*RELATORIO TECNICO=

A FARALLEL ALGORITHH FOR
FINDING SFPANNING TREES
OF GRAFHS

Jayme luiz Szwarcfiter

NCE-1&/90
Junho/99

Universidade Federal do ®io de Janeivo

Mucieo de Computacio Eletvdnica
Caixz FPostal 23224
20001 - Rio de Janeivo - RJ

. BRASIL

Este artigo sera publicado originalmente no I URSS-ERAZIL Seminar
on Informatics, Scientific Computing and applied Hathematics, que

vrealizar-se—-3a em Nova Friburgo/RJ, no periodo de 24 a 27 de julho

de 1999.

[y

Y
“eid UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

_j‘? NUCLEO DE COMPUTACAO ELETRONICA

L X

T

A PARALLEL ALGORITHM FOR FINDING
SPANNING TREES OF GRAFHS

ABSTRACT

We describe a parallel algorithm for finding the connected
components of a graph. The algorithm constructs a spanning
tree for each of its connected components in O(leg™n) time
with O({n+m)-log n) processors and O(n+m) sSpace, under a
CREW PRAM model, where n and m are the number of vertices
and edges of the graph, respectively.

UM ALGORITMO PARALELO PARA DETERMINAR
ARYORES GERADORAS DE GRAFOS

RESUMO

Descrevemos um algoritmo paralelo para determinar os
componentes conexos de uma grafo. O algoritmo constroi uma
arvore geradora para cada um de seus componentes conexos em
tempo O(leg'n), com O((n+m)~-log n) processadores e O (n+m)
espaco, sob um modelo CREW PRAM, onde n e m representam os
numeros de vertices e arestas do grafo, respectivamente.

Y

A PARALLEL ALGORITHM FOR FINDING
SPANNING TREES OF GRAPHS

Jayme Luiz Szwarcfiter

Universidade Federal do Rio de Janeiro
Nucleo de Computacac Eletronica ~ Instituto de Matematica
Caixa Postal 2324, Ric de Janeiro, RJ
CEP 20001 - Brasil

June 1990

ABSTRACT

We describe a parallel algorithm for finding the ccnnected
compenents of a graph. The algorithm constructs a spanning
tree for ~ach of its connected components in O(log™n) time
with O((n+m)- log n) processors and O(n+m) space, under a
CRE¥W PRAM model, where n and m are the number of vertices
and edges of the graph, respectively.

RESUMO

Descrevemos um algoritmo paralelo para determinar os
compeonentes conexos de uma grafo. O algoritmo constroi uma
arvore geradora para cada um de seus componentes conexos em
tempo O(log'n), com O((n+m)-log n) processadores e O(n+m)
espaco, sob um modelc CREW PRAM, onde n e m representam os
numeros de vertices e arestas do grafo, respectivamente.

1. Introduction

Finding connected components of a graph is c&mmcnly considered
tc be the most basic algerithmic graph problem. Many parallel
algorithms have been devised for it. The most efficient of them
are based on an approach by Hirshberg, Chandra and Sarwats [S]
(cf. Karp and Ramachandran [(8]). Among those, the algorithm with
least complexity was obtained by aprlying the optimal list ranking
techniques by Cole and Vishkin [3]. This provides an
implementation of the methods by Awerbuch and Shilcach [2] and
Shilcach and Vishkin (7] which runs in time Olleg n)
using O((n+m).a(m,n)7log n)) processors, for an arbitrary winner
CECY¥ PRAM model. Here, n and m are the number of vertices and
edges of the graph, respectively, while a(m,n) is a very slowly
growing function, the inverse Ackerman function. By the simulation
among models, this implies an algorithm for the EREW PRAM model of

complexity O(logzn) time and O((n+m).a(m,n) 1og n) processors.

In this paper we describe a variation of the common approach for
the cconnectivity problem. It leads to an algorithm which can be
implemented in a CREW PRAM model, wusing O(logzn) time and
O((n+m) 7log n)) processors. The implementation is based on the
optimal techniques for list ranking (Cole and Vishkin [3]), Euler
tours on trees (Tar jan and Vishkin [8]) and sorting (Ajtai,
Komlos and Szemeredi [1]). Parallel algorithmic techniques were

surveyed by Eppstein and Galil (4] and Karp and Ramachandran (6].

Basically, the proposed algorithm constructs iteratively a
spanning tree for each connected component of the graph. At each
iteration, a convenient forest 1is selected. The connected
ccmpcnents of the forest are then obtained and :dded to the

spanning trees under formation.

