
A NOTE ON THE COMPUTATIONAL COST

OF THE LINEARIZER ALGORITHM FOR

QUEUEING NETWORKS

"

e:.DE SOUZA E SILVA

R.R.MUNTZ *

NCE-04/88

Abr11/88

Unlversldade Federal do R1O de Janelro

Núcleo de Co~puta~ão Eletrônlca

Cal)(a Postal 2324

20001- R1O de JanelrO -RJ

BRASIL

* UCLA Comput er Sc lence Depart nlent

~sta pesqulsa contou com O apolo flnancelrO da NSF-USA INT-8514377 e

CNPq.
~ste trabalho fOl publlCado como relatórlO tecnlco do Departamento oe

Clêncla da Computa~ão da UCLA CSD-87002~, JunhO 1987.

~ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
~ NÚCLEO DE CDMPUTAÇAo ELETAONICA

Resumo

Linearizer é um dos mais conhecidos algoritmos de aproximação para se obter soluções
numéricas para redes de fi1as con1 solução em forma de produto. Na explanação original de
Linearizer, o custo computacional foi mostrado ser de O(MK3) para um mode1o com M

filas e K classes de jobs. Nesta nota mostramos que, con1 algumas manipulações algébricas
simples, Linearizer pode ser modificado de tal maneira que o custo con1putacional seja

reduzido para O(MK2).

AbBtract

Linearizer ia one of the best known approximation algorithms for obtaining numeric
solutions for product form queueing networks. In the original exposition of Linearizer, the
computational cost was stated to be O(Jvf K3) for a model with M queues a.nd K job classes.
We show in this note tha.t with some straight forward algebraic ma.nipulation Linea.rizer

can be modified to require only O(MK2) computatjonal cost.

~ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
~ NúcLeo De COMPUTAÇÃO eLeTRONlcA

1 Introduction.

The Linearizer algorithm is one o{ the best kno~n approximation teclmiques {or closed
product form queueing network models. The algorithm ,vas proposed b)' Chandy and
Neuse [CHAN82] in 1982. In that paper the authors indicate that the computational cost

'- 0{ t.he algorit.hm is O(M K3) where M is the number 9{ centcrs in t.he net,vork and K is the
number. Qf closed chajns. However, the computational cost of Linearizer can be reduced to
O(M 1{2). This reduction cost was mentioned in a footnote of [DeSO86], and was obt(uned
after a small modification to the origina1 algorithm. Due to the importance of Linearizer
we íeel that these results needed fuller exposition and dissemination.

\
In the interest of brevity we will assume familiarity with the Linearizer algorithm.

We rely on [CHAN82] to provide motivation and requisite background. We feel t}lls is
appropriate since we are presenting a small modification to the origina1 aJgorithm "ilnd
wish to avoid a lengthy presentation. However, to make this note self contained, ,ve ,vill
briefly describe the algorithm and its equations which will be.referred throughout the note.
In section 2 ,ve summarize the Linearizer a1gorithill. In section 3 we emphasize why its
cost ,vas O(M K3) and show how the reduction in cost can be achieved. We present our
conclusions in section 4.

2 The Linearizer Algorithm.

The discussion in this section para11els the one presented in [CHAN82] and is introduced
here for completeness. The íollowing notation will be used throughout the rest of the note
and i8 sununarized below. (This notation is the same one used in [CHAN82]).

M = number of service centers.
K = tota1 number of chains in the network.
Nk = number of customers in chain k.
N = population vector = (N1,...,NK).
m(k) = a specified sen.ice center '\;sited by chain k.
Vmk = visit ratio of a chain k customer to center m, sca1ed so that Vm(k)k = 1.
Smk = ' mean sen'ice time of a chain k customer at center m.
Ymk = VmkYk = mean throughput of chajn k customer at.center m, where Yk =

}I'm(k)k.
Lmk = mean number oí customers of chajn k at center m.
Lm = Ef=l Lmk.

1

",.mk = mean wajting time (queueing time + service time) of a chajn k customer
at center m.

4 = K -dimensiona1 vector whose k-th element is one and whose other ele-

ments are zero.

The majn equation of the mean value analysis algorithm [REIS80]1 equation (1) belo,\",

Wmk(N) = 8mk(1 + Lm(N -êk» (1)

-
requires a solution for a1l populations from (O, ...,o) up to N. Statistics for a network

\ "ith popula~on N are calculated recursively from statistics for the same nct work with
population N -êk, for all va1ues of k, 1 ::; k ::; K. Linearizer "breaks" the recursion by

--
estimating, heuristicall)., statistics for population N -4 from statistics for population N ,

in the follov.ing way:

-
Define Fmk(N) as the Í1.action of chajn k jobs at service cen.ter m ,vhen the population

is N ,

Fmk(N) = ~ (2)
Nk

Define Dmkj(N) as the difference in the fraction of chain k jobs at service center m,
when we have full pop1.uation and the same fraction when we have full population in all

the chains except chain j where there is one less job.

