RELATORIO TIECNICO

TWO PROBLEMS ON THE GENERATION
OF LINEAR EXTENSIONS OF POSETS

Andréa Werneck Richa
NCE/UFRJ

Jayme Luiz Szwarfciter
NCE/UFRJ

NCE — 07/92
agosto

Nucleo de Computacao Eletrénica
Universidade Federal do Rio de Janeiro

Tel.: 598-3212 - Fax.: (021) 270-8554
Caixa Postal 2324 - CEP 20001-970
Rio de Janeiro - RJ

Two Problems On the Generation of Linear
Extensions of Posets

Andréa Werneck Richa Jayme Luiz Szwarcfiter

Julho de 1992

Resumo

Apresentamos dois resultados sobre a geracao de extensoes lineares de um poset.
Primeiro provamos que as extensoes lineares de todo poset podem ser geradas por
inser¢do. A seguir, descrevemos um algoritmo de tempo médio constante para gerar
as extensdes lineares de um poset série-paralelo em ordem lexicogrifica.

Abstract

We describe two results on the generation of linear extensions of a poset. First,
we prove that the linear extensions of every poset can be generated by insertion.
Next, we describe a constant average time algorithm to generate the linear exten-
sions of a series-parallel poset in lexicographic order.

1 Introduction

Given a set of combinatorial objects, a natural question is whether or not they can be gen-
erated following some kind of sistematical criteria. In addition, the interest is to generate
them efficiently. For instance, given a poset one could ask whether its linear extensions
can be generated by transposition or by insertion. That is, if there is a total ordering of
its extensions such that two consecutive extensions differ by a single transposition or by
a single insertion of its elements, respectively. It is known [11, 8] that the former kind of
generation is not possible in general, and an open question is to characterize the posets
that admit it. In contrast, it is shown in Section 2 that the linear extensions of every
poset can be generated by insertion.

We say that a generation algorithm runs in constant average time if it requires O(V)
time, where NV is the number of objects being generated. Generating the linear extensions
of a poset can be done using the algorithms in [16, 4, 5, 15]. Pruesse & Ruskey [7]. however,
answered the question in the best possible way, by describing a constant average time
algorithm for it. This result is also interesting in view of the fact that the corresponding
enumeration problem has been proved to be # P-complete (Brightwell & Winkler [1]).
In Section 3, we describe a constant average time algorithm for (optimumly) generating
the linear extensions of a series-parallel poset in lexicographic order. Except for the
case of irrestricted permutations [9}, we do not know other classes of posets whose linear
extensions have been generated in lexicographic order within constant average time.

A partially ordered set (poset) P(S,R) is a reflexive, transitive and antisymmetric
binary relation R on a set S. Denote n = |S|. An ordered pair (a,b) € R is denoted
a 2p b.orsimplya Xb Bya<bwemeana < band a # b. An element a € S is
minimal (mazimal) in P if there is no element b € S such that b < a (a < b).

If neither a < b nor b < a then a and b are said to be incomparable. If no pair of
elements of S is incomparable, then P is a total ordering (or linear ordering or chain).
Cr denotes a chain of length (number of elements) k. An extension of P(S, R) is a poset
Q(S, R') such that R C R'. An extension of P that is a total ordering z,z,...z, is
a linear extension of P. Let E(P) and e(P) denote the set and the number of linear
extensions of P respectively.

Let P(S, R) be a poset. A subposet of P is a poset P'(S’, R') such that $’ C S and
R = RN S x 8. We also usePgs to denote P’. A linear extension of a subposet
of P is a partial extension of P. Let Q(S’, R’) be a poset. By P — Q (or P — 5') we
denote the subposet Ps\si. The dual of a poset P(S, R) is the poset P'(S, R'). where
R = {(z,y)|(y,z) € R}.

A left (right) insertion is an operation that moves an element z from the i-th to the
J-th position in a linear extension, ¢ > j (j > 7). In general, call them a |j —|-insertion, or
simply an insertion. A generation of the linear extensions of a poset such that every pair
of successive extensions differ by a single insertion is said to be a generation by insertion.

2 Generation by Insertion

In this section. we prove that every poset has a generation of its linear extensions by left
or by right insertion.

Theorem 1 The linear extensions of every poset can be generated by left (right) insertion.

