5: Stopping rule:
if |b(™ — b*| < ¢, where € > 0 is a properly chosen tolerance, stop. Otherwise go to
Step 6.

Step 6: Find the value o in the range 0 < a < 1 such that the assignment A = 1-
) a)Al™ 4+ a 4* minimizes D(N).
Let Al»+) = 4,

Step 7: Let n =n +1 and go to Step 2

In order to find a feasible initial assignment or, more generally, to determine whether
a feasible solution exists we can apply one of the several methods already developed for
routing in open networks [KLEI76).

The FDLB algorithm finds the global minimum for D(N') due to the convexity of D(N)
with respect to the open chain flows and the convexity of the space of the feasible flows.
The convexity of D(.\V') can be deduced from the fact that the function D(V) in (4) is a sum
of convex functions over the open chain flows. An intuitive (but not rigorous) explanation
for that can be given as follows: we observe that equation (4) can be decomposed into
a weighted sum of the number of open chain jobs in a site plus the response time of the
closed chain jobs in that site. We can verify that both the number of open chain jobs in a
site and the response time of closed chain jobs in that site are increasing without bound
(and with a non-decrensing rate) as a function of the open chain flow at that site. Thus,
the delay of cach site is a convex increasing function over the open chain flows, and the
weighted sum of these delays is also convex. Convergence is guaranteed by the fact that
each iteration provides an improvement in the objective function.

The amount of computation required by eachiteration of the FDLB algorithm is only on
the order of the computation of the “lowest cost path” in Step 3, and on the order of the cost
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of the MVA algorithm for site k V k, since the closed chains at each site are independent-,
-plus the cost of solving the queueing model of the communication network. Note that in

Step 6 the MVA algorithm is repeated several times, and the MVA computation becomes
the dominant term.
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4 Applications.

In this section we present two applications which follow directly from the theory developed
in previous sections, i.e., jobs which can execute at more than one site are independent of
the local load and are composed by one or more tasks. In the next section we extend the
theory to account for jobs which are spawned from jobs representing the local load.

In the first application we apply the FDLB algorithm to a distributed computer system
consisting of 3 sites linked by a slotted ring, as illustrated in Figure 5. For the slotted ring,
we used the closed chain model proposed by Bux [BUXS81].

SITE 1 — SITE 2 —
cl ' c2
= CPU Disk
@) 0]
:}__—'T-B'O: Disks E} — BO__, I
(o] (o]
CPU ]O
Terminals I Terminals
o
SITE3 —
Disks [.——01 /
@, |
CPU IK )
. _T}OJ- Communication
| Network
(slotted ring)
h@;
03]

Figure 5: Application: a distributed computer system with 3 sites.

There are 2 classes of open chain jobs ol and 03 arriving at sites 1 and 3, respectively.
Class ol can request service from any of the 3 sites, but class 03 can only request service
from sites 2 and/or 3. Sites 1 and 2 are running local application programs, modeled as
closed chains c1 and ¢2 respectively. Table 1 shows the visit ratios and service requirements
for each class of job at cach service centerin the network, as well as other input paramecters.

17



JOB SITE CENTER | TYPE| VISIT SERVICE
CLASS RATIOS | TIMES (msec)
. ol 1 CPU PS 5 30
6 jobs/sec disk(1 or 2) | FCFS 2 50
2 CPU PS 5 21
disk FCFS 4 15
3 CPU PS 5 30
disk(1 ... 4) | FCFS | ~ 1 140
com. net. PS 10
o3 1 CPU PS 5 50
3.5 jobs/sec (*) disk(1 or 2) | FCFS 2 50
CPU PS 5 35
disk FCFS 4 15
3 CPU PS 5 50
' disk(1 ... 4) | FCFS 1 140
com. net. PS 10
el 1 terminals IS 1 4000
5 jobs CPU PS 10 90
i disk(1 or 2) | FCFS 5 50
c2 2 termuinals IS 1 3000
X jobs CPU PS 10 40
(variable) disk(1 or 2) | FCFS 10 15
il (*) Toillustrate the case where class 03 is not restricted to run at site 1. -

Table 1: Parameters for the first application.

As an illustration, let us consider the behavior of jobs ol and ¢l at site number 1. A
job of class ol spends an average of 30 msec at the CPU before issuing an I/O request.
The service time of each I/O device is 50 msec. On the average, a job of class ol visits the
CPU 5 times and the I/O devices 4 times before completion. On the other hand, a job of
class c1 spends an average of 90 msec at the CPU and 50 msec at each I/O device, and it
visits the CPU and I/O devices 10 times before a visit to the terminals.

