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ABSTRACT

We cénsider‘the problem of job shop scheduling with <j

machines and n jobs Ji' each' consisting of @ unit time opérations.

There are s distinct resources Ry and a quaﬂtity qh available of

each one. The execution of the j-th operation of Ji requires the

presence of uijh units of Rh' 1gign, lsjsli and lghg<s.In addition,

each Ji has a release date Tie that is Ji cannot start hﬁb;e pimg
r- We describe algorithms for finding schedules having minimum
length or sum of completion times of the jobs. Let £=max{£i} and
r{u 5 }] If m., s, u and ¢ are fixed them both . algorithms

termlnate w1th1n polynomlal tlme.

RESUMO

Considera-se o problema de job shop scheduling com m ma-
quinas e n jobs Ji’ cada qual consistindo de zi operacées de tem-
pce unitario. Existem s recursos distintos Rh’ cada um disponivel
em quantidade qy,- A>execugéo da j—ésima operacéoAdemJi}ggper a pre-
senca de uijh unidades de Rh’ 1¢ign, 15js£i e 1<hgs. Em adicao, ca

da Ji,possui uma data de liberacao ri, isto e, Ji nao pode ser
iniciado antes de r;- Séo descritos algoritmos para determinar
schedules possuindo comprimento ou tempo médio de término = mini-
mos. Seja g=max {2 le u=l{uijh}[. Se m, s, u e ¢sao fixos entao

ambos os algoritmos terminam em tempo polinomial.
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1. INTRODUCTION

We consider the job shop problem 7y with m machines and

~

n Jobs Ji' l<i¢n, each with zi unit time overations. There are s
resources available in arbitrary quantities dy and the k-th

operation of Ji requires an arbitrary number Yixh of units of the

h-th—resource, 1ei<n;';<kszi and lghgse In-addition;—each-job hagv - ==

an integer release date, which"éppiiegxlo its first ope;atiBﬁjMﬁe
describe dynamic programming algorithmé which construct schedules

for wnp having mipnimum length Cma or sum of completioﬁ‘timeér iC,

X

respectively. Let g = max{2;}, q = maxiqg,} and u =’|{uihk} . If
m, s, &£ and u are fixed then both algorithms ﬁerminate within

polynomial time

If ¢ is arbitrary then the minimization problems become
NP-hard, even if m = 3 and with no resources [A], but the Cmax
minimization for the corresponding two machine case can be solved

in polynomial time [3]. However, it turns again NP-hard when one

unit of one resource is added [2].

If u is arbitrary NP-hardness occurs even if myp is
restricted to a flow shop problem with m = 2 and s = 2 or 1 '
respectively according to the minimization criteria Cmax or C
(5].

If s is arbitrary my becomes NP-hard already when

restricted to a flow shop problem with m = 2 and g = u = 1 [l]

Finally, when m is arbitrary it might be worth mentioning
NP-hardness of one of its restrictions, namely a flow shop problem

having s =g =u =1 [l].



2. A BASIC ALGORITHM

Denote Ey mo the job shop scheduling problem having

jobs J(no) = {Jl,...,Jn}-and machines {Ml,.;.,Mm}._fach Ji<xxsists
of a sequence of unit time operations O(i,l),...,O(i,zi), and if

-

k<g; then 0(i,k) must preceed 0(i,k+1). A 2 -tuple Py = (Pjy,+evr

assignment of J,, i.e. 0(i,k) is to

Pizi) specifies the machine

be execqted in machine Mpik' lékéii- O(i,l) and O(i,ii)' are

reépectively the head and tail of J;.
FY

In addition, wg has resocurces {Rl,..;,Rs}, with a
quantity g, > 0 available of each Ry, lsh¢s. A s.f;-tuple U

) describes the resource requirements

(Uill’°"’Uikh”"’Ui£is
of Ji’ lsksli.and l<hgs. That is, the execution of 0(i,k) requires
the presence of YWivh 2 0 units of each R . The»reﬂmnce<xmstmﬁnts
imply éhaf no subset of simultaneous operations in a feasible
schedule can require together more than dp units of Ry l<hgs., We
suppose U4y, € 9y in all cases, otherwise there is no feasible
schedule. Let U be the set of all distinct u;,, and u = | U]

Finally, each Ji has a release date r, 3 0, that is the operations

L

of Ji can not start execution before time Ty

The completion:time of Ji e J(mg)- is that of its tail,
relative to time zero. Below are described algorithms for
respectively minimizing the length Cmax or the sum of completion

times IC, of a feasible schedule for wgp. The parameters 2%, u, m

and s are supposed to be fixed.

We employ dynamic programming, succesively decomposing
a subproblem 7 into new ones of smaller size. An integer initial
time t is additionally associated to each n, meaning that any

feasible schedule for = must start at time t. Denote by J(m) and

e e



0(r) respectively the sets of jobs and operations of . In all
cases, t 3 rmin{w}, where rmin{w] equals zero whenever J(w)=¢ and

min {ri|Ji e J(n))} otherwise.