Proof : The proof follows by induction. We first consider the generation by left insertion.

Let P(S, R) be a poset with n elements. Let M = {m;,... ,mi}, k > 1, denote the set
of minimal elements of P. The subposet Py has a generation by left insertion : apply the
Steinhaus-Johnson-Trotter [12, 3, 13] algorithm to generate non-restricted permutations
of M by (left) 1-insertions. If S = M the theorem is proved.

Otherwise, the induction hypothesis states that any poset with n’ < n elements has
a generation by left insertion. Let z be a maximal element in S\M and Q be the poset
P—{z}. Let T = 4y,.... L, be a generation by left insertion of E(Q). We start with {; =
PiP2 - - - Pn—1 and add z to this extension. Let p, be the rightmost element of ¢; such that
ps <p z, 1 < s < n. Element p, necessarily exists, otherwise § = M and the theorem is
proved. Generate n—s linear extensions of P by (left) 1-insertions, successively “sweeping”
« one position to the left. That is, z occupies respectively positions n,n —1,...,s + 1.
See Figure 1.

Let £,, 1 < r < e(Q), be the next extension to be considered in I" (all 4;, 1 <2 < 7.

have already been considered).

(a) If the last extension generated from £,y = pipz...pn-1 Was p1...pn7, then the
generation from ¢, = q1gz . ..gn-1 is as depicted in Figure 1. As £, and ¢, differed by a
left insertion in I, so do p; ...pp-1Z and ¢; ... gn—12.

(b) If the last extension generated from £,_; = p1...pp1 Was p1...psT...pn-1, 1 <8<
n — 1, then we can rewrite f,—; as pi...pj...Pi-1PiPi+1.+-Pn-1 and (. as
P1...DiP; .- Pi-1Di+1 -+ -Pn—1. That is, £, has been obtained from ¢,_, by a left (z — j)-
insertion. Let px be the rightmost element < z in £,. Proceed according to the value of
s:

o If s =i then py...pi_1PiTPiy1...Pa-1, 1 £ j < i < n—1, was the last extension
generated from £,_;. We can add z to ¢, in the following way : begin inserting =
between p;_; and p;1,; sweep z to the right using (left) 1-insertions of the element
immediately at the right of z; then insert £ immediately before p;_;; sweep z to the
left using 1-insertions of z until we reach pi. This procedure is depicted in Figure
2. If p;.; < z then k =1 — 1 and we stop at 7.

o If s # i then k = s necessarily. Extensionp;...p;...p;z...pi...pn-1, 1 S5 <n—-1
and 1 < j <t < n, was the last one obtained from £,_;. Insert p; immediately before
p; and sweep z to the rightmost end of /., using l-insertions, as in Figure 3 (we
assumed that s > j without loss of generality).

2

The generation by right insertion can be obtained from the generation by left insertion
of the corresponding dual poset. 0

3 Lexicographic Order Generation for Series-Parallel
Posets

We will now present a constant average time algorithm for generating the linear extensions
of a series-parallel poset in lexicographic order.

3.1 Definitions and Notation

Series-Parallel Posets Series-parallel posets are defined in terms of a minimal series-
parallel digraph.

Definition 1
(1) The digraph with a single vertice and no edges is minimal series-parallel (MSP);

(ii) If D'(V', E') and D"(V",E") are two MSP digraphs, so are both digraphs constructed
by the following operations :

(a) Parallel Composition : D(V'U V" E'U E"),

(b) Series Composition : D(V' U V”,E' U E" U [Maz(D') x Min(D")]), where
Maz(D') is the set of sinks of D' and Min(D") the set of sources of D".

An MSP digraph may be represented using its binary decomposition tree : a strictly
binary tree where each leaf is a vertex of the digraph and each internal node represents a
series or a parallel composition of the MSP digraphs defined by the subtrees rooted at its
children.

Definition 2 A poset P(S, R) is series-parallel if and only if the transitive reduction of
R on S is MSP.

In Valdes. Tarjan & Lawler [14], we can find a linear time algorithm for recognizing
posets of this class which also finds an associated binary decomposition tree, if this is the
case. See also (2] for a description of the series-parallel class.

