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Resumo

" E desejével a especificagio de modelos de sistemas de computacio em uma linguagem
simbélica de alto nivel. Entretanto, técnicas analiticas requerem uma representagio numérica
de baixo nivel. A traducio entre estes niveis de descrigio é um grave problema. Neste
artigo, descrevemos um método simples, mas surpreendentemente poderoso para especi-
ficagio de modelos a nivel de sistema, baseado em wm modelo orientado a objeto. Mostraremos
que este método basico possue vantages significativas pois fornece a base para o desen-
volvimento de ferramentas modulares que podem ser extendidas. Com esta metodologia,
ferramentas de modelagem podem ser facilmente e rapidamente talhadas para um determi-
nado dominio de aplicagio. Uma implementagio em Prolog de um sistema baseado nesta
 metodologia é descrita e alguns exemplos sao incluidos. As vantagens de se usar Prolog
como uma linguagem de implementagio szo também discutidas.

Abstract

Modelers wish to specify their models in a symbolic, high level language while analytic
techniques require a low level, numerical representation. The translation between these
description levels is a major problem. We describe a simple, but surprisingly powerful
approach to specifying system level models based on an object oriented paradigm. This
- basic approach will be shown to have significant advantages in that it provides the basis
for 2 modular, extensible modeling tools. With this methodology; modeling tools can
be quickly and easily tailored to particular application domains. An implementation in
Prolog of a system based on this methodology is described and some example applications
are given. The advantages of Prolog as an implementation language are also discussed.
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-1 Introduction.

-
.

The complexity of the new generation of highly concurrent systems that are now being .
developed has made the use of sophisticated modeling tools for specification and analysis a
high priority enterprise. The varicty of architectures and different problems to be analyzed
demonstrate the need for general tools, i.e., tools that allow specification of general classcs
of models. There are many examples of such tools in the literature, [SAUES1,SAULES4,
BERRS82,G OYA86,TRIVS4,1\1AKA82,COST81,CARRSG]. The uscfulness of such tools can
be measured in terms of two factors: the sophistication of the underlying analytic and/or
simulation techniques used and the.simplicity and power of the user interface.. We are
particularly concerned with the latter. '

We concentrate in this paper on modeling applications for which the underlying analytic
representation is & Markov process state transition rate matrix. This covers a broad class
of applications as Markov processes are the most general representation typically provided
for representing and solving performance and reliability models. Due to the decrease in
the cost of memory, the increase in computation power, and recent advances in solution

“techniques, Markov processes with tens of thousands of states can now be solved; somewhat

easing the large model problem which is a major limitation. These advances have resulted
in renewed interest in tools based on the numerical solution of the state transition rate
matrix of the model, This is particularly true for applications in which the models require
the representation of complex interactions among’ system entities and/or sophisticated
control schemes as are found for example in reliability models and models of communication
protocols and parallel architectures. ' -

We can distinguish two representations of a model: the modelers representation and the
analytic representation. The analytic representation is the detailed, low level representation
required as input. to the analysis modules, i.e. some representation of the transition rate
matrix. The modelers representation is the model specification that the user supplies. The
modelers representation is typically in symbolic form and should be in terms of constructs
that are natural to the application. For example, a rehability model might be expressed

Jin terms of the number of cach component type, their failure modes and rates, etc. while

a multiprocessor system might be described in terms of the processors, buses and memory
modules, their physical connection and the rates of processors accessing memory modules.

é]carly: the form of the model specification language determines the case of defining
models thereby influencing the overall cost of the modeling effort; requiring the user to
dircetly input the transition rate matrix for a model is certamly possible but would severely
hinder the application of the tool. A high level model description language tailored to
a particular application domain provides the ability to define odels that are casy 1o
understand, less time consuming for the modeler and Joss error prone. However this puts

b
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‘the burden on the modcling tool to provide a transletion from the modelers representation
to the transition rate matrix. This translation can be likened to a programming language
compiler that translates from a high level language to machine code. o

N
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A further complication is that the most suitable model specification language will vary
from one application domain to another. A “one language suits all” approach is therefore
not appropriate. Neither is a specialized language for one type of model. These are how-
ever the approaches taken by most of the current tools. The result is one of two extremes:
(1) a language that is specific to a narrow application arca (¢.g. the fault tolerance analysis
tool SAVE [GOYAS8G6)) or (2) a language that achieves generality by providing only prim-

itive constructs (e.g. stochastic Petri nets [MARS84]). Both approaches have significant
problems. The first provides a convenient user interface for models that it into the antici-
pated mode but for no others. The second places too much of the burden on the modcler.
The paucity of modeling constructs often forces the modeler to build descriptions that
are contrived, complex and wnrelated to any “natural” representation. What is required
is 2 methodology that permits, with little effort, the tailoring of the model specification
language to the application domain. This paper presents such a methodology.

