~ A NOTE ON THE CUMPUTATIONAL COST
' OF THE LINEARIZER ALGORITHM FOR
QUEUEING NETWORKS

£.DE 80UZA E 8ILVA
R.R.MUNTZ
NCE-04/868

Abril/88

Universidade Federal do Rio de Jdaneiro
Nicleo de Computac3o Eletronica

Caixa Postal 2324

20001 - Rio de Janeiro - RJ

BRASIL

UCLA Computer Science Department

tsta pesquisa contou com o apolo financeiro da NSF-USA INT-8514377 e
CNPq. .

Este trabalho fo1 publicado como relatorio tecnico do Departamento 0Oe
Ciéncia da Computacio da UCLA CSD-870025, Junho 1987,

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
2 NUCLEO DE COMPUTAGAO ELETRONICA

Resumo

Linearizer & um dos mais conhecidos algoritmos de aproximagio para se obter solugdes
numéricas para redes de filas com solugio em forma de produto. Na explanagao original de
Linearizer, o custo computacional foi mostrado ser de O(MK?) para um modelo com M
filas e K classes de jobs. Nesta nota mostramos que, com algumas manipulagdes algébricas
simples, Linearizer pode ser modificado de tal maneira que o custo computacional seja
reduzido para O(MK?).

Abstract

Linearizer is one of the best known approximation algorithms for obtaining numeric
solutions for product form queueing networks. In the original exposition of Linearizer, the
computational cost was stated to be 0(M K3) for a model with M queues and K job classes.
We show in this note that with some straight forward algebraic manipulation Linearizer
¢an be modified to require only 0{ M K?) computational cost.

a UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
s NUCLEO DE COMPUTAGAO ELETRONICA

1 Introduction.

The Linearizer algorithm is one of the best known approximation techniques for closed
product form queueing network models. The algorithm was proposed by Chandy and
Neuse [CHANGS2] in 1982. In that paper the authors indicate that the computational cost
of the algorithm is O(M K?) where M is the number of centers in the network and K is the
number of closed chains. However, the computational cost of Linearizer can be reduced to
O(M K?). This reduction cost was mentioned in a footnote of [DeSO86}, and was obtained
after a small modification to the original algorithm. Due to the importance of Linearizer
we feel that these results nceded fuller exposition and dissemination.

In the interest of brevity we will assume familiarity with the Linearizer algorithm.
We rely on [CHANS2] to provide motivation and requisite background. We feel this is
appropriate since we are presenting a small modification to the original algorithm and
wish to avoid a lengthy presentation. However, to make this note self contained, we will
briefly describe the algorithm and its equations which will be referred throughout the note.
In section 2 we summarize the Linearizer algorithm. In section 3 we emphasize why its

cost was O(M K?) and show how the reduction in cost can be achieved. We present our
conclusions in section 4.

2 The Linearizer Algorithm.

The discussion in this section parallels the one presented in [CHANB82] and is introduced
here for completeness. The following notation will be used throughout the rest of the note
and is summarized below. (This notation is the same one used in [CHANS82)).

M = number of service centers.

K = total number of chains in the network.

N = number of customers in chain k.

N = population vector = (Ny,..., Nk).

m(k) = a specified service center visited by chain k. _

Vmk = visit ratio of a chain k customer to center m, scaled so that v,y = 1.

Smk = mean service time of a chain k customer at center m.

Yo = VmiYx = mean throughput of chain k customer at center m, where Y} =
) _

Lok = mean number of customers of chain k at center m.

Lm = Zf_—.l Lmk-

]

VmG

mean waiting time (queucing time + service time) of a chain k customer
at center m.
&) = K-dimensional vector whose k-th element is one and whose other ele-

ments are zero.

