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Resumo

Nés caracterizamos os grafos clique de grafos cordais e de caminhos. E apresentada
ainda uma classe de grafos chamada drvores expandidas. Elas formam uma sub-
classe dos grafos disk-Helly. Mostra-se que o grafo clique de todo grafo cordal (portanto
dos de caminho) ¢ uma arvore expandida. Mais ainda, que toda arvore expandida é o
grafo clique de algum grafo de caminho (portanto cordal). Diferentes caracterizagoes de
arvores expandidas sao descritas, conduzindo a um algoritmo de tempo polinomial para o
reconhecimento de grafos nesta classe.

Abstract

We characterize clique graphs of chordal and path graphs. A special class of graphs
called expanded trees is introduced. They form a subclass of disk-Helly graphs. It is
shown that the clique graph of every chordal (hence path) graph is an expanded tree. In
addition, every expanded tree is the clique graph of some path (hence chordal) graph.
Different characterizations of expanded trees are described, leading to a polynomial time
algorithm for recognizing clique graphs of chordal and path graphs.
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Abstract

We charactcrize clique graphs of chordal and path graphs. A special class of graphs
called expanded trees is introduced. They form a subclass of disk-Ilelly graphs. [t is
shown that the clique graph of every chordal (hence path) graph is an expanded trce. In
addition, cvery expanded tree is the clique graph of some path (hence chordal) graph.
Different characterizations of expanded trees are described, leading to a polynomial time
algorithm for rccognizing clique graphs of chordal and path graphs.



1 Introduction

We examine cligue graphs of chordal graphs. Bandelt and Prisner [2] proved that they
are disk-Helly, Chen and Lih [1] and independently Bandelt and Prisner {1] showed that
the second iterated clique graph of a chordal graph is again chordal. Here 1t is shown that
clique graphs of chordal graphs correspond to a class named expanded trees, in the sence
that the clique graph of a chordal graph is alwavs an expanded tree and every expanded
tree is the clique graph of some chordal eraph. We characterize the class of expanded
trees and deseribe a polynomial time algorithm for recognizing them. Next it is shown
that expanded trees form a proper subelass of disk-Helly graphs. Finally. path graphs are
considered. \We prove that the class of clique graphs ol path graphs is no more restricted
than that of chordal graphs. Fverv expanded tree is also the elique graph of some path

graph.

Fxpanded trees are closely related to dismantlable graphs. Those graphs were examnned
by Bandelt and Prisner [2], Prisner [9] and Nowakovski and Winkler [8]. Disk-Helly graphs
arc a proper subclass of dismantlable graphs. and they can be recognized in polynomnal
time. according to an algorithm described by Bandelt and Pesch [1]. See also Nowakovski

and Rival [7] and Quilliot [10].

G denotes a simple undirected graph, V(G) and E(G) are its vertex and cdge scts
respectively, n = |V(G)| and m = |E(G)|. A(v) is the set of vertices adjacent to v € V(G),
while N(v) is defined as A(v) U {v}. The vertex v € V(G) is dominated by w € V(G) in
G, when v,w are distinct and N(v) C N(w). A clique is a complete subgraph of G. The
clique graph of G, denoted by K(G), is the intersection graph of the maximal cliques of
G. A chordal graph is the intersection graph of subtrces of a tree T. The subtrce of T -
corresponding to a vertex v € V(G) is called representative subtree of v and is denoted
by T(v). The tree T together with the representative subtrees form a tree representation
for G. A minimal representation is a tree rcpresentation such that |V(T)} is the lcast
possible. Gavril [5] and Buneman [3] showed that a minimal representation is precisely
one in which each vertex of T corresponds to a maximal clique of G. In addition, for each
v € V(G), the subtree T(v) is formed exactly by the vertices of T corresponding to those
maximal cliques of G which contain v. A path graph is the intersection graph of paths
of a tree. Monma and Wei [6] characterized path graphs and variations of this class in
terms of their minimal representations.



(i is a dismantlable graph if there exists a sequence vivo....vy ol its vertices such
that. for i < n. v is dominated in G — {vy....vi.| }. If additionally the maximal cliques
ol (i satisfy the Helly property then G is disk-IHelly.