. The cenceptual basis of the approach is an object oriented paradigm for model de-
"= * “scription. (For a discussion on “object-oriented” concepts, we refer to [STRO8T7].) In this
approach all system models are defined in terms of instances of objects and interactions
between objects. The characteristics of specific applications are reflected in the object -
types that are used in the model specification. By providing librarics of object definitions
. the modeling tool can be easily extended to new application domains. System models
that combine object types drawn from a library with user defined object types are ac-
commodated, which permits specialized extensions. As will be demonstrated by examples
that appear later, this has proven to be a powerful modeling paradigm that has easily
accommodated a wide variety of applications including reliability models and queucing
theoretic models. With this approach one s able to produce tailored interfaces in a matter
.of hours for reliability modeling and queueing networks. Defining ad hoc models exhibits
similar efficiencies. Being able to easily construct and analyze specialized models can be
of significant benefit. ' B :
This research has been influcnced and has drawn from a variety of sources and several
of the most related efforts are noted here. '

As carly as 1971 Irani and Wallace [IRANT1] investigated the specification of quencing
network models using the notion of object types and object interactions (their terminology -
is different). In fact this is the carliest work that we are aware of that takes this approach
to model specification and translation to the state transition matrix. They were partic-
ulaxly interested in the use of network diagrams to specify qucucing network models for
interactive graphics modeling tools. They recognized the need for a formal means of defin-
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ing object types and the mcziniug of connections between objects in a network (H&grmm
‘They developed the basic approach which permits the definition of ob Ject types and object
"interactions. In their system an ob Ject is defined in terms of set of matrices that describe

the behavior of an object. In [WALL72] Wallace describes how the transition rate matiy
for a network of interconnected objects can be automatically generated from the matrix

descriptions of the individual components. , *

We have borrowed the basic concepts from Irani and Wallace in our system. There
are however some major differences. One difference is in the method of describing indi-
vidual object types. They suggested the use of matrices and a sct of algebraic operations

- to construct the state transition matrix for the complete system model. We have used

an approach in which the transition matrix for the complete model is incrementally con-

-structed by scarching for reachable states. This technique Las several advantages. In many

applications it is not feasible to generate the entire transition rate matrix.due to the size
of the state space. In such situations one may be content to truncate the state space
e.g. eliminating states with more than some number of failed components is cominon in
reliability models, particularly if error bounds can be obtained. Another advantage in the
generative approach is that only reachable states are represented in the resulting transi-

. tion rate matrix. Note that the set of states of the complete model is generally a proper
" subse{ of the cartesian product of the states of the individual objects. Finally, we note

that although in theory the method proposed by Irani and Wallace could be extended to
more general modeling applications, they limited their consideration to queueing network

- models and built in limitations to the type of interactions allowed between objects. The

main disadvantage to our method is increased computational cost. We have traded this

" cost for generality. It is interesting to note that in progranuming terminology our tech-
‘nique uses “lazy evaluation” in the sense that object states and transition rates are only

evaluated when needed. This allows the definition of objects with unbounded number of
states, e.g. an M/M/1 queue. In a particular system model the number of states must of -
course be finite but this can be accommodated either by the model specification, e.g. a
closed queucing network, or by truncating the state space as an approximation.

The METFAC system [CARRS(] uses production rules to describe system behavior.
This system does not utilize an object oriented approach and the production rules operate
on the global system state. Our object ‘oriented approach has the advantage of modularity
and leads to natural suppori for higher level intcrfaces in which a particular model is
specificd in terms of previously defined objects. ' ' '

Lenders [LENDSS] developed a method of deseribing distributed computations using
Prolog. Ile showed how to model distributed computations with commmunicating finite
state antomata in Prolog and how to gencrate the reachable set of states. His purpose
was to analyze algorithnns for Jiveness and safety propeitics. We use the same general
approach to generating the sct of states reachable from an initial state but extended the

. -
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general method to account for a number of special fcatuxes desirable for pcrfoxm'xnce and
mlmb:])ty modeling.

P ({*‘ A
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In section 2 we describe the system modeling paradigm independent of any particular

implementation. In section 3 we describe the organizatior. of the system that has been
constructed to implement the approach. Section 4 contains several example applications
and section 5 presents our conclusions.
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2 The Object Oriented Modeling Paradigm.

As noted by Irani and Wallace [IRANT1] a modeling system consists of a large amount of °
‘software including command interpreters, analysis packages and query and display facili-
ties. This software represents a significant investment and one would like it to be applicable
to a wide range of application arcas; e.g. queucing network models, reliability models, etc.
The objective is to develop an approach that allows a modeling tool to be tailored to
‘different application domains while requiring that most of the software be reusable across
application domains. ' : ' '

The approach we advocate is based on the observation that models are typically very
modular in that the model consists of a set of component “objects” that are “connected”
- in some manner. This is exactly what comes to mind if one thinks of queuveing network
‘models, the objects being the queues. The dpproach then is to build a system that allows
object types and object interactions to be defined in some standard manner which is
interpreted by the (invariant) remainder of the software. Particular application domains
-are characterized by the object types that are applicable to that domain. Such a system is
~extensible since new object types can be declared and used in conjunction with previously
defined object types. ' :
. We begin with a short informal description and then follow with a more-formal de-
scription of the modeling paradigm. With the object oriented view that we have adopted,
_a system model is composed of a set of interacting components called objects. The interac-
" {ions among objects are represented via a message based mechanism as will be described
shortly. - ' '

Each object is an entity that has an internal state which can evolve over time. The
-state of an object can change due either to

. 1. an eveni which the object itsell generates or

.2, the receipt of a message from another object..