Figure 6 shows the percentage of foreign jobs processed at site 2 (after balancing the
load) when the number of jobs at site 2 representing the local load (N,) varies from 0 to
20. When N, = 0, site 2 processes 80% of the jobs of class o1 and 36% of the jobs of
class 03. When N, = 20, site 2 processes only 37% and 4% of the jobs of class o1 and
03, respectively. It is interesting to mention that when jobs of class 03 are allowed to be
processed at site 1, and load balancing is applied, 22% of these jobs are processed at site
1 and 15% at site 2 (when N; = 0). Furthermore, all jobs of class o1 are sent to site 2.
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Figure 6: Percentage of foreign jobs processed at site 2.

Figure 7 shows the effect of load balancing on overall delay as a function of N,. The
effect is illustrated by plotting the relative difference between-the delays when load bal-
ancing is not used and when it is used 2. For instance, when N, = 0 and load balancing is
used the average overall delay is 0.95 sec in contrast with 9.2 sec when load balancing is
not used (the relative difference is 870% in this case).

The second application presents results for a distributed system model in which one
class of jobs has multiple tasks which can execute in different sites. The model is similar
to the one considered for the previous application. We assume that there is only one class
of open chain jobs. Jobs in this class have the same parameters as jobs from class o; in the
previous application. However, each job from this class is formed by two tasks which have
to be executed in sequence before completion of this job. We assume that the two tasks
have identical computational requirements, but the first task (t;) can only be executed in
sites 1 or 2 and the second task (t,) can only be executed in sites 2 or 3. The possible
paths of execution for chain o, jobs is illustrated in Figure 4.

Table 2 shows the optimum load- balancing strategy for the network described above
for three cases: when the number of jobs representing the local load of site 2 (N2) is equal
to 1 and the time to transfer a task over the communication network is assumed to be 10
msec; when N} is equal to 20; and when the transfer time over the communication network

2We define the relative difference between delays as: (Delay without load balancing - Delay with load
balancing) / Delay with load balancing).
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Figure 7: Relative difference (%) of the overall delays.

is increased to 160 msec, for N, equal to 1. As we can observe from the results, in the
first case site 1 processes 33.9% of tasks t;, since its local load is considerably large. Site
2 processes the majority of tasks ¢; and almost half of tasks t;. As the local load of site
2 increases to 20 jobs, we see a decrease of the percentage of tasks processed at this site.
Now the majority of tasks t; is processed at site 1 and the ma.jority of tasks ¢, is processed
at site 3. In the third case, when the communication delay increases significantly (N is
equal to 1 in this case), we observe that tasks are migrated so that the communication
network stays with the minimum utilization possible as we can observe by the value of the
throughput in the communication network, which is equal to the value of the thronghput
of chain o, jobs. Finally, it is interesting to observe again the importance of load balancing,
For the first case above, (N; equal to 1 and the communication delay equal to 10 msec), if
all tasks ¢, are executed in the first site and tasks ¢, are split equally between sites 2 and
3, the overall delay is 12.6 sec, a 556% increase in relation to the same network when load
balancing is used.



Percentage of tasks of jobs commun. net. | overall
from class ol processed at a site | throughput delay
‘ tasks | site 1 site 2 site 3 (jobs/sec) (sec)
c2: 1 job t; 33.9 66.1 - 7.08 1.92
time to transfer | i, 48.2 51.8
a task: 10 msec
c2: 20 jobs 13} 67.3 32.7 6.96 5.95
time to transfer | ¢, 17.2 82.8
a task: 10 msec
c2: 1 job t 42.4 57.6 6.00 8.75
time to transfer | ¢, 57.6 42.4

a task: 160 msec

Table 2: Optimal load balancing for the second application.




5 Jobs with Spawned Tasks.

In the previous section we considered jobs with single and/or multiple tasks which execute
in sequence. These jobs were assumed to be generated by a large number of terminals and
were independent of the closed chain jobs representing the “local load”. In this section we
consider jobs which can spawn other jobs consisting of one or more tasks. These tasks then
execute in sequence and do not require synchronization at"any point during execution. Ina
distributed environment similar to the one portrayed in Figure 1, these spawned tasks may
represent background load generated by interactive users. As an example, in our current
LOCUS configuration some interactive user generated batch jobs (e.g., compilation, troff
and others) are routed to one of the “server nodes” dedicated to this type of background
processing. Spawned jobs in queueing networks, generated by interactive users, have been
approximately modeled by Heildelberger and Trivedi [HEID82] as open Poisson sources
with arrival rate dependent on the (closed chain) rate of the “parent” job. Comparison with
simulation shows that their approach is sufficiently accurate for load balance optimization
(errors in server utilization are-within a few percent for typical cases).