2 Expanded trees

(i is an expanded tree when it admits a s panning tree T(G)0 ueh that for cach edge
(v.w) € E(G) the vertices of the v w path in 1" induce a clique in G dn this case, T(G) s

a canonical tree of (5.

Lemma 1: Let G be a connected chordal graph and 'I" a minimal tree representation of
it. Then K(G) is the graph obtained from T by adding exactly the edges that transforms

cach representative subtree T(v) into a [T'(v)] clique.

Proof: 'I' and K(G) have the same vertex set. Two vertices of K(G) are adjacent
precisely when their corresponding maximal cliques in (3 intersect. That is, all vertices
of T contained in cach of the representative subtrees T(v) must be adjacent in K(G),
because T(v) corresponds to the maximal cliques of G intersecting at v. On the other
hand, suppose that there exist two vertices of T such that there is no representative
subtree containing simultancously both of them. Then the corresponding maximal cliques
of G have no common vertex. Therefore these two vertices are not adjacent in K(G).

Lemma 2: Let G be an expanded trce and T(G) a canonical tree of it. Then the
vertices of each maximal clique of G induce a (connected) subtree in T(G).

Proof: Suppose the contrary. Let C be a maximal clique of G such that C N T(G)
has at least two distinct connected components A and B. Let P be the path of T between
A and B, that is, the vertices of P are xp,...,x¢, with t > 2, x; € V(A), x; € V(B) and
x; € V(AU B), 1 <i < t. In particular, there must be some vertex xj € V(P) such

that x; g€ V(C), otherwise A U B U P becomes a connected component of C N T, a

contradiction. Let y be an arbitrary vertex of C and denote by P’ the path in T between

Y

y and x;. If x; € V(P ) then X; belongs to the y-x¢ path in T. G is an expanded tree and



(v,xq) € 1(G) thus following (yx;) € [(G). Similarly. if x, € V(P ) then X; belongs to the
v -xq path in T, and (v.xj) € I2(G). In the remaining alternative, x,xy € V(P ), we again
conclude (y,.\'i) € I(G). since X necessarily belongs to at least one of the paths, v xy or

v -x;. This implies N € V(). o contradiction. Henee ¢ N TG is a subtree of T(G).
The theorem below characterizes the class ol clique graphs of chordal graphs.

Theorem 1: The following are equivalent:

(1) G s the clique graph of some connected chordal graph .

(1) G admits a spaning tree TLosuch that for cach voe VG,
Nei(v) N1 is a (connected) subtree of T

(1) Giis an expanded tree.

Proof:

(i) = (i)  Since Il is chordal, we know by Lemma 1 that G can be obtained
from the minimal trce representation T of I, by adding the edges that transforms each
representative subtree into a clique. It follows that cach vertex v € V(G) is adjacent to
the vertices belonging to the representative subtrees of T. which contain v. N(v) is the
union of the vertex sets of the representative subtrces of T which contain v, and hence

Ng(v) N T is connected.

(ii) — (iii) - It sufices to show that T is a canonical trce of G. Let (v,w) € E(G) and .
v = vQ,...,vr = w be the v-w path in T. Suppose by induction that {vq,...,vp.1} induces a
clique in G, r > 1. Since v and w are adjacent and N(v) N T is connected it follows that
v1,..,vr are all adjacent to v. Similarly, vy, ...,vp.| are all adjacent to w. Consequently,
{vo,..-,vr} induces a clique in G, that is, G is an expanded tree.

(iti) — (i) - Given an expanded tree G, we construct a connected chordal graph H such
that G = K(H). Let X = {V(C;) / C; is a maximal clique of G}, Y = {{vj} / v; € V(G)}.
Let H be the intersection graph of the elements of X U Y. Denote by T a canonical tree of
G. By Lemma 2, C; N T is a subtree of T. Hence H is the intersection graph of subtrees of
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e . . . ., . e
a tree T, that is, I is chordal. In addition, cach vertex v of T corresponds to a maximal
clique of 1, namely to that formed by the maximal cliques of G which contain v and by v
itself. Hence T together with X and Y define a minimal representation of G. Using Lemma

I we conclude that K(H) = (..