2. The Algorithm

G denotes an undirected graph, with vertex set V(G) and edge set
E@, |V |
subgraph F < G such that V(F) = V(G) and each of its connected

n and [E(@G)| = mn. A sparning forest of G is a

cemponents is a tree. If for every edge (v,w) € E(G), v and w lie
in the same tree of F then F is complete; if they lie in different
ocnes then F is trivial. A trivial forest is denoted by F¢.

Starting from it we describe an algorithm to construct a complete

forest.

Any spanning forest F induces a labe ling f:V - {1, ...,n}, as
follows: f(v) = f(w) iff v and w belony to a same tree of F. An
edge (v,w) € E(G) is active when f(v) = f(w). In this case,

letting f(v) < f(w), (v,w) is an edge of type (O,f(v)) and
1,f(w)). An active vertex is one incident with an active edge.
Denote by n’ (G) the number of such vertices of G. A transversal H
of F having type p, O<p=<l, is a subzraph of G such that

(i) all edges of G are active, and

(ii) each v € V(G) is incident in H with at most cne edge of

type (p.f(v)).

Figure 1 illustrates the two types of transversals.

The application of transversals in the process of determining a

comple .e spanning forest of G is based on the following theorem.

Theorem !: Let G be a graph, F a spanning forest of it and H a

transversal of F. Then F UH is a spanning forest.

Proof: Assume first that H is cof type 0. Since F is a spanning
subgraph of G, so is F U H. We have then to show that F U H has nco
cycles. Suppose this is not true, and let C be the cycle of F U H
of the form v{...,VA.vi, q> & Let F* = F U C and H* = H u C.
Without loss of generality, let v, be a vertex of least label in
C. Since F is a forest, C must contain an edge of H incident with

each distinct label of <C. Therefore, again without loss of

Ak

Type 1 6
transversal

Type O
transversal

FIGURE 1:
A GR/iPH G AND TWO TRANSVERSALS

10
4 2
10
[
:t[ji::::::;i:
4 y
10

—

C

e |

generality b= may assume Lthat {vi.vzﬁ = E(H).. Hrnce
f"-’.‘-fi.'l L {vzj . that is=s fvlnle is an edge of type (D.f(v1).
i
Alse, f(v) = rfiv.]), otherwise f(v) < f(v) which tmplies (v ,v)
q 1 1 3 1. /9

e E(H")y iie. {Vi.‘VJ is a second distict edge of H' having type
q

'Q.fllvi}). The: latter contradicts H as a type 0O tramsversal. Now,

lett k¥ b= the smallest integer, 24k=qg, =such that fiwv) = £(v) for
: g
k=iz=g and T -"k_i} S {ij . Such a ‘wvaluse of kK exists, since
o Y Ol = - FNLY. Henoel Sl o ¥ v ¥, SFEat dass o bve o)
z 1 = k-1 k k-1" "k

1= agaln a second distinct edge of H' to be of tvpe iD.I‘EvLJJ. a
coentradiction: Therefere, F U H is acyclic., If H i=s of Ltype 1, use

similar arguments. o

The above theorem leads to an algorithm for finding a complete

—

=panning forest of a graph & 3Start from the trivial forest F = r¢

and iteratively find a transver=sal H of F, which 1= incocrporated

to F. The process terminates whnen S has no longer ac . ive vertices.

& pecessary condition for this algorithm to be efficient 1s that
it has to terminate within a leogarithmic number of i1terations.

Hext, we show that this coaditien is satisfilied,

A moximun transwversal 1s one with a maximum number of edges,

Ti 2orem &£: Let G be a graph with no isclated edges and H a

maximum transvars:l of F@. Then [EMH)]| = o2

Frogof: Suppose bLthat H is af type O, otherwise: the procof is
sim:lar, Slnce F;':; is triwvial all wertices of 6 have different
labelse, We show that VIG)-V(H) is an independent set of G. Assume

it is not and let w, w = VIGEI=-Y{H), Tlw) ¢ fiw) and {(w ,.w) =
i Z i 2 1 Z

El(Gi. Then {w‘ ; wzJ i= an edge of type (O,.f {wi))} and =ince w o=
ViiHT bk follows H £ (wi.'w'z‘.f} is a type 0O transversal with cone
more edge than E, a contradiction. Hence WV {3E) -V ({H) i=s an
irdependent set. Mow, let g1 be the number of connected