Dmkj(N) = Fmk(N -ê;) -Fmk(N) (3)

From (2) and (3) it is easy to see that the following identity is true:

Lmk(N- é;) = (N -ê;)k(Fmk(N) + Dmkj(N» (4)

where (N -ê;)k is the population of chain k when Dne chajn j job is removed from the

network.

-.
In order to compute Lmk(N) we use equations (4), (1) and Little's result. However, to

-
solve (4) we need the va1ues of Dmkj(N). As we will indicate later, Linearizer estimates

-
the values of Dmkj(N), by invoking successively the following Core a1gorithm:

Core Algorithm

Step 1 hlltia1izat.ion: get estimate va1ues íor Dmkj(N) and Lmk(.lV) V m, k, j.

2

Step 2 From equations (2) and (4) compute new estimates Lmk(N -~), V m, k, j.

Step 3 Use the va1ues of Lmk(N -~) computed above to compute Wmk(N) from (1), New
estimates of Lmk(N) can be easily obtained using Little's result (i.e., by applying the
other two MVA equations).

Step 4 If the bjggest difference between the new and old estjmates of Lmk(N) is less than'- a specjfied tolerance, then stop. Otherwise go tõ Step 2.

~
The Core a1gorithm above assumes the va1ues of Dmkj(N) are known. Linearizer cstj-

" mates these va1ues by invoking the Core a1gorithm for population N and all populations

N- ~ Vj~ and assuming that Dmkj(.N -e,) = Dmkj(jJ). In summary ,ve have:

Linearizer A)gorithrn:

Step 1. Initialization: assume initia1 va1ues for Lmk(N), Lmk(N -~) and assume Dmkj(N) =
o. Set I = 1.

-
Step 2. Apply the Core a1gorithm for population N. For that, use the most recent va1ues

~ -
of Lmk(!\r) and Dmkj(N).

Step 3. If I = 3, then stop. Otherwise continue.

Step 4. Call the Core a1gorithm for all populations N- ~ , V j. U se the most recent va1ues
of Lmk(N -~) and Dmkj(N).

--
Step 5. From equations (2) and (3) compute new estimates of Fmk(N), Fmk(N -ê;) and

-

Dmkj(N).

Step 6. I = I + 1. Go to Step 2.

3 Reduction of Computational Cost.

.
The Linearizer, a1gorithm as described in [CHAN82], requires K + 1 calls to the Core
Algorithm for each iteration through the top level steps (steps 2 through 6 above). The
computation:::J cost of 0(MI(3) comes from an assumed cost of O(MK2) for each call to
the Core Algorithm. (In fact 0(..'11(2) is the cost of a single Core iteration but tcsts have
sho,vn that the number of iterations is approximately a constant jndependent of M and I.;: .
Morc dctails concerning the numbcr of iterat.ions are presented in [CHAN82].) It is casy

3

to see th8.t tlus indeed is the cost of each call to the Core a1gorithm if it is implemented as

described. We show bclow that the cost oí each call to the Core a1gorithm (more preciscly,
the cost of cach Core iter8.tion) can be reduced to O(M K) by some algebrajc manipulations
and simple restructuring of the algorithm. We emphasize that thcse manipulations \vill
not change the aJgorithm in any material sense and the final outputs of the nc\v RJgorithrn
,,;ll be identical to the original Linearizer algorit,hm. Thus all of the empil-ic~tl e,idcuce on

...the accuracy of Linearizer and comparisons with other: approximations still hold with the

new version of the algorithm.

The new version of the Core algorithm \vhich \ve propose replaces Step 2 of thc ori1!:Ína1
--oalgorithm (which req'ures computing Lmk(M -e;) (Vm, k, j, M = N or M = N- ec)

\ \vith comput.ing Lm(M -e;) (Vm, j) directly. Note that the Lmk(M -e;) are not actua11y
-

required in the Core algorithm. On1y the Lm(M -4) are actually used in Step 3 of the

Core algorithm, to compute Wmk(.l\1).