3 Recognition of Expanded Trees

A sequence S ol vertices vy, k < n. of a graph (i is canonical when for cach
I <i < k.either it = nor viis dominated by some vertex Vi i < j.in the eraph G(5;).
defined as )

V(G(S;)) = V()

B(GS)) = B(G) = {(x.3) € B(G) /5 € {vyivi b ¥ € {¥ieovn)
and [N¢i(x) N {vioovn ] = 1}

1
v

We call the vertex v; canonical in G(S;). The value k is the length of 5. If k =n
then S| is complete. 5) is maximal when it is complcte or G(Sk+l) has no canonical

vertex. Clearly, if Sy is canonical then any of the subsequences vy,....viisso, 1 <1 < k.
Expanded trees can be also characterized as follows.

Theorem 2: G is an cxpanded tree if and only if it admits a complete canonical

sequence.

Proof: (—) Let T be a canonical tree of G. Let Sy be a sequence vy,...,vp of the .
vertices of G, such that v; is a leaf of T;, 1 < i < n, where T| = T and fori > 1
T; = T,y — vi.1- We show by induction that S; is canonical. Assume it is true for all
subsequences of length < i. If i = n there is nothing to prove. Otherwise let Vi, j> 0
be the vertex adjacent to v; in T;. We claim that v; dominates v; in G(S;). This is clear .
fori = 1. When i > 1, suppose the claim is false. In this case, there is a vertex vp, such
that (vp,v;) € E(G(S;)) and (Vp,Vj) & E(G(S;)). T is canonical; thus the following two
conditions must hold:



p < tand (vpwq) € E(G) for all g > i otherwise (vl,,\'j) would belong to E((G(S;)),

a contradiction,.

[n this case. [Nci(vp) O {vicovn b = Land (vp o) € E(G(S;)). again a contradiction.

Theretore v dominates viom GIS;)L that ise S; s canonical.

(=)} Let vy bea canomcal sequence of Go Fach v, L7 - i, has a dominator Vi
i (GES;) - ) and we will write vio= dom(\5). Let T be the graph detined as follows:

V) = V(G)

EOTY = {(vi. dom(vy)) € F(GY /10« n}.

When no 1L every vertex of Gis incident to some edge of “I's and sinee ' F(T) =n L.
I'is a spanning tree of G We show that I is canonical. Suppose it is not canonical. In

this case. there is an edge (va,vy) € 1(G)L such that the vy vy path in T is not a clique

ol G By choice of (va,vy, ), we can have (v ve) @ E(G) where ve is the vertex following
va in the vy vy pathin T. Let T he an orientation of T obtained by directing cach edge

(vi,vJ-) € E(T) from v; to vi, when 1 > j. 'I' is a directed rooted tree.

Examine the edge (va,v},)) € E(G) and supposc a < b. Then a < cand (ve,va) € E('f‘)
implies that v¢ dominates va in G(Sa). Since a < b, we must have (va,v},) € E(G(Sa)).
llence (vy,,ve) € E(G(Sa)) and therefore (vy,,ve) € E(G), a contradiction. The casea > b

is similar.
Lemma 3: All maximal canonical sequences of G have the same length.

Proof: Let us assume the lemma is false. Then there are two distinct maximal sequences
Viy.-aVl and VireaV) denoted respectively by Sy and Sl’ { > k. Then Sl contains a vertex

vj ¢ S)..In this case, j < n. Otherwise if j = n and vj, is the only vertex which belongs to
S; and not to Si; then k = n ~ 1 and Sy is not maximal, a contradiction. Let w be the .

dominator of vj in G(Sj). The following cases can occur:



Case 11 w € 5
(f /\(;(vj.) = {w} then w dominates i i G(Sk ). Otherwise. examine cach
vertex 7z (#F w) € :\(:(vi). [t follows that z is adjacent to at least two vertices
ol V(G) = Sp0 namely \l and w. In addittion. ‘(\';.w) € IG5k 4 1)) Theretore
. \,':) and N \':) C Niye (w). that is. w again dominates
Sk )] GlY; G5k 4)

Vi in G(SK 4 )- Henee Sy is not maximal, a contradiction.

Case 2: w € 5,
Let vi = w. i < ko and denote by w o the domimator of v; in G(S;). Then w also
dominates v i GES;). T w € S5 then apply case 2 again. with w replaced by its
dominator. lteratively repeat the argument until a dominator w s found satisfving
w ¢ S Since k< Land at cach iteration the index i increases. w o ¢ S will
1N -

eventually be reached. Then case I applies.