Let S be a set and <’ a total ordering of S; S; = T1,T2,....Zp and S2 = y1,y3,...,Y,
two sequences of elements of S. S; will be lezicographically smaller than S, according to
<’ when :

o For some j, 1 < j < min{p,q}, z; <’ y; and for all k. 1 < k < j, zx = yx. Or.
alternatively,

e p<qandforallk,1<k<p, zx = ys.

The sequences S, ..., S, are in lezicographic order if and only if S; <’ S; =1 < j.

Let T(V, E) be an ordered rooted tree and z,y € V, such that r is the father of y
in T. Collapsing vertices r and y results in the ordered rooted tree T'(V’, E’) such that
V'=V\{y}, E' = E\{(y,2) € E}U {(z,2) | (y,2) € E}. The ordering of the children of
z in T' is the same as in T, except that y is replaced by its children in the ordering they
appeared in .

Let {1,...,n—1} be the internal nodes of a binary decomposition tree T'(P), P series-
parallel. The collapsed decomposition tree T¢(P) is the one obtained from T by succesively
collapsing pairs of adjacent series nodes, as long as possible. T¢(P), or simply T¢, is not
necessarily binary. However, all parallel nodes in T¢ have exactly two children. Denote
nc the number of internal nodes of Tc(P).

Let Tc' denote the subtree of Tc with root ¢,z a node of Tc. We will write indistinctly
subposet with collapsed subtree Tc* or subposet with root k. By traversing a tree in post-
order we mean : “Visit the leftmost subtree of the root in post-order: Visit the second
leftmost subtree of the root in post-order; ...; Visit the rightmost subtree of the root in
post-order; Visit the root”.

3.2 The Algorithm

The main idea of the following algorithm is to use the collapsed decomposition tree of a
series-parallel poset to systematically generate its linear extensions.

The internal nodes of T¢ are traversed and numbered in post-order. The analysis of
each internal node z is such that z is considered only after all its children have been
analysed. During the generation process we will be doing recursive calls at the internal
nodes of T, where each internal node can only recursively call its post-order successor.
Each recursive call k always follows the generation of a new partial extension of the
subposet at k — 1, predecessor of k in post-order. When visiting node k. we look at the
partial extension most recently generated at each of the subtrees rooted at its children and
combine these extensions according to the nature of k. That is, if k is a series node then we
simply concatenate the partial extensions of its children, from left to right. If & is parallel,
then we must merge the partial extensions of the left and right children of this node.
Denote by [and r the children of k and n; the number of elements of the subposet T¢* .
Merging two partial extensions of sizes n; and n, at node k corresponds to the generation
of the nj(or n,)-combinations of ny. Thus, to perform a parallel composition, use an
algorithm to generate combinations in lexicographic order [6, 9]. Series compositions have
no inflluence in this ordering. Return from a recursive call when all possible combinations
at the corresponding node have been exhausted.

By ext(k) is denoted the most recently generated partial extension relative to Tc*, if
k is an internal node of T¢. Else k is a leaf of T¢ and ext(k) returns the label of k. By
*||” is meant the concatenation operation of two sequences of elements.

algorithm GenerateExtSeriesParallel

data Series-parallel poset P(S, R) with decomposition tree T(P), n = |§|

Construct the collapsed decomposition tree T¢(P), collapsing the adjacent series nodes of 7.
nc = number of internal nodes in T¢;

Swap. in Tc, the left subtree with the right subtree of a parallel node, every time the subtree
at the left contains more elements (leaves) than the one at the right ; _

Number the internal nodes of T¢ in post-order and label its leaves 1,...,n, from left to right.
Compute g = Y n;, ¢ a son of k. 1 < k < ng, the number of elements of Tc*;

Generation(1)

end algorithm

procedure Generation(k)
if k is a series node then
Series(k)
else
Parallel(k)
end procedure

procedure Series(k)
if k = ng then
ext(k)(= ext(leftmost son of k)||ext(2"¢ leftmost son of k)||...||ezt(rightmost son of k)]
is a new linear extension of P
else
Generation(k + 1)
end procedure

procedure Parallel(k)
Let / and r be the post-order numbering or the corresponding leaf label, if this is the
case. of the left and right children of & respectively;
¢:={1,...,m} (= first n;- combination in lexicographical order);
ext k) := ext(l)||ext(r)
if £ = nc then
ext(k) is a new linear extension of P
else
Generation(k + 1)
while c is not the last n;-combination in the lexicographic ordering do
¢ := my-combination succeding ¢ in lexicographic order;
ext(k) :=merging of ezt(l) and ezt(r), such that ¢ corresponds to the positions
occupied by the elements of ez#(!) in the merged sequence;
if k = n¢ then
ext(k) is a new linear extension of P
else
Generation(k + 1)
end procedure

The canonical extension is the one firstly generated by the algorithm, that is. 12...n.
The lexicographic ordering obtained by the algorithm is relative to the canonical extension.