The main equation of the mean value analysis algorithm [REIS80}, equation (1) below,
ka(ﬁ) = smk(l + Lm(ﬁ — é.k)) (1)

requires a solution for all populations from (0,...,0) up to N. Statistics for a network
with population N are calculated recursively from statistics for the same network with
population N - €, for all valuesof k, 1 < k < K Linecarizer ”breaks” the recursion by

estxmatmg, heuristically, statistics for populatxon N — & from statistics for population N,
in the following way:

Define ka(ﬁ) as the fraction of chain k jobs at service center m when the population
is N, :
L.+(N)

Fm‘k(ﬁ) = ’—]V'k—' ‘ (2)

Define Dmk,(ﬁ) as the difference in the fraction of chain k jobs at service center m,
when we have full population and the same fraction when we have full population in all
the chains except chain j where there is one less job.

Dii(N) = Fo(NV — &) — Frni(V) (3)

From (2) and (3) it is easy to see that the following identity is true:
Loi(N = &) = (N = &(Frut(N) + Dot (W) (4)

where (N — &) is the population of chain k when one chain j job is removed from the
network. ’

In order to compute L...(N) we use equations (4), (1) and Little’s result. However, to
solve (4) we nced the values of Dpij(N). As we will indicate later, Linearizer estimates

the values of D,,.icj(]\-f), by invoking successively the following Core algorithm:

Core Algorithm

Step 1 Initialization: get estimate values for Dpij(N) and Loax(NYVm, k, j.

2

Step 2 From equations (2) and (4) compute new estimates L—mk(ﬁ - &), Vm, k, j.

Step 3 Use the values of Lmk(A — &;) computed above to compute W,x(N) from (1). New

estimates of L,,x(/N) can be easily obtained using Little’s result (i.e., by applying the
other two MVA equations).

_Step 4 If the biggest difference between the new and old estimates of Lmk(ﬁ) is less than
a specxﬁed tolerance, then stop. Otherwise go to Step 2.

The Core algorithm above assumes the values of D,.x ,(]\7) are known. Linearizer esti-

mates these values by invoking the Core algorithm for population N and all populations
N — & Vj, and assuming that D;(N — §) = Dpnij(N). In summary we have:

Linearizer Algorithm:

Step 1. Initialization: assume initial values for Lmk(ﬁ), Lmk(ﬁ—é}) and assume Dmk,-(ﬁ) =
0. Set I =1. .

Step 2. Apply the Core algorithm for population N. For that, use the most recent values
of Lmk(l\r) and Dmk_,(N)

Step 3. If I =3, then stop. Otherwise continue.

Step 4. Call the Core algorithm for all populations N — €;, ¥V j. Use the most recent values
of Loi(N — &) and D,;;(N).

Step 5. From equations (2) and (3) compute new estimates of Fx(N), Fnx(N — €;) and
mk:(N)-

Step 6. I =1I+1. Go to Step 2.

.

3 Reduction of Computational Cost.

The Linearizer algorithm as described in [CHAN82), requires K + 1 calls to the Core
Algorithm for each iteration through the top level steps (steps 2 through 6 above). The
computational cost of 0(MK?3) comes from an assumed cost of O(M K?) for each call to
the Core Algorithm. (In fact O(AM K?) is the cost of a single Core iteration but tests have
shown that the number of iterations is approximately a constant independent of M and K.
More details concerning the number of iterations are presented in [CHANS2].) It is casy

to see that this indeed is the cost of each call to the Core algorithm if it is implemented as
described. We show below that the cost of cach call to the Core algorithm (more precisely,
the cost of each Core iteration) can be reduced to 0(M K) by some algebraic manipulations
and simple restructuring of the algorithm. We emphasize that these manipulations will
not change the algorithm in any material sense and the final outputs of the new algorithm
will be identical to the original Linearizer algorithm. Thus all of the empirical evidence on
_the accuracy of Linearizer and comparisons with other approximations still hold with the
new version of the algorithm.

The new version of the Core algorithm which we propose replaces Step 2 of the original
algorithm (which reqnires computing Lox(M - &) (Vm, k, j, M =Nor M =N — €c)
with computing Lo(M = &) (Vm, j) directly. Note that the Loi(M — &) are not actually
required in the Core algorithm. Only the L (M — &) are actually used in Step 3 of the
Core algorithm, to compute W'mk(M).