components (trees) of H and v, 1=2i=q, be the vertex cf maximum
L

label in the 1-th component of H. Then {vi.,...v‘.} i= alsoc an
T

independent set. Otherwise, if (Vl.vl} = E{G): then {VL.‘IJ} is an

E_Ad

edge of type (O,f(vi)) and since H does not contain any other edge

of such type, it follows that H u {(vi,vz)} is also a type O

transversal, a contradiction. A similar argument preves that
I = <v{...,vq} U [(V(G)-VH)Y is still an independent ;et. Now,
II] = g + n = |[VH)]. Since |[EMH)| = |[VH)| - g. it follows
I} = n - |[EMH)|. If |EMH)]| < ns2 then |I]|] 2 n/2. Since G has no

isclated vertices and I is an independent set, each W€ I must be
adjacent to a vertex w; = I. Since H is maximum and of type O, it
follows f(wg > f(wg. Let H® be the subgraph defined by selecting
one such (w;.wg edge, for each W€ I. Then H’ is a type 1
transversal of F, having iI] > |E(H)| edges, a contradiction.

@
Therefore (EH) | = n/2.D

Finding a maximum transversal is simple. Construc. a maximum
transversal H of each type, O and 1, and then choose the largest
of them. To obtain H, for 1<i<n, select if possible as a
representative of V., any edge hﬁ,vﬂ such that f(vg < f(vg if

H is of type O, or f(vg > f(vj) otherwise.

The condensation G*(F) is the graph obtained from G by
identifying all vertices which li= in a sare tree of F. It follows
that if H is a transversal of some spanning forest F of G then it
is also a transversal of the trivial forest of G*(F). We can now
formulate the algorithm.

Let G be a given graph. In the initial stage define F := F¢. In
the general stage if n’ (G) = O the algorithm terminates (F is a
complete forest of G). Otherwise, find a maximum transversal H of
the empty forest of G, set F := F U H, G := G" (H) ard rep=at the

general stage.D

Theorem 2 asures that the number of iteraticns of the general

stage is at most 1 + Llogz(n—l)J.

"

3. Implementation

In this section w2 describe an implementation of the algerithm
in a CREW mcdel.

The graph G is supposed to be given by a set of adjacency lists
AG (vt) , 1<i<n. Each ncde vJ_ € Aa(v‘,') keeps vj itself, a pointer to
the next node of this list and a value g(vj). possibly equal to
the current label of vj. The output complete forest F is also
represented by its adjacency lists Al__ (vt). In addition, the

current labels are kept in an n-element vector f.

INITIAL STAGE:

In the initial stage, we set AT(V‘_.) 1= ¢ and f(v‘) := 1, 1=i=n.
Next, we examine the adjacency lists Aa(vt) and in each node
correspunding to vj € Ac(vt) set g(vl) : = f(vJ). 1<i<n. Finally.,
compute n'(G) by counting the number cof vertices v, such that
Aa(vt) = ¢. The cperations in this stage require O(log n) time

with O((n+m)/log n) prccessors, using list ranking.

GENERAL STAGE:

The general stage is fermed by the three steps below.

a. Finding a MHa<imum rancversal h:

The chosen transversal is to b» given b, a vector h, where h(‘»’L'
is the label of the representative of vertex v in 4, or h(Vs.) =0
when v, has no representative. We also keep the actual
representative of \ denoted by r(vi). The conmputation of h is as

follows.

To each edge defined by vj = Ao(v‘_’) we assign mark O if T(v) <
g(vj). or mark 1 when f(v_‘) Dty (vj). Then we form sublists Az(vi)
consisting of all nodes of Aa(v‘_-) having mark O, and sublis'.s

A;(v‘) with those marked 1.

o 1
Next, for 0<q=<l construct two vectors s and s :

1, if Ac(vi) = @

sTtv)y =
i
O, otherwise,
for 1=<iZn.
Compute ¥ soﬁﬂ) and T s‘hﬁ). Define q := O if §T s? > T s*, and
g := 1 otherwise. That is, the maximum transversal is of type q.
Finally, construct h as follows. For each Vo 1<i<n, if AZ(V}) = ¢
then v has no representative and h(vg := 0O; otherwise set
h(vJ 1= gC%) and r(v) := v where v, is the vertex of the

first node in Ac(vg.

Using optimal list ranking, this step can be implemented in
O(logzn) time with O((n+m)~-log n) processors, considering all

iterations of the general stage.

b. Computing F := F U H:

n this step we identify all vertices of G belonging to a same
tree of H and assign them a common label. We find a linear
ordering (say, preorder)} on the vertices of the trees of H and use
it to guide the incorporation of H in T. The operations involved

are tre fcllowing.