The state of an object will determine the types of cvents it can gencrate and the rates
at which they occur. An event may simply cause the object generating it to change state
with.no effect on other objects but in general, an event will cause other objects to react
in some manner. This is modeled by allowing objects to generate messeges to be sent
to other objects notifving them of an event. The specification of an object therefore also
includes a definition of how it reacts (i.e. changes state-and sends messages) to received
INeSSages. '
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The state of the system is given by the set of states of the component objects and
_ the list of “undelivered” messages in the system. Note that messages are an abstractjor
introduced to model the way objects interact and are “delivered” and reacted to in zero
time. Thus some of the states are transitory in that they have zero holding time. Using
Stochastic Petri Net terminology, a state is called vanishing if it has zero holding time,
and tangible otherwise. In our system, the vanishing states are those with one or more
-undelivered messages in the system and the tangible states are those with no undelivere(
messages in the system. ' " : . : o :
. For the purposes of analysis, we are only interested in transitions between tangible-
".states. We define a vanishing sequence to be a sequence of statc {ransitions that starts
and ends in a tangible state where all intermediate states are vanishing. The actions that
may happen in response to an event or a message determine sets of vanishing sequences.
‘Once all the sets of vanishing sequences are determined, the transition rates for each pair
of tangible states can be easily found. These rates are collected to form the state transition
-~rate matrix which is then fed to the markov chain solver. '

e e .

The above informal description should provide an intuitive basis on which to interpret
*the miore forinal definition which follows. Formally, we say that an object © is defined as

.“"‘ ‘ Oé (IaSa‘S()»E)~MraMsaR)6lsa)

~where I = The unique name of the ob ject
& = The set of possible states for the object
So € S = The initial state for the object , -
. &€ = The set of events that can be generated by the object
M7 = The set of messages that can be received by the object
M? = The set of messages that can be sent by the ob Ject
R = The rate function of the object
R:SxE&—-Rt
6" = The event function of the object :
| - §:8x &= {(0,1] x S x [M*]} . where [M?] is an ordered list of
- mcessages each belonging to M* ‘
é = The message function of the object
61 SXM™— {(0,1] x S x [M*]}

¢’ is a function that, given a state and an cvent. returns the set of possible event re-
spouses cach consisting of a new state. a list of messages to be delivered and the probability
that this event response occurs. Associated with the event function, there is a rate function
R that, given a state s and an event ¢, gives the rate at-which event ¢ oceurs in state s.
6 is analogous to & and given a state and a message, returns the set of possible message

6



responses each consisting of a new state, a list of messages and the probability that this
Imessage response occurs. ‘o »

We say that a system model X consists of a set of states S, an initial state Sy, and
't1ans)t10n function v. '

X2 (8,S0,7)

~

~.

‘where § = {< 5),5,...,8v >, [my,.. oMy}
Nis the number of objects in the model
S;€8,1<i{<N
- m; € ./vf, 1 <5< N, M is the set of all messages

[

S0 =< 14,820, Sn, >

The sy stem model transition function v is defined in terins of the object transition
funchons 6 and &',

“yi (< Sy,. ey Siy SN >, [my,.. .y my)) _
— (< Siyeey S, SN >,[mg,.;.,1nk,mk+,,...,mk+,,])

_iff message m,; has as a destination object @;, where ml.-n, <o Mign
are mcssages generated by object O; as a response to message m,, l.e.
(», S, g, - S Mega]) € 8(S;, m,) p>0

v (< S, - ey Sy ey SN >,”) — (< Sl,...,S'{,_...,SN >,[1T11,. ..,mk])

iff'c is an event that O; generates and (P Siy[ma, .. my)) € 6485, e)

. We define a state (< 5y,..., Sy >, [my, ..o ymu]) to be reachable if
(< S], cae ,SN >, '777-1, ey 7771;]) c ’}’R(So) = ’)"(< Slos ceay S,\’o >, ”)

where 4* is the transitive closure of 7. That is, a state S is rcachable if there is a valid
sequence of states from thc Initial state Sy to 8. A reachable state with no outstanding
messages, (< Sy,...,Sn >), ), is said to be tangible.

We define a vamclmzq scquence {o be a a sequence of transitions initiated by an cvent
4 ’ "
e VB Vo B Ve BV sued (had
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1. These transitions are allowed by v and occur \\uh p1obab1hty p’ or p,,O < i< K,

2. V' and V" are tangxblc statcs,

3. Vo,..., Vi are vanishing states.

Let v be a vanishing sequence. Then the transition rate a(v) from tangible state V' to

tangible state V" co1rc:>ponduw to sequcncc v is given by . -
. ‘ I

S

) ‘a(v) = ’R(V se) X p' x Hp,

=0

where R is the rate function as defined previously. Let V(V', V") be the set of all v anishing
-sequences from V' to V”, and let R(V', V") be the transition rate ﬁom V' to V”. Then

. RV,V") = > a(w)
VEV(V, V)

’

The transition rate matrix is R[V', V" for all reachable tangible states V' and V”,

[}
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3 Implementation Organization.

Ve have developed a plototype written in Prolog based on the obJect oriented modecl
plesented in the previous section. This prototype allows users to casily define, solve and
query markov models at a high level of abstraction. This section concentrates on the
implementation organization which is largely independent of the use of Prolog. However,
since Prolog was perhaps an unusual choice, we will briefly present our reasons for tlus

~ choice before describing the organization of this pmtotvpe

~.