Theorem 2 and Lemma 3 lead to a greedy algorithm for recognizing expanded trees.
Construct a maximal canonical sequence Sy, of vertices v, ...,v) of the graph G. Clearly, G

is an expanded tree if and only if k = n. For i < n each v; can be arbitrarily chosen among -

the dominated vertices in G(S;), if existing. The algorithm terminates within O(n?m)
steps. A canonical tree T can be obtained as a by-product: For i < n, include in E(T) the
cdge (v;,w) where w is the dominator of v; in G(S;).

Similar results as those above presented can be formulated for the class of dismantlable

graphs, with corresponding formulations of Theorem 2, Lemma 3 and the recognition -

algorithm.

4 Disk-Helly Graphs

In this section, we compare the classes of disk-Helly graphs and expanded trees.

Theorem 3: The class of disk-Helly graphs properly contains that of expanded trees.
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Proof: Let G be an expanded tree. By theorem 2, G admits a sequence Sy, of its vertices
ViV, such that cach viis dominated in G(5;), i < n. Clearly, G - {visevig s
an induced subgraph of G(§;). In addition. v; dominated in G(S;) implies that v; has a
dominator belonging to {\'i_H, ....vn }. Therefore vy is also dominated in G — (Vv 1
that is, G is dismantlable. Let 1" he a canonical tree of G By lemma 2, the maximal cliques
ol (i correspond to subtrees of T Hence they satisfy the Helly property, and (s disk-
Hellv, It remains to show that the containment is proper. The graph H of Figure 1 is
known to be disk-llelly [1]. Fach of the seven degree 5 vertices v...vg of it is canonical
in . The sequence vi..vr s also canonical. Denote it by S+. There 1s no canonical

vertex in G(Sg). Henee S71s maximal and s not an expanded tree.

5 Path Graphs

Below is a characterization of clique graphs of path graphs.

Theorem 4: Il is an expanded tree if and only if it is the clique graph of some
connected path graph G.

Proof:
(«~) Apply theorem 1. since path graphs are chordal.

(=) Let H be an expanded trece. We construct a path graph G such that H = K(G).
By theorem 1, there is a connected chordal graph F such that Il = K(F). Let T be a
minimal tree representation of F. If all representative subtrees are paths of T then define -
G = F and the theorem is proved. Otherwise T contains a representative subtree T(s), of
some s € V(F), such that T(s) has more than two leaves. Let a,b € V(T) be two distinct .
leaves of T(s). Let F' be the intersection graph of the same subtrees of T that represents
the vertices of F, except T(s), and adding the following new three subtrees:

(i) The a~b path in T(s);
(i1) The subtree T(s) — a;



(i) The subtree T(s) — b.

Then 4 is also chordal. Next we prove that the tree representation T of I is again
minimal. For v € V(') denote by Kei(v) the maximal clique of G. formed by the vertices
of (i whose representative subtrees of T contain v. It follows that T is minimal il and only
if for cach pair of distinct vertices vow € V(T). we have Keg(v) # Key(w).

C‘ompare the relative position of v and w in T, for both graphs I and | . If vow ¢ 'I'(s)
then Kpa(v) = K o(v), and Kpp(w) = l§|\‘(\\'): since T is minimal for I it follows that

Jv) # l\-|.‘.(w)'

[N
I

If vaw € T(s) then Kp(v) # Kp(w) implies that there exists a representative subtree
T(z), 2z # s. which contains just one of vawv, and thus I\:l;(v) £ I\'l‘-(w). The remaming
possibility is v € I'(s) and w ¢ 'T(s). Iu this case. v must belong to at least two among the
three new subtrees (i) (i), and w cannot be contained in any of them. Consequently,

l\'rs(v) # l\'l,‘~(\v) in all cases, that is, 'T' is also minimal for I .
1 L

Applying lemma 1 for F and F ' leads to K(F) = K(F ). On the other hand. the subtree
(i) is already a path while cach of the subtrees (ii) and (iii) contains one leaf less than
'T(s). This completes the proof, since eventually a path graph will be constructed.
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