In this section we combine the basic approach of [HEID82] with the method developed
in previous sections to calculate the optimum (i.e., minimum delay) routing strategy for
spawned jobs. The assumptions are the same as in previous sections. We define the overall

delay D(N) as follows:

KC KC
Wt AN PDl(N) + wF Y AY(NW)DE(N) |
D(N) = —=1 = = | (17)

2 AN [w® + w* P
k=1

where superscript s indicates a spawned job. P, is defined as the probability that a job from
closed chain k spawns a job, after visiting a designated service center (say, for instance,
the node representing the terminals for chain k in our distributed system model). v(k)
is the subscript representing a job spawned by a closed chain k job. D§(N;:) represents
_the response time of closed chain k jobs and D;(k)(ﬁ ) the response time for jobs spawned
by closed chain k jobs. AN¢(N,) is the nominal throughput of closed chain k jobs when
P, =0VkE, e, no jobs are spawned. w® and w® are arbitrary constant weighting factors
for the spawned jobs and interactive jobs, respectively. As explained in section 2, we use
“the nominal throughputs as waiting factors to avoid unfairness to the closed chain jobs.

We assume that the interactive jobs (modeled as closed chains) can run only in their
local sites. This assumption could actually be easily relaxed without change in the solution
approach. The spawned tasks, on the other hand, can be reassigned to a subset of the
sites in the nctwork (i.e., the “server sites”). Therefore, similarly to the previous section,

22



the model is reduced to K° independent mixed network models, each which one or more
. closed chains. For notational convenience we assume that the behavior of interactive jobs
in a site can be represented by a single closed chain, and that spawned jobs are composed
of a single task. Furthermore, we assume w* = w® = 1. Applying Little’s result and using
equation (6), we obtain:

J e c J p
_ P [L+Z5ND) | Py
Diyy(N) = :
. .,(k)( ) ; 1—p! AL(NL) Py Z; AL(Ne) Py
. J#1s i=1s
I @y J
= 2. TJ—~[1 + Li(N] + 2 afum (18)
.J'=l - pj ?':l
j#1s J=Is

since pl, ) = /\k(N k) Praj i) (Also recall that k is the index of the single closed cham that
visits center j.) Substntutmg (18) in (17) and exchanging summations:

' + Lc(Nk) Nk c
. . ; 1-— T + g T + Z A (Nk) [I\E(Nk) - term,k]
D(N) - 7S ;=xs . (19)
S AN+ Py
- T k=1

where Y; = Y15, ok and Yo = AN(NL)P, kO (k)

The independent variables in our optimization problem are the {%,,,}. Therefore,
since
aTj _ 1 8‘1‘_,- _ ij(k)
utry Asry 995y Adu(r)

85 ..
s — +ju(k)
otk ’

and from Theorem 1,

b
a’\Jv(k) (1 - P;)

OLy(Ne)  TjyuyVi(Ne)

We finally have:

| S J£TS
8 8 Ne
8D(N) Moy (1 + £5) Z AN[L + Py 9
X : Yo (20)
Jo(k) JU( ) j=18
pJ*(’f)"Jv(k) Z A+ Py




where

v T;
A = [TJ("’+1 ’,]
pJu(k) —pJ

-J(Nk)

S#J
i#IS

and

8(5)AY c(Nk)

8 = T

N, [L°(Nk) — Lj(Ne — 1))

Equation (20) is the key to the flow deviation method. We associate a length or weight
for a spawned task v(l) to each site, given by:

aer 8D(N
I.sztek ) Z Ju(l) 6,\( )
jek Ju(l)

and, similarly, Inet,(!) is defined for the communication network.

The flow deviation algorithm for load balancing spawned tasks remains basically the
same as outlined in previous section. In the initialization step (Step 1) the open chain rates
are initialized to the nominal throughput of correspondent closed chain jobs. Furthermore,
after deviating the flow for an open chain v(k), the throughput of the open chain v(k) is
updated to A}y = ALP:. At the end of the algonthm AY(x) converges to A V k in the
network.