3.1 Implementation Language

The basic opelatmn in building the transition rate matrix f01 a model is finding all the
reachable states from a given initial state, according to rules that describe the behavior
of the model. These rules specify preconditions on the state of an object and the actions
to be taken if the preconditions are satisfied. Three features that Prolog provides malie
- it appropriate for this prototype. First, Prolog allows the use of untyped complex data
“structures which allows the user full freedom in the description of object states. Second,
. Prolog provides unification, a powerful form of pattern matching. The pattern matching is
" used in the preconditions of the rules to determine which actions can be taken. This allows
very general rules {o be written quite simply, as will be seen in the examples. Thud Prolog
has backtracking search as a basic feature of the language. As more than one ru.le may
have its preconditions satisfied at the same time, the backtracking automatically applics
all possible such rules to find all reachable states. These features allow rapid de\ elopmcnt

both of complex models and complex modeling domains. '

The problem with using Proldg is that the system is not as fast as custom compiled

modeling tools. The flexibility and power more than make up for the slower speed. With
better compilers for Prolog becoming available, speed will become cven less of an issuc.

3.2 Prototype Organization

In order to facilitate the usc of the tool and aid in tailering it to particular applications
we have distinguished four different “Jaycrs”™ in its organization, as shown in Figure 1.



Higher Level
. : * | Interface Laver

Application Layer

‘ | Object T)f])e Def‘initior} Layer
- \ : . : Core Layer . | .."
| ‘ .Fig.iu*e 1: System layers. |
3.2.1 Core ]:ayef
—  The core of the’ system préwides a generic interface which takes descriptions of obil:ects,

events, messages and an initial state and generates the Markov state description. The
“interface” to the core is the basis on which everything else is built. The core expects the
following “schema” or format.

- 1. Each object has a unique name
2. Each object has an initial state

3. Each object has a set of events it can generate, the rates at which they occur, and a
- list of corresponding actions’ ' ‘

4. Each object has a set of messages it can accept and their corresponding actions

The core operates on this description by searching for the states reachable from the
given initial state. A standard recursive search procedurc’ can be used that, for cach
reachable state S, determines the states reachable from S by some event given that the
system is in state S.

3.2.2 Object Type Definition Layer.

An obvious extension to the basic paradigim preseited in the previous section is the no-

tion of object types. The notion of ohject types is important since it allows ccononyy in

specifying a model. Tt is expected that object type definitions will be parameterized so
. ’

.. ' | 10 ' . .
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that instances of the objects can be declared and paramcters specified for each instance,
In this section, we introduce by way of example the language used to define ob ject types.
The example used is a reliability model consisting of a set of cpus and a set of memories
that fail at some rate and a repair service that fixes the cpus and memories at some rate,’
This is to be modeled as three objects, a cpu object, a memory object and a repair service
object. The cpu and memory objects will generate one event, fuilure and will be able to
receive one message, repaired. The repairservice will generate one event, a repair, and
will be able to receive one message, fail. In this section, the necessary object types will

.be defined, a component_type for the cpu and memories objects and a repair_type for the

Tepair service object.

OBJECT TYPE: component_type

- OBJECT NAME: component_name

EVENT failure: N— > N1 o ' _ o
CONDITION: N >0 : ' o
ACTION: N1is N -1, failure_rate(component name,R), ' '

- send(repair_service,fail( component._name))

RATE: N*R

"MESSAGE repaired: N— > N1

- ACTION: N1is N 4+ 1

~

OBJECT TYPE: repair_type

'OBJECT NAME: repair_name

EVENT repair: [H|T]— > T ‘ :

ACTION: repair.rate(repair-name,R), send(H,repaired)
RATE: R ' o '
MESSAGE fail(Component): L— > L1

ACTION: append(L,[Component},L1)

This example begins by defining the object type componeni_type. The OBJECT NAME
stalement gives a formal variable that, when instantiated. will be the name of this object.
The OBJECT TYPE statement declares the type of the object being defined. Now the
behavior is described. The EVENT statement says that this object can generate a failure
event. When it does, the object state at the start of the event ijs N and the object
state at the end of the event is N1. The CONDITION statement gives the conditions
under which this event can occur. In this case, a fathwe can occur when the number
of working components, N, is greater than zero. The ACTION statement describes the
actions the object takes in fesponse to the event. When there is a failure, the number .
of working components is decremented and a nmessage 1s sent to the repair service. The
failure_rate(component mame.R) is a request for a parameter which returmns the fuilure
rate of the object. Component name means this object, and R is the return value, If a

11



yesponse were probabhst:c mstedd of detemnmst:c, a PROBABILITY statement would be
" used. The description for MESSAGE repaired is very similar and is omited.

L]
'

The OBJECT TYPE repair.type defines the repair service. The major diﬂiercncc bhe-

tween repair_type and component._type objects is that repair_type objects use first-come
first-served service discipline so the state is represented as an ordered list rather than a
number. When an object is rcpaired, it is taken off the front of the list. Following Prolog
syntax the [H|T] refers to the inputl state being a list with head H, and tail T, while the
— > T indicates that the output state is the tail of the input state. When an object is
_Tepaired a repair message is sent to.it. The append fuiction creates a new list by merging
the old list L, with the list containing the name of the newly failed Component.

There are now two objects that arve defined that can be used by an end user in building,

-a model. These object types can be combined with others to form libraries. A user can
1hen define instances of object types by snnpl\ referring to the library deﬁmtlons as will
be shown in the following section.