We proceed then to develop an expression for L,,,(J\Z — €;). First assume M = N. From _
(2) and (4),

Low(N - &) = (N - & [&%f(:]!l + Dmkj(ﬁ)] (5)
But then, |
K
La(N —-&) = Z Luk(N — &)
k= ’
K -
= S @-a) [5"‘—1\,“-‘9 + Dmk,-(ﬁ)] ©

To simplify the sum in the above equation we separate it into two parts: k # j and k = j.
We also note that,

(N-&x = N k#
and :
(N-&x = N —1 k=j

We then obtain, , -

La(N-&) = iNk [&%(;]-\Q + Dmkj(ﬁ)] + (N;-1) [E""Jﬁ@l + Dmﬁ(ﬁ)] (7)

ki

Simple algebraic manipulation results in the following form of the above equation.

Lmj(ﬁ)
N +

J

La(N — &) = La(N) - D'mj(N) — Dimj3(N) - (8)

where D'pnj(N) = K., NiDpri(N).
Using the same development as above when M = N — &,, we have:

L..(M
i)+

La(M—&) = L. (M)- o),

D' j(M) = Dinji(M) = Dmci(M) (81); >0 (9)

Assuming that the values for the D' MYV m, j, M = N and M = N - &, are
available a priori, then the cost of the Core algorithm is easily scen to be O(M K).

Now consider the computation of the D'm;{M) V.m, j in the context of the Linearizer
algorithm. In each top level iteration of Linearizer, the Core algorithm is called once for
population A = N and for each population M = (N - &), ¢=1, 2, ..., K. If, for each
of these calls to the Core algorithm, it was required to recompute the D'm,(populatxon
vector) then each Core algorithm call would indeed: cost 0(M K?2). However, in Linearizer

Dpii(N) = Dpij(N—-&) Vm, k, j, c (10)

and thus, L
Dwi(N) = D'j(N—&) Vm,kjc (11)

Therefore we can pre-compute D',.i(N)V m, jat a cost of 0(M K?) and use these values
for each of the K 4 1 calls to the Core algorithm. It is simple to see that the cost of
Linearizer is then O(M K?).

In summary, the following modifications are made to the original Linearizer algorithm.

1. In Steps 1 and 5 of the Linearizer algorithm, compute D’mJ(N) V m, j prior to all
other computations and store for use in the calls to the Core algorithm during Step
2 and Step 3.

2. Step 2 of the Core algorithm is replaced by a computation of Lm(J\Z —€)VYm,j
using (8) if M = N or (9) if M = N — &, with the precomputed values for D',,,;(V) -
(= D'milN — &)) and Dousj(N) (= Daici(N — &.)).

4 | Conclusion.

We have shown how Linearizer can be reorganized to reduce the computational cost to
O(M K?). This is accomplished without altering the algorithm in any way that affects the
results and thus prescrves the empirical evidence of the accuracy of the method.

It is tempting to consider the reduction of the space requirements of the Linearizer to
0(MK) (from 0(M K?)) since we need only values for D'm;(N) and D,.;;(N). However,
each call to the Core algorithm for population (ﬁ — &) requires the previous estimates for
Lm,-(ﬁ — &). Thus it does not appear possible to reduce the order of magnitude space
requirements for Linearizer without surgery that would materially alter the algorithm.

Acknowledgment

We thank Glenn Mackintosh for his careful reading and comments on an earlier version
of this note.

References

[REIS80] M. Reiser & S. S. Lavenberg, “Mean-value Analysis of Closed Multichain
Queueing Networks”, JACM, Vol. 27, no. 2, pp. 313-322, April 1980.

[CHANS2] K.M. Chandy & D. Neuse, “Lincarizer: A Heuristic Algorithm for Qucucing
_ Network Models of Computing Systems”, CACM, Vol. 25, no. 2, pp. 126-134,
February 1982. .

[DeSO86] E. de Souza e Silva, S. S. Lavenberg & R. R. Muntz, “A Clustering Approxima-
tion Technique for Queueing Network Models with a Large Number of Chains”,
IEEE Transactions on Computers, Vol. C-35, no. 5, May 1986.