Application:

As an application of the approach, consider the distributed system model illustrated
in Figure 5. However, in this example, the open chains represent tasks which are spawned
by clcsed chain jobs. Site 3 is reserved as a “server” site (similarly to the scheme used at
UCLA-LOCUS). Therefore, no interactive users can login at that site and only batch tasks
originating at other sites are allowed to run at site 3. Site 3 is assumed to have the same
CPU characteristics as site 1. We assume that interactive jobs which run at site 1 and
2 spawns batch tasks with probability 0.25 and 0.1, respectively. Batch tasks generated
from site 1 and 2 have the requirements shown in Table 3. '

Initially we assume that batch tasks can run in any of the sites. Figure 8 shows the
percentage of batch tasks spawned from interactive jobs of site 1, which run on site 2
(squares) and 3 (dots), after balancing the load, as a function of the number of interactive
jobs of site 2 (N,). From the figure we can observe that if the number of interactive users
running at site 2 is less or equal than 5 then site 2 is the best site to run batch tasks
spawned from site 1. When the number of interactive users at site 2 increases beyond 5,
then we see that a percentage of batch tasks from site 1 should also run on sites 1 or 3,
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TASK SITE CENTER | TYPE | VISIT SERVICE -
RATIOS | TIMES (msec)
vl 1 CPU PS 5 300
disk(1 or 2) | FCFS 2 50
2 CPU PS 5 150
disk FCFS 4 15
3 CPU PS 5 300
disk(1 ... 4) | FCFS 1 140
com. net. PS 10
v3 1 CPU PS 5 500
disk(1 or 2) | FCFS 2 50
2 CPU PS 5 250
disk FCFS 4 15
3 CPU PS 5 500
disk(1 ... 4) | FCFS 1 140
com. net. PS | 10

Table 3: Computational requirements of spawned tasks.

for achieving minimal delay. When the number of interactive users at site 2 reaches 14, no
tasks spawned from site 1 should run on site 2. Similarly, Figure 9 shows the percentage
of batch tasks spawned from interactive jobs of site 2, which run on site 2 (squares) and
3 (dots), after balancing the load, as a function of the number of interactive jobs of site
2 (N;). From the figure we can observe that if the number of interactive users running
at site 2 1s equal to 1 then site 2 is the best site to run batch tasks spawned from this
site 2 interactive user. As the number of interactive users at site 2 increases, we see that
a percentage of batch tasks from site 2 should also run on site 3, for achieving minimal
delay. When the number of interactive users at site 2 reaches 5, all tasks spawned from
site 2 should run on site 3.

Figure 10 compares the overall delay when batch tasks are allowed to run in any site
and when the tasks are restricted to run only on the “server” site. The comparison is
illustrated by plotting the relative difference between the delays when load balancing is
not used and when it is used. It can be easily observed that restricting batch tasks to server
sites may greatly increase the overall delay. As we sce from Figure 10, as the number of
interactive users increases balancing the load become increasingly important for the overall
delay (relative difference increases). The slight decrease in relative difference when N, is
increased beyond 15 is explained by the fact that after this point the network is near
saturation even when batch load is balanced.
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6 Conclusions.

We have presented an efficient method for static load balancing in distributed systems.
The main advantage of this method over previous schemes is its applicability to very
general models. Namely, models with multiple classes, site constraints, job spawning and
multitasking can be easily handled. The success of the method rests on the following key
properties/results:

o the queueing network model is of product form type, or can be reasonably approxi-
mated as such.

ea computatxona]h efficie it method for finding “improving paths” was developed and
‘implemented in the steepest descent procedure.

o thelocal minimum is a global minimum (i.e., the objective function is convex).

The numerical results have demonstrated the efficacy of the method and have indicated
some of its potential uses. Typical applications include comparisons of the different systems
and different resource allocation policies (e.g., how many servers should be installed in the
system, or; which site constraints should be imposed on different classes, etc), sensitivity

studies (e.g., impact of background load on interactive job de]ays) and, more generally,
capacity planning.

A possible limitation of our model in predicting the performance of a system yet to
be built is in fact that the model is a static load balancing model, while actual systems
apply dynamic lcad balancing, where the job/task relocation decision is based on a dy-
namically changing system status rather than on predefined fraction allocations. However,
dynamic models are very difficult to analyze (in the limit one must use simulation) and
very cumbersome to use in an interactive design process. Thus, static models, albeit inac-
curate, are the only practical approach to capacity planning and design. This is not unlike
the situation found in wide area packet switched networks, where optimal, steady state
routing schemes are used for network topology design (while actual networks are driven
by dynamic routing schemes). For packet networks, good agreement was found between
static (multipath) and dynamic routing performance [KLEI76]. An important issue for
future investigation is the consistency between static and dynamic load balance policies in
distributed systems. Another promising direction for further research is the combination
of optimal (static) and heuristic (dynamic) rules in a hybrid load management scheme.