A feasible start of 7 is a non-empty subset of heads

H c 0(v) satisfying,

oL, K) € H.=> #éi.and R S e L e (1)
0(i,1), 0(j,1) e H => Mp., # ij1 .............. i
and

I U,y < 9ne for each lshss  ........n (3)

D{ifl] e H{w)

That is, H is a subset of Dperétions which can L=
scheduled simultaneously to start a feasible schedule for =. Denote

by H* the set of all possible feasible starts of w.

Let w(H) be the subproblem which satisfies 0(r(H))=0(w),
that is #(H) is the subproblem obtained by removing from = the

feasible start H. Call «(B) an immediate successor of 7. Let

Tys---sTs k31, be a sequence of subproblems such that =, is an
immediate successor of L l1<i<k. Then Ty is a successor of m,.
Denote by w* and n* the sets of all successors and immediate

successors of w, respectively.

Denote by A(=n,t) and t(w,t) respectively the minimum
values of C__. and £C, for the subproblem n with initial time t.

The following lemma describes the decomposition employed.

Lemmz 1:

0, if J({w)=¢. Otherwise

Az, t) e 04)

min{max{t+l, (v (H), tHl}}
LHEH*



and

JD, if J(n)=¢. Otherwise

T{ﬂ;tjﬂ= :
min{ (t+1) . [T(H) | + =(n(H), ty)) oete (5
' HeH*
where t;, ={max t+l, rmin{w{ﬁ}}} and T(H) is the subset of tails
of w belonging to H. oo = e e
Proof: The case of % is trivial, see figure 1. For T,

the contribution to =1 (w(H), tHj of the completion time of any job
of w(H) is the same as that to t(w,t). In addition, each operation
0(i,1l) & H contributes to t(w,t) with t+l units if itids a tail

of m, and zero units otherwise,

The basic algorithm can now be formulated. Given 74,
lat i, = rmin{wnl. Then compute A(m,,t;) or T{ﬂurtﬂ} using (4) or
(5) respectively. Each feasible start HeH* can be obtained by

applying (1)=(3) .

The number of subproblems considered by - the above
algorithm is exponential in n. The following section describes a

method which restricts the search to a polynomial number of them.

3. A POLYNOMIAL TIME ALGORITHM

We now describe a more efficient method for computing

recurrences (4)—-(5) .

Let X be the set of fjituples xj = tle,...,xjfj}, for
all 1<f.<t, such that x., e Z3, 1<j<|[X| and 1sksf.. Denote by ¥
J jk A B
the set of s.gj#tuples Yj = {lel"“'gjgjsa’ for all lﬁgjsi

satisfying ijh = o, k=i<w|; 1<ksg and l<hss. In other words, X
and ¥ are the sets of all possible machine assignments and
resource reguirements, respectively.

e



H=01{n) = J(x(E))=¢

t t+l=x(w,t)

m (H)

t t+l

tanax{t+l, (n(ﬁ?)} A(ﬂ,t)=l(ﬁ(H),tH)

r .

FIGURE 1l: Cmax Minimization
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The proof follows from a simple counting. —

The profile of = is a matrix S(r) with elements,
"S(i,j) = fJ‘k' e J(=w) Pk- =-X—i- and Uk = Yj }.I.'_A-_

1<i<|X| and 1sjs<|y| A, (6)

Let t be the initial time of 7. A t-profile S (n) is «a

profile of = restricted to the jobs with release date < t, i.e. a

matrix with elements,

Uy =_Yj and ry < t}]

sy (1,3) = [{3; e J(n) | P = Xy,

1l<i<|X| and 1l<j<|Y] (7)

The use of profiles in the solution of the minimization

problems is gi&en by the lemma below.

Lemma 3: Let w', n" be subproblems with profiles s', s",;
iniiial times t', t" respectively, and both obtained from zero or

mor¢ applications of (4) or (5). Then,
S' = 8" and t' = t" =>

A(n',t*) = A(x",t") and t(xn',t') = t(n",t")

Proof: Select if possible, Ji € J(n{) §u¢h that riz ',

Since 7" has been derived from (4) or (5), its generation followed

a sequence of subproblems nlj...,nk, where m; = 7y , m = " and
T4l is an immediate successor of Ty l<j<k. Since the °~ initial
times of the subproblems increase with k we concluse that Jg €

J(wj), l<j<k, that is J; € J(n"). Repeat the above argument, until

all unselected jobs Jy, € J(n') have release dates < t'. But in

this case, we can increase 2N to t' with no influence in Cmax or

-6 -



IC, Hence S8'=S" and t'=t" imply that =' and #" can be transformed

into identical subproblems.

S,

. c * \ y
A subset 7. € w_ is an. immediate cover for v when,

I I
(1) =', =" ¢ n3 and n' # 7" => S(x') # S(x")
and -
(ii) =' ¢ n; => 3 " ¢ w% suchthat S{n')l= 5 (")
. that 1is, ng is a subset of subproblems of w having distinct

profiles and covering the possible profiles among all immediate

successors of w.

Similary, a subset w_ ¢ 7* is a cover for = when it
contains exactly one subproblem of 7 representing each distinct

profile amcng all successors of 7.