First, perform the actual wunicn of the forests. Simply, for
1<i<p, if h(vg = O then include r(vg in the adjacency list

A (v).
F t

Next, compute a preorder traversal of the trees of H. For this
operation, we are requi-ed to construct the adjacency lists AH(VJ
of H, with each edge Oﬂ,vf represented twice: v, € AH(VR and
vs = Anoﬂ)' To obtain the required structure, define a list L
having 2. |[E(H)| nr.oues, as follows. Each v, such that h(vg = O
contributes with two noies to L, namely those correspending to the

edge (viJiﬁq)) € E(). Tre lists are formed after sorting L.

r
-

The actual preorder traversal is to be given by a vecter p, in

the following manner: for 1=<i<n, if v & V(4) then p(v) := O,

t 13)

otherwise p('/t) contains the preorder successor of v in H. All
L

trees of H are dealt with in parallel.

Now we proceed to update the labels . The idea is to choose a
representative label of each tree of H (say, the label of its root
in the preorder traversal) and assign it to the labels of all
vertices of the tree. First, compute a vector root, such that if
p(vg = O then rooL(vJ := 0O; otherwise assign to root(vg the
root label of the tree cof H which contains v, Finally, for each

vertex v. such that root(‘) = 0, set f(vJ ;= f(root(vg).
18

Using apprepriate list r:nking, Euler tour on trees and scorting,
we can implement this step in O(logzn) time with O(ns/log n)
processors, overall. Observe that the sum of the sizes of the list
L, over all iterations of the general stage, is at nrost 2((n-1).
Therefore, the overall number of operations required for sorting
all lists L is O(n log n). This agrees with the above bounds, A

similar argument applies to the computation of vecter root.

c. Computing G := G CHD:

In this step, we 1link together the adjacency lists of the
vertices of G which now belong to a same tree of T. They
correspond to those havirg a common label. The idea is to perferm
this operation guided by the preorder traversal of H, given by p.
For 1<i=Zn, if p(vg = vj 2 O then we incorporate Ac(vﬁ in
Ao(vg, by making the last node of AO(VJ to point to the first of
Ao(vﬁ, and redefining AG(VB 1= .

Next, we update the wvalues of g(vf as follows. For 1=<i=n, if
AO(V}) # ¢ then examine each node v& € AO(VJ. Ifr root(w&) = O set

g(vﬁ 1= root(VQ.

Finally, compute the new value of n’ (Q).

This step can be implemented in overall time O(logzn) using
O((n+m) “log n) processors, again by optimal list ranking. Hence

these are tie bounds for the entire algorichm.
4. Conclusions

We have describecd a parallel algorithm for finding a sSpanning
tree of each connected component of a graph, together with an
implementation of complexity O(logzn) time with O((n+m)-log n)
processors and O(n+m) space, under a CREW PRAM model. Cl early, the
connected components of the graph are obtained as a by-product

of the spanning trees.

a4’

W

REFERENCES

M. Ajtai, !. Komlos and E. Szemeredi, Sorting in ¢ log n

Farallel Steps, Combinatorica 3 (1883), pp. 1-1S.

B. Awebuch and Y. Shilocach, New Connectivity and MSF Algorithms
for Shuffle Exchange Network and PRAM, JEEE Trans. on Computers
C-z8 (19887), pp. 1258-1283.

R. Cole and U. Vishkin, Approximate and Exact Parallel
Scheduling with Applications teo List, Tree and Graph Problems,
Proc. &E7th Annual IEEE Symp. on Fourndations of Comp. Sct.,
1986, pp. 478-491.

D. Eppstein «nd 2. Galil, Parallel Algorithmic Techniques for
Combinatorial Computation, Ann. Rev. Comp. Sct. 1988, pp.
£233-28:.

D. S. Hirshberg, A. K. Chandra and D. V. Sarwate, Computing
Connected Compor.2nts on Parallel Computers, CACM 22 (197S), pp.
481 --:64.

R. M. Karp and V. Famachindran, Parallel Algorithms for Shared
femory Machines, Rep. UCB-CsSD 38,408, Computer Sc. Div.,

University of California, 3erkeley, CA, 1988,

Y. Shilocach and U. Vishkin. An O(log n) Parallel Connectivity
Algorithm, J. Algorithms 3 (1982), pp. 57-87.

R. E. Tar jan and U. Vishkin, An Efficient Pa. allel
Biconnectivity Algorithm, SI4AM J. Comp 14 (198%), pp. 862-874.

- 10 -