We proceed then to develop an expression for Lm (M -4). :First assume M = jJ .From

(2) and (4), [-]Lmk(N) -
Lmk(N- ej) = (N -ej)k Nk + Dmkj(N) (5)

But then,

K
Lm(jJ -e;) = E Lmk(jJ -e;)

k=l
K

[-]--Lmk(N) ...
= E (N -ej)k ~ + Dmkj(N) (6)

To simplify the sum in the above equation ".e separate it into t\VO parts: k :/: j and k = j .

We also note that, -
(N- e;)k = Nk k :/: j

and

-(N- e;)k = Nk -1 k = j

We then obtain,

Lm(N- 4) = ~ Nk [~ .: Dm.;(N)] + (Nj -1) [~ + Dm;;(N)] (7)

4

Simple aJb('braic manipulation results in the follõwing form of the ab9ve equation.

--Lmj(jJ) , --
()Lm(N- e;) = Lm(N) -N. + D mj(N) -Dmjj(N) 8

)

-K -
",here D'mj(~\') = EJ..=1 NkDmkj(N).

Using the salne deveJopment as above when M = N -ec, we have:

---Lmj(M) ,) .Lm(M- ej) = Lnl(M) --+D mj(]1;I) -Dmjj(M) -Dmcj(M) (M)j > O (9, (M)j .

Assun1ing that the va1ues íor the D'mj(M) 'v' m, j , M = jJ and M = N -e"c are
a,ajlable a priori, then the cost of the Core a1gorithm is easily seen to be O(M K).

-
No,v consider the computation oí the D'mj(M) 'v'.m, j in the context of the Linearizer

aJgorithm. In each top leveI iteration of Linearizer, the Core a1gorithm is ca11ed once for
population .iV = .l\T and for each population M = (N -e"c), c = 1, 2, ..., K. Ií, for each
oí these caJls to the Core a1gorithm, it was required to recompute the D'mj(Popu1ation
vector) then each Core a1gorithm cal1 would indeed.cost O(M K2). However, in Linearizer

Dmkj(N) = Dmkj(N- ~) 'v' m, k, j, c (10)

and thus,
D'mj(fJ) = D'mj(N- ~) 'v' m, k, j, c (11)

Therefore \,e can pre-compute D'mj(N) 'v' m, j at a cost of O(M K2) and use these va1ues
íor each of the K + 1 calls to the Core aJgorithm. It is simPle to see that the cost of
Linearizer is then O(Àl K2).

In summary, the íollowing modifications are made to the orlgina1 Linearizer a1gorithm.

...
1. In Steps 1 and 5 of the Linearizer aJgorithm, compute D'mj(N) 'v' m, j prior to a1l

other co1llputations and store for use in the ca1ls to the Core a1go1ithm during Step
2 and St('p 3. ,

...
2. Step 2 ()r thc Core aJgorithm is replaccd b). a computat.ion of Lm(M -e;) 'v' m,j

using (S) if]1;1 = N or (9) ií M = fJ -e"c "ith the precomputed va1ues íor D'mj(N) .

(= D'mjt..V- e,» and Dmkj(N) (= Dmkj(N.:.- ~)).

5

4 Conclusion.

We have shown ho,v Linearizer can be reorganized to reduce the computational cost to
O(M K2). This is accomplished without altering the algorithm in any way that affects the
results and thus prescr\.es the empirical e,rjdence of the accuracy of the method.

It is tempting to consider the reduction of the space requirements of the Linearizer to
O(M I() (from O(.L\;f K2» since we need only values for D'mj(N) and Dmjj(N). Ho"ever,
each call to the Core a1gorithm for population (N -éi) requires the previous estimates for

-.Lmj(N -é,). Thus it does not appear possible to reduce the order of magnitude space
" requirements for Linearizer "ithout surge.ry that would materially alter the a1gorithm.

Acknowledgment

We thank Glenn Mackintosh for his careful reading and comments on an earlier version
of this note.

,

6

Referencés

[REIS80) M. Reiser & S. S. La,'enberg, "Mean-,alue Analysis o:f C1osed Multichain
Queueing Net,vorks", JACM, Vol. 27, no.2, pp. 313-322, April1980.

[CHAN82] K.M. Chandy & D. Neuse, "Lincarizer: A Heuristic Algorithm for Qucuci1lg
Network Models of Computing Systems", CACM, Vol. 25, no.2, pp. 126-134,
February 1982.

[DeSO86) E. de Souza e Silva, S. S. Lavenberg & R. R. Muntz, "A Clustering Approxima-
tion Technique for Queueing Net,vork Models with a Large Number of ChaiIlS",

\ IEEE Transactions on Comp'Ute:rs,Vol. C-35, no.5, May 1986.

7