The method presented here can be easily extended to account for several modifications

in the basic model. In particular, the performance measure can be modified to minimize
delays of a subset of user classes. Alternatively, the delay mecasure may be replaced by a
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proper fairness measure [GERL85], where the intent is to “equalize” closed chain through-
puts by distributing open chain classes among the various sites. Furthermore, the use of
multiple classes, as done for modeling multitasking, can also be used to model tasks which
may temporarily suspend execution at one site, start a remote process at another site (e.g.,
remote procedure call, request of a page/file transfer. etc) and then resume execution once
the remote process has terminated. Finally we note that complex interconnection networks
can also be handled, assuming that they satisfy product form requirements.
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Appendix.

Proof of Theorem 1:

In a prbduct form mixed queueing network model with SSFR and IS service centers,
the equilibrium state probability for a site & is given by [LAVE83] (we are assuming single
closed chain network for simplicity):

PiC) = oo 11 [12] T B0 1)
AT Gi(Ni) - P =1 )

i#IS e=IS
where centers which belong to site k are labeled I,...,L and G{(N,) is the normalization
constant of the queueing network model representing site k, i.e., G{(N) = Zian=N, PE(T),
= (nz,...,n[,), lﬁkl =n+...+ng.

Taking the (partial) derivative of G"(Nk) with respect to p';,

BGE(Ni) _ ( ) (a .k)"' :
T — In:.IX:N.. n, {I . II itls (2
Gk(Nk) Z n; Pe(ik) (23)
pJ |8 [=Nx

The summation on the right hand side of (23) is by definition the average queue length of
closed chain jobs at service center j, thercfore:
OGi(Ne) _ (Nk)

Op? 1-

LC(N) (24) .

To prove equation (9) we Take the derivative of (22) again with respect to p?,

FGUNe) . GiNe) . G(Ny) 2 pes
a(l’.‘;)2 (1- P‘;)2 15,?:5. JP‘( ) ¥ (1 - .‘7’)2 |ﬁ,JX-::N, JPk( k)
5—"_‘% (L5Ve) + S3(V) (29)

where S§(N\i) is the second moment of qucue lengths of the closed chain jobs at center j
of site k.

The second derivative of Gi(Ni) with respect to p? can also be obtained by taking the
derivative of equation (24) with respect to p3. We obtain:

OGNy _
a(p?)*
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1 1 OGY(N
= TGN L) + o 2T

c 1 ey 9 e
LN + 1= 7 k(Nk)gp—;Lj(Nk)

(1 -p3) ’; 0p3
= %%%(_L;(Nm (Z5V0) + (1 - 2 ai;LﬂNk)) (26)

Now, equating (25) and (26) and using the definition_of the variance of queue lengths
of closed chain jobs at center j, (9) is obtained. Equation (10) can be proved in a similar
way and we omit the details for conciseness. O :

Proof of Corollary 1:

Equations (11) and (12) are obtained from MVA equations and Theorem 1. We prove
the result for single closed chain networks, but the same approach can be used for multiple
chain networks.

The well known MVA equation which relates the mean queue lengths of closed chain
_ Jobs at a service center as a function of queue lengths of closed chain Jobs with one less
~ closed chain job in the network becomes, for mixed networks:

- j’pgu + Ly(N —1)] (27)

| L{N) = A(N)

where the superscript ¢ was dropped to simplify the notation and j is a SSFR service
- center.

In order to prove equation (11) we take the derivative on both sides of equation (27)
with respect to p2

- L = —NN+LAN —-1
' a; a; OLy{N -1)
FAMN)—L—[1 +L(N -1)] + M(N)—2 1 28

Now, substituting (9) and (13) in (27), equation (11) is obtained. Using similar steps,
the recursive expression for the covariance Vii(N') (equation (12)) can be obtained, and we
omit the details for conciseness. O

Proof of Theorem 2

In order to find the derivatives of the closed chain throughput of site k (Ae(NVy)) with
respect to the open chain utilization at center j in k (p9), we express Af(Ny) in terms of
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the normalization constant, [LAVES3]:

Gi(N: - 1)

KN = Gy

Now, takiﬂg the derivative of (29) with respect to p? and using (24),

MNi(Ne) _ 9GE(Ne—1)/8p;  Gi(Nx —1)8G5(Ni)
8p3 Gi(Ne) (Gi(N))?  0p3
§(Ne —1) LNk = 1) G§(Ni — 1) LY N)
Gi(Ne)  1—p2 Gi(Nx) 1-p°
LAY .
= 5 (zv 1) - 5w
2 .

where service center j is assumed to be in the same site of closed chain k. O
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