"3.2.3 Application Layer

At the application layer. an “end user” can define a model by instantiating objects from
“an object types library and declaring the required paldmetels These 1eqmred pammetexs
-are used to customize individual instances. :

type(cpu,component._type).
type(memory,component_type).
type(repair_service,repair_type).

mitial(cpu,2).
initial(iemory,3).
imitial(repair_service,[]).

failurerate(cpu,ple).
failure rate(memory,pfm).
yepair.rate(cpu,prc).
repairrate(memory,prm).

value(pfe,0.001).
value(pfin,0.01).
value(pre,0.25).
value(pim,).0).

|
1
|
1



Continuing with the previous example, the instances of the objects can now be crcnte'd.
The type(cpu, component_type) and type(memory, component.type) statements declare
two components to be of object type ‘component_type’. Similaily the type(rcpair.,scrvicc,,
repair_type) statcinent declaves the repair_scrvice to be of object type ‘repair.type’. The
initial(cpu,2), initial(snemory,3) and initial(repairservice,[]) statements declare that ini-
tially in the model there are two operating cpus, three operating memories and an empty
repair queue. It remains only to fill in the rate parameters. The failure_rate(cpu,pfc) gives
a symbolic value for the cpu failure rate parameter, similarly with the failure_rate(memory;,
pfm), repairrate(cpu,prc), and repairrate(memory,prm) stateinents. The state transition
rate matrix can be generated at this point in terms of the symbolic parameters. Only when
the matrix is actually solved are the numerical values necessary. These values are specified
by the value(pfc,0.001), value(pfm,0.01), value(prc,0.25) and value(prm,1.0) statements.
The model is complete and rcady to evaluate. The results can be examined by a high level
‘query language described in the next section. "

”

3.2.4 Higher Level Interface Layer

“The highest layer is where sophisticated user interfaces ( e.g. English-like or graphical) can

- . be defined. These would be built on top of the application layer by providing a translation

to object types and parameters. We have not concentrated on this layer thus far although

~ -we have written a, translator for the SAVE [GOYASG] user interface.

3.3 Other Implementation Issues

“This section discusses some issues that were omitted from the general description.

3.3.1 Conditions and Functions

There are many times when the behavior of one object is dependent on the state of another.
In reliability models, for example, an object can go dormant if certain combinations of
components fail. If a disk controller D fails. any disks attached to D become dormant. An
object will often have a different failure rate when it is dormant (often zero) than when i
isn't. If the disk is modeled as not being able to fail when dormant, the disk object would
have to know whether the disk controller object was operational before the disk could
fail. To inquire the state of the controller, the disk object could send a message to the
controller and change to an intermediate state waiting for a response from the controller.
The controller would send back a message indicating whethier it was opcrnlicmz.\_l or not,

13
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- With this information the disk would know whether it could fail. .From our éxpcriénce, it
has proven easier to let the disk inquire about the controller object state ivithout resorting .
-to the message mechanism. We allow functions to be declared, as part of an object’s
specification, that return information about that object’s state. The inquiring object uses
the evaluate(object, function, Return) predicate, where object is the destination object,
function is the service requested from object and Return is the return value. The object
responumg to the inquiry must have declared the function.

.
~

’

3.3.2 Lodps R

- Similar to Generalized Stochastic Petii Nets (GSPNs), discrete event simulations and other
modecling systems that have “zero-time” events, a model can be created that has “infinite”
loops of zero-time events. - '
As an example, consider a queueing system consisting of an infinite server tennmals
and two cpus with no waiting room. If a customer arrives at one of the cpus and it is
. busy, the customer is rerouted to the other cpu with plobablht) Pe and to the terminals
“with probability p;. Departures from the terminals are routed with equal probability to
either cpu. This model has an infinite loop. If both cpus are busy and a customer arrives
at one of them, it is routed to the other cpu with probability p.. The second cpu may
- reroute it back again with probability p. (total probability p?). With some probability the
customer can keep bouncing from one cpu to the other. More specifically if there are three
customers in the system and the system state is represented as the number of customers in
-the {erminals and cpus respectively (plus messages in transit), then the state transitions
would be: :

<1,1,1> — <0,1,1> [epu; arrival] 55 < 0.1,1 > [epu, arrival)

Pe

< 0,1,1 > [epuy arrival] = ---

As all possible transition sequences must be examined in the direct implementation, an
“infinite number of sequences have to be examined. This problem can be resolved by
noticing that the state of the system when the customer arrives at the first cpu from the
terminals is identical to the state of the system when the customer is rerouted from the
second cpu back to the first. When an event causes a transition to a vanishing state, a
transition probability matrix is constincted containing every state reachable in zero time.
This transition probability matrix can be solved to determine the rates between tangible
states. See [MARSS4] for more details.
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'3.3.3 Ordering of messages .
The order in which messages are delivered can be significant as illustrated in thc;: following
example, a reliability model where components can fail and be repared. In addition to
failing themsclves, the failure of one component may cause another component to fail,
The model consists of cpu and disk components where a disk failure causes a cpu to fail.

- The repair service discipline is first-come first-served. When a disk fails, a message is
sent to the cpu to tell it to fail and from the disk to the repair service to request repair.
When the cpu receives the fail message, it also sends a message requesting repair. These

. messages are all sent in zero time. Even though the messages from the cpu and from the
disk requesting repair both arrive at the repair service in zero time, if the message from
the cpu comes to the repair service first, then the cpu would get repaired first, otherwise
the disk would get repaired first. The order of messages determines the order that the
components are repaired, even though the messages are nominally delivered at the same
time. ‘ P ’

In- terms of understanding the behavior of a model, this is the weakest point of our

. paradigm. However, this problem is not unique to our system but rather is shared with
-. “every other modeling system with zero time events. If needed, this ambiguity is detectable,

but in general proves to be very expensive. To detect ambiguity, all permutations of
;néssages must be tried. If two permutations of messages derive different tangible states,
there is an ambiguity. However, many standard types of objects are not affected by the
order in which messages arrive, e.g. a processor sharing server is not affected by the order

- in which customers arrive, and neither is a priority server. In addition, as long as no

object that is sensitive to message order reccives more than one message in zero time,
‘there can be no ambiguity. This will usually be the case. In those other cases where there
-is an ambiguity, it should be noted that any ordexing of messages can be specified by the
modeler.
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4 Examples.

