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N G IE RS S S T

Jayme Luiz Szwarcfiter

ABSTRACT
B and Chvatal introduced the concept of k-closure
of a graph and described an algorithm which ucts it in
O(n;) steps presented ving complexity
O(n ).
RESUMO
_ Bondy e Chvatal apresentaram o conceito de k-fechamento
. - L
de um grafo e descreveram um algoritmo que o constroi em 0(n)
passos. Nessa nota apresenta-se um método cuja complexidade é

O(ns).



1. INTRODUCTION

¢ denotes a simple undirecﬁéd agraph, |er}| =7 2 3 énd
|[E(G) | = m. The degree of v € V(G) is written d,(v) and Gds dte

complement, that is, V(G) = V(G) and e € E(G) iff e¢ E(G). The

k-closure ck{G} of G has been introduced by Bondy and Chvatal [21,
who described some of its different applications. One of them pro
vides a sufficient condition for hamiltonicity, statinag that 1
cn{G} is complete then G is hamiltonian. The latter is strictly
better than some previous conditions based on vertex degrees, the
Dirac's descendants [3-4, 6-8]. That is, whenever G satisfies any
of the conditions [3-4, 6-8] then cn{GI is complete. Ainouche and
Christofides [1] described a different closure c'(G) which also
guarantees a hamilton cycle whenever it is complete and such that
c'(G) is complete whenever en{G} is so. However, the problem of
finding c'(G) is NP-hard and therefore as hard as solving a gener
al hamilton cycle problem. In contrast, ck{G} can be computed in
polynomial time by applying algorithm [2] of complexity ﬂ{mcn2}1,
i |E(c, (6)) |. In the present note we describe an implemen
tation of this algorithm which requifes 0(m_n) time. This also re
duces the overall complexity for finding a hamilton cycle in a
graph whose n-closure is complete, because the remaining steps 1n

volved in the production of the cycle requires no more than 0 (m_n)

time [2].

Let k be an integer, 0sks2n-3. Define ck{G} recursively
as follows. If G is complete or d.(v) + d.(w) < k for any non-—edge
(v,w) € E(G) then ck{G}:= G. Otherwise ck{GJ:z.cR{G+{v,w}]. for

some (v,w) € E(G) such that dG{v] + dé{w} 2 k.



2. THE ALGORITHM

In order to compute the k-closure of a graph G we de
fine the k-defficiency of .a non-edge e = (v,w) € E(G) as the
‘wvalue
= . fk{e}:= max 10, k—dG{v} —_dG{wJ}. -

The algorithm can then be described as follows.

In the initial step, let G be a graph and k an integer,

O=sk=2n-3. Compute the degree dev} and the k-defficiéncy f, (e) of

each v € V(G) and e € E(G), respectively. Let S be the set of
non-edges e € E(G) satisfying f, (e) = 0.

In the general step, if S=#¢ the algorithm terminates
(¢, (G) := G) . Otherwise, choose (v,w) € 8 and for each non-edge .
e € E(G)-5 incident to either v or w, decrease fk(e} by one and

if the value of £ (e} dropped to zero then include e in S. Next,
remove (v,w) from S, but include it in G. Finally, repeat the gen

eral step.

Except for the last one, each computation of the gener

al step of the above algorithm adds a new edge to the closure of

G and@ requires 0(n) time for completion. Therefore the general
step is executed p+l times, p=m_-m, that is, the complexity of
the algorithm is 0(m_n). At the beginning of each of these p+1
computations, the set S contains exactly the pairs (v,w) .

v,w € VI(G), such that the sum of the current degrees of v and w
in G is at least k and (v,w) has not yet been included in G. The

correctness of the method then follows by induction.
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3. CLOSURE AND TOPOLOGICAL SORTING

Given a digraph D the problem of topological sorting
consists of ‘arranging its vertices into a sequence in which vy
precedes v. whenever vy reaches Vj' The algorithm of Knuth [5]
constructs such a sequence by initiélly defining a set -S'--- con
sisting of those verticés'vi having indegree .d'(v;) zero. Then

iteratively choose v, € S', remove it from S' and add it to the
output sequence. Next, for each vertex & such that(vinﬁ)é E(D),
decreaseld'(vj) by one and if d'(vj) dropped to zero -include Vs

in 8'. The process terminates when S'=¢.

Therefore there is a duality between the closure of an
undirected graph G and topological sorting of D. That is, replace
non-edges e € E(G) by vertices v € V(D) and defficiencies f(e) by
indegrees d'(v). Then the ordering in which the non-edges are in
cluded in G corresponds to that in which the vertices of D appear
in the topological sorting arrangement. Consequently, if L(G) de

notes the line graph of G it follows

Theorem: Let G be an undirected graph. Then ck(G) is
complete iff there is an’ acyclic orientation of L(G)inwhich the indegree

of each of its vertices e € E(L(G)) is at least f (e).
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