A feasible start cover HE c H* is a subset of feasible

starts which spans an immediate cover for =, that is H € 2 5D i

m(H) € wg.

If follows from lemma 2 that in ordér to compute A(mn,t)
or 1 (7,t) using (4) or (5) respectively, it is sufficient to
consider the minimizations of the recurrences with the variation
of H within a feasible start cover H of n. We now describe a

method for computing HE,

5 x z" | be the set of pairs

Let V {W] &
B & [ Ty

Ve = e o U inie e e ) IR (G0 e o 01 7 60 o1e o #O)A srtichs bt
i, #0 iff j,_ # 0, 1lsksm sl 108)

i, # 0 => Xy = k and st(ik,jk}#ﬂ, l<k<m emie )

kl



and

E Y" 1h_ = q r l‘EhES, - ow w {1[]
kcu{vtyhjk &

where a(v,) = {k|i, #0+ lsk=m]}.

In other words, (8) and (9) imply that for each v, e V.
the values of il,...;im,jlfl..,jm are such that if i, 70 then J(n)
contains some job having its head in M., machine assignment xik'
requirements ij and initial time < £. For each k & u{vt}, salect
exactly one such job and }et H{vt} be the set of heads of the
|u{vtl[ jobs so selecteﬂ.“Then (10) asures that the operations of
H{vt} together satisfy all resource constraints. Therefore H{vt}
is a feaéible start of 7 at the initial time t. Conversely, each

H ¢ H* translates into some Vi E vt. Moreover,

Lemma 4: For any subproblem w with initial time t;
<

1 7) are isomorphic.

vt{ﬁ}_gnd H

Recurrences (4) and (5) can now be rewritten to reflect

the actual computations to be performed.

fﬂ, if J(v)=¢. Otherwise

Aln,t) =
min {max{t+1,l(w[H{vt}},t{vt}J}} S a iy
vt E vt =
J 0, if J(n)=¢. Otherwise o = |
t(n,t) =

E V

l min  {(tH) o|T(vy) [+ (r(Hv)),tlv )} ... (12)
Ve t

* where t{vt} = max{t+l, rmin{ﬁ[H{vt)J}} and

T(vy) = {k e a(vy)| £y, =11
The algorithms can finally be described. Given Ty F
construct X, Y and S{ﬂn}. For each considered computation of

=B =



Alwm,t) or v(w,t), verify if some previously solved subproblem
with initial time t' satisfies S(n)=S(n') and t=t', If ves, the
answer for both subproblems is the same. Otherwise, calculate
A(m,t) or t(w,t), respectively using (1l1l) or (12). The computation

in{““J} is evaluated.

stops when A (wg, rmin[wu}} or t(mg, r_

— Sets X and Y can- be easily constructed in coastant -time ...

while the profile of a subproblem = can be found in 0(n) time
using (6). In order to compute A(wn,t) or z(=n,t) by (11) or (12) ,

we need te generate set V This can be done in 0(n) time throuch

t.
finding-ﬁt{ﬁ} using (7) and then applying (8) - (10). For each
Ve ® Vi, w{H{vt}} can be determined from = in constant time. For a

fixed t, it is sufficient to compute (11) or (12) for a subset of

subproblems which is a cover for wn. Therefore the total number of
a

subproblems to be considered is iﬁgf =-0in), - a=|x|.|x]. There
are EE£] possible initial times. For each newly considered
subproblem we need to check whether a previously computed case
has the same profile and initial time as it. This can be
accomplished by examining all 0(n®) distinct profiles of the

subproblems of wg, using linear search. Therefore both algorithms

2a+1

can be implemented in 0(n ) time and 0(n") space.

The time bound can be decreased Ey replacing the linear

for binary search. All we need is a total ordering relating the
c

subproblems of the cover ng. For instance, let =', 7" € To and

(i,3) be the least pair in the lexicographical ordering of

ZT | X ZT | such that the element (i,j) of S(n') is different £from
X b ¢ :

that of S(v"). Then define w' < 7" iff s(i,j) is smaller in S(n'")

than in S(v"). We can then detect subproblems having identical
profiles using binary seérch.'This decreases the time bound to
0(n?t?).



The minimizing Vi € V, defines the actual schedule at

t
time t, as H{vt} contains respectively the operations to be
scheduled in M_, K e «(v,). Otherwise, if k ¢ a(v,) then My is
left idle.

4., CONCLUSIONS : . .

We have described algorithms for minimizing the '1ength
or the mean completion time of a schedule for a job shop problem
qiﬁh unit time operations under resource constraints and release
détes. If the number of machines, resources, operations per job
and distinct reguirements are all fixed then both algorithms
terminate within polynomial time, although the degree of the
polynomials and the constants involved in the complexity expression
grow fast. ﬁowever, these results could be of theoretical interest

due o the generality of the considered problems.

Similar algorithms can be formulated when replacing the
‘release dates by deadlines. It would be interesting to know the
complexity of the case when both release dates and deadlines are

present together.

— Sdajbe
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