In this section we present several examples which further illustrate use of the system. In the
first example, we show the ease of using predefined library ob Jects along with user defined
objects in a model. The second example is a processor-bus-memory example drawn from
the Petri Net literature. The third example is of a more complex condition that could
be used in a model. A final example shows an example query of analysis.results. These
examples show some of the power of our approach. o ‘ :

- 4.1 Queueing Network Exairnple o | L

In this example we demonstrate the simplicity of building new object types and using'them

in conjunction with object types from a library. We emphasize the ease with which new

objects can be created and used in conjunction with predefined objects. This inodel is of

a simple load balancing system as shown in figure 2. The model is in two parts, the first
~ part instantiating objects from predefined types, and the second describing a new object.

The type statements establish the basic objects, a set of terminals using the infinite server
* queueing discipline, and two cpus using the processor sharing queue discipline. The nitial
~'statements, route statements and departure_rate statements fill in the necessary parameters

for the objects. The other object needed is the scheduler. Assuming that no such object
. type exists in the library, the scheduler must be defined specifically for this model.

The scheduler tries to maintain an up to date view of the system by getting new state
~information from the two cpus. To do this, it samples the queue lengths of the two cpus
-at intervals which are exponentially distributed with mean 1/ur. When an arrival comes
1o the scheduler from the terminals, it is sent to the cpu the scheduler believes has the

lowest load. If the scheduler believes the loads arc equal, it chooses one cpu or the other
‘with probability 1/2. ' ‘ '

‘The scheduler has a state that is a 2-tuple (n;,1,), where
n; = the quecue length last supplied from epu;.

The initial state has zero customers in cach cpu.  The only event that the scheduler
generates is the update event, which gets the current state information from both epus.
The scheduler also receives arrival messages from the terminals. Upon reccipt of an arrival,
the scheduler compares the quenc lengths of the two epus in its most recent load update.
If they are the same, one cpu or.the other is chosen with probability 1/2, and an arival
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message 1s sent to that cpu. If they are dlﬂ'elcnt an arnval is sent to the cpu that
apparently has the smallest number of customers.

fype( terminals,inf).
type(cpul,ps).
type(CPu »Ds)-

: nutxal( ter1mnals,3). | -
initial(cpul,0). S
mitial(cpu2,0).

route(terminals,scheduler,1.0).
- route(cpul,terminals,1.0).
route(cpu2,terminals,1.0).
departure_rate(terminals,tr).
departure_rate(cpul,cr).

- departure.rate(cpu2,cr).

OBJECT: scheduler
INITIAL STATE: [0,0] '
"EVENT update: DONT.CARE~ > [7\71 N2j .
: ACTIO\ evaluate(cpul,state,N1),
- - evaluate(cpu?2,state,N2)
RATE: ur
MESSAGE terminal.arrival:[M, N}~ > [M, N]
CONDITION: M = N
ACTION: send(cpul,arrival)
PROBABILITY: 1/2
CONDITION: M = N
ACTION: send(cpu2.arrival)
PROBABILITY: 1/2
- CONDITION: M < N
ACTION: send(cpul.arrival)
CONDITION: M > N
ACTION: send(cpu2.arrival)

17



4.2 Multiprocessor System Miodel Co .

This next example is from [MARSS84] and is a Generalized Stochastic Petri Net (C SPN)
model of a multiprocessor system with multiple buses and nmultiple common memorics. We
describe this model using our methodology and compare it with the GSPN model. This
particular example is a five processor, three common memory, two bus system as in figure
3. The GSPN model for this system is shown in figure 4.

The fqllowing description of the system is also from [MARS84] :

In this model, the processors execute in their private memory for an ex-
ponentially distributed random time with mean 1/A before issuing an access
request directed to one of the common memories in the system. The request

——— ‘may not be immediately served, either because there is no bus available or

because the addressed memory is busy. The durations of accessed to common
- memories are independent, exponentially distributed, random variables with
~mean 1/p.

. The following bus arbitration policy is assumed: if a processor, say A, is
in the queue for a memory already accesses by another processor, say B, then
at the end of the access the bus 1s not 1eleased but is immediately given to
processor A. '

Usmg our methodology, the system is modeled as three obJects CPU representing the
cpus, CM the conunon memories, and B the buses. The CPU object state is just the
number of cpus executing in their private memory. The bus state is the number of free
buses when positive, the number of customers waiting for buses when negative. The state
of the common memory is a three-tuple representing the number of processors waiting for
or accessing each memory. Initially all five cpus are executing in their local memory, both
buses are free, and no cpu is trying to access a common memory. '

The description of the CPU objcct is very straightforward. When there are N > 0
cpus cxeculing in their private memory. they make an access to comumon memory at a
rate of N*lambda. A request to acquire the bus is sent and the state of the cpu object is
decremented. The cpu object can receive one message, process, the result of a cpu finishing
its accessing of a common memory. The state is then incremented as the processor goes
into its private memory execution phase.

The bus object implements the arbitration policy. It generates no events but handles

two messages, acquire and release. The handling of the aequire message depends on whether
there is a ﬁc(' bus, N > 0 or not, N <= 0. If a bus is fl(‘(‘ the request is immediately
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granted by decrementing the number of free buses and sending the access message to
the memories. If no bus is free, the numbgr of free buses is decremented ';'ejjl'cscnting
the number of common memory access requests waiting for a bus. -Handling the release
- message is similar to acquire. If there are requests waiting for a bus, N < 0, when one is
released, the number waiting is decremented and an access is sent to the memorics.
, C
' The memories are described in two different ways. The event, release is handled in
an initially simpler fashion, explicitly spelling ‘out the transitions. The access message is
handled in a more general way, but a way that seems more confusing at first. N ormally
access and release would both be described ill the general way.

The memories object generates a release évent at rate mu for each memory being
accessed. If there are no more cpus queued for that memory, (N =1, O = 1,0or P =1),
that memory is decremented, the cpu is sent- the process message, and the bus is sent the
release message. If on the other hand, other cpus are queued for that memory, (N > 1,
O > 1, or P > 1), the queue at that memory is still decremented and the cpu is still sent

- the process message, but the bus is not released. T C

~. The access message is very similar. It is handled by using a substitute ( subst() ) that
nondeterministically picks one element in the memories state such that it meets the rest of
the condition. If there are already cpus queued at the selected memory (N > 1), the queue
size is incremented and the bus is released. If the memory is free (N = 0), the number of
cpus at that memory is set to one. Not only is this more general, it is also 1nare compact.

OBJECT: cpu

INITIAL STATE: 5 :

EVENT access.common: N— > N1
CONDITION: N >0 o
ACTION: N1 is N-1, send(bus,acquire)

: RATE: N * lambda

MESSAGE process: N~ > N1
ACTION: N1is N+1

OBJECT: bus
INITIAL STATE: 2
MESSAGE acquire: N— > N1
CONDITION: N <=0
ACTION: N1is N-1
CONDITION: N >0
_ACTION: N1 is N-1, send(mcmories,access)
MESSAGE relcase: N— > N1
CONDITION: N <0 .

19



T @

ACTION: N1is N+1, send(mcmoucs access) . oo
- CONDITION: N >=0 o : o -
ACTION: N1is N+1 ' - ‘ _

OBJECT: memories

INITIAL STATE: [0,0,0] :

EVENT release: [N,0,P] -> [N1,01,P1] '

CONDITION: N > 1 .

ACTION: N1 is N-1, O1=0, P1=P, send(cpu,pzocess)
CONDITION: O > 1

‘ACTION: N1=N, 01 is O-1, Pl P send(cpu, pxocess)
CONDITION: P> 1

ACTION: N1=N, O01=0, Pl is P-1, send(cpu p1ocess)
CONDITION: N =1

ACTION: N1 is N-1, O1=0, P1=P, send(cpu,process), send(bus,release)

——  CONDITION: O = 1

ACTION: N1=N, O1 is O-1, P1=P, send(cpu,pzocess), send(bus, 1e]ease)
CONDITION: P =1

"‘. - ACTION: N1=N, 01=0, P1 is P-1, send(cpu,process), send(bus,release)

RATE: mu

MESSAGL access: M— > M1 .
CONDITION: subst{N,M,N1,M1), N > 0
ACTION: N1 is N+1, send(bus, release)
CONDITION: subst(N,M,N1,M1),N =0
ACTION: N1 is N+1 '

We see two main advantages in our approach over GSPNs. The first is the modularity
in describing each object separately and only letting objects interact in one stylized way.
This has been discussed earlier. The second advantage is in the generality of the models.

~ To accommodate an increase in the number of common memories in the processor-
bus-memory GSPN model, additional places and transitions must be added. The number
of places and transitions needed for this model is lincar' in the number of memories. As
is shown in [’\IARSb-l] this lincar growth of places and transitions with respect to the '
number of memories can be avoided by skillfully reorganizing the model. But this is done
by making the number of places and transitions lincar in the number of buses in the
model. In addmon ch'mgmg, from a memory dependent model to a bus dependent one is
nontrivial and in our opinion prone to crror. In our model, changing the number of bus, |
cpu or memory components involves only changing the initial state. For example, a ten
cpu, six memory, four bus system, would only require changing the epiw initial state from
5 to 10, the bus state from 2 to 4, and the memory state from [0.0 01 to [0,0,0,0.0.0}.
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4.3 - Complex Conditions = * ~ = S e

Another illustration of the flexibility of our system concerns the manner in which complex

conditions and control schemes can be mcorporated into a model. For example, in relia-

bility models, a user might have a repair policy that gives priority to an}-' one component
that if repaired would make the system operational. If no single component being repaired

would make the system operational, the repair policy would be a user defined priority.

This kind of behavior can be very difficult to ntodel in other systems because of its ad hoc

nature. Note that any one specific example could be incorporated in a system - the real

trick is to allow ad hLoc rules to be specified. Jn this section are presented two examples to

illustrate these points. :

- The following two examples are written in Prolog. Prolog gives the user much more
expressiveness than the stylized interface language. These predicates written in Prolog

-can then be used directly by the high level language in the CONDITION statement or

ACTION statement. T

L.
-~

'4.3.1 Data Availability Modeling Example. |

~ ‘This simple example should serve to illustrate the ease of representing a useful, non-trivial

- system model fcature in Prolog. Suppose we have a distributed architecture model as
“illustrated in figure'5. The “connectivity” between components can be represented by a
- set of Prolog “facts”. ’ ‘ S '

connééted(State, cpul, bus) :- up(Sta.te,.cpul), up(State, bus).
connected(State, cpu2, bus) :- up(State, cpu2), up(State, bus).
connected(State, bus, controllerl) :- up(State, bus), up(State, controllerl).

-connected(State, bus, controller2) i up(State, bus), up(State, controller?).

connected(State, controllerl, diskl) :- up(State, controllerl), up(State, disk1).

-connected(State, controller?, disk1) :- up(State. controller2),.up(State, disk1).
~connected(State, controller?, disk2) :- up(State, controller2), up(State, disk2).

These rules state that a direct data path exists between the named components if both
componcents are operational (“up”) in the current state.

A rule which defines the existence of a data path between two components can be given
by the following rules,

pat.h(S‘taic.X,Y) - connected(State. X.Y).
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path(State,X,Y) :- connec_ted(State,X,Z),path(Staté,Z,Y). - o

The first rule states that there is a path from “X" to “Y” if “X” and “Y” are directly "
connected. The second rule states that therc is a path from “X” to “Y” if “X" is directly
connected to some component “Z” and there is.a path from “Z” to “Y”, '

Now suppose that critical data is replicated as described by the following facts:

~

copy(d1, disicl). %'éopj' of data item d1 on diskl .

copy(d1, disk2). % copy of data item d1 on disk?2
copy(d2, disk2). % copy of data item d2 on disk2

A rule can be u_séd to define the availability of a data path to at least one copy of each

-~ data item:

4

: --data;ax'aila.bie(State) :- data_available(State,d1), data.a_véﬂablc(ét-éie,.d.?).

: &ata.a\'ai]able(State,dl) :- copy( dl,Disk), cpu(CPU), path( State.CPU,Disk).
o data.available(State,d.?) :- copy(d2,Disk), cpu(CPU), path(State,CPU,Disk).

-operational(State) :- data.arailable(Stéte). |

The first rule states that all data is accessible if both data items “d1” and “d2” are
accessible. The next two rules state that the conditions for availability of each data item.
For example, “d1” is available if there is a disk containing a copy of “d1” and a processor
with a path from the processor to the disk. The Jast rule says that the system is operational
if all the data is available. The operational predicate would typically be used in a condition
~statement. '

' The above description is one example of how relationships and rules of behavior can
be represented relatively simply in Prolog,. T

4.3.2 “Trap States”.

There arc cases for which it is desivable to define trap states for the modcl. A trap state is -
a state with no transitions out of it. For example, in availability models one would want
to define the conditions under which the system is considered to have failed., 1t s also
convenient to be able to truncate the state space by not allowing more than some number
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of failures. These cases are handled by allowing the definition of trap states. :’I‘lie trap
predicate allows the user to define what system states correspond to trap conditions. If
we want to trap on states with two failures in the example in Section 3 we would add:
‘ , Cod
trap(State) :- member([repair facility, [ 1, r; ]], State). ' - ' e
_ While searching the state space, a transition to a state S for which trap(S) is true, can
be automatically changed to a transition to a state trap_state.name. "

I

- . . . . N
© .

. 4.4 Querying the Analysis Results

So far, we have concentrated on generating the markov chain. Another feature of our
prototype is the query language. If a user is.interested in equilibrium state iformation,
she is generally interested in a more compact answer such as the mean queue length at a
particular object, or the marginal probability that an object will be in a particular state.
To answer this type of query, we allow a user to associate a “reward” with each state.
‘These states are specified by rules similar to “ACTION” rules. To calculate the result, the
systeni simply sums up the product of the state probabilities and the associated rewards.
As an example, consider the load balancing scheduler system model of section 4.1.
- Suppose we are interested in the percentage of time that the system is in an unbalanced
state, 1.e., states in which the number of customers at one cpu has at least two customers
more than the other cpu. A reward of 1.0 is associated with each state that has this
property. This is specified as follows.

" QUERY: unbalanced
-OBJECT: cpul
STATE: N1
OBJECT: cpu2
STATE: N2 S : .
CONDITION: N1- N2>1 B o R
REWARD: 1 ' ’ o
CONDITION: N2-N1>1
RE“-YARD: 1

The actual query would be:

query(unbalanced, Result).




.
. .

For particular models or libraries, a user might have many gueries predefined in a
library similar to an object library. :

\
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5 Conclusion. | '_ et R t

The approach to defining system models and generating the Markov process idoscripti_on
that has been described is very simple and yet powerful. It took only a few hours to
define the “objects” for availability modeling of the same order of soplistication as the
SAVE system. The same level of effort was required to define a set of objects for queucing
network models. In addition we have hiad occasion to use the system to define various ad
hoc models (e.g. a priority queuing system in which the low priority customers reccived
service after waiting for some number of high priority customers). The ecase with which
the interface was tallo1ed to these application domains makes the S) stem unique among
other systems we know of.

The extensibility of the system is easily seen. For example a model can easily be defined
that incorporates object definitions from a hblan of predefined objects with new ob_]ccts
that the modeler mshes to define. : ‘

The emphasis in this system is on flexibility and power in defining models. As it is a

““prototype system, we have not concentrate in optimizing its performance. However, we

belicve that the advantages will make the approach attractive for at least two purposes

_lalgeh mdependent of the efficiency issue:

a. as a methodology for prototyping a new modeling interface.

b. in defining ad Lioc models for studles in which the main objective w ould be to qmckh
build the model. '
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