Let P be a poset consisting of two disjoint chains C; and C,, of sizes r and ¢t — r
respectively. The relation between the r-combinations of ¢ integers and the set E(P) is
that there exists an one-to-one function such that every combination {a;, ..., a-}, a; < a;
iff 2 < j, leads to an extension € E(P) where a;, 1 <: < r, is the position of the i-th
element of C; in this extension.

Since n; < n,, it follows that r < ¢/2. In this case, we need in the average less than
2 steps per r-combination generated [6], as well as for finding its corresponding linear
extension. For each new element (not in the previous r-combination) elected to be in an
r-combination. one single insertion is needed. All these operations can be performed in
constant time.

The implementation employs a doubly linked list with the n elements of P, which keeps
track of the most recently generated partial extensions, as in Figure 5. Let Ps,,....Ps. be
the maximal subposets being analyzed from left to right in T¢ at a given time, US; = S.
Then for all S;,5;, ¢ < j, S; is totally to the left of S; in the doubly linked list (see
Figure 5). If we always restore the pointers between the last element of a maximal partial
extension generated and the first one of the following maximal partial extension and if
we initialize the doubly linked list with the canonical extension 12...n, then we do not
need to perform any concatenation operation at a series node. This will be crucial to
our complexity analysis, as we do not know a priori the number of partial extensions to
be concatenated at a series node. In Richa [10], we find a more detailed version of the
algorithm.

3.3 Complexity Analysis

The algorithm needs space O(n?) in the worst case for keeping track of the combinations
being generated at every parallel node called recursively.

Recognizing series-parallel posets and constructing the decomposition tree can be done
in O(n + m) time, m = |R| [14]. For collapsing the decomposition tree, post-order
numbering, building the canonical extension and computing all ny, we need O(n) time.

The total time spent during the generation of the linear extensions of P can be ex-
pressed as .

generation time(P) < ¢; NRC(Tp(P)) + c; e(P) (1)

where NRC(T¢(P)) is the number of recursive calls Generation(k) performed; c;, ¢, are
constants. The term c; e(P) corresponds to the number of steps consumed for combining
the partial extensions of the children of the root node. That is, if the root is a series
node. ¢(P) is equal to the number of calls at the root, and we take constant time at each
of them. If the root is parallel, then we would take < 2¢(P) time to generate all the
combinations relative to this node.

The time consumed by the generation of the strictly partial extensions is expressed
by ¢y NRC(T¢(P)), as for every such extension with root at node k there corresponds

exactly one call to Generation(k + 1), 1 < k < nc. We take less than 2 steps per partial
extension generated.

It remains to prove that NRC(Tc(P)) = O(e(P)), in order to have a constant aver-
age time algorithm. The proof is by induction on the number of internal nodes of T,
considered in reverse post-order (call it inorder). The induction hypothesis is as follows :

NRC(Tc(P')) < 2¢(P') - 1, (2)

where To(P’) has nc’ < nc internal nodes. The posets with a single internal node only
satisfy equation (2). -

Let Tc(P) be a collapsed tree obtained from To(P’) by replacing a convenient leaf z
by a new internal node a whose children (leaves) are the elements of P — P’. The leaf z
is chosen so that « is the first internal node of T¢(P) in post-order. The choice of z is
not unique, as we can see in the example of Figure 6.

The following can occur :

(a) a is a parallel node. Then :
e(P) = 2¢(P') 3)
NRC(T¢(P)) =2 NRC(Te(P')) + 1 (4)

It is easy to conclude that, when the children (elements of P) of the parallel node o
are composed in series with all other elements of the poset (Figure 7), e(P) = 2¢(P'). In
this case, for every extension Szy € E(P'), By € E(P' — {z}), there are exactly Byzy
and fBzyy € E(P), where y, z are the elements of P — P’ added together with « to P
Equality in (4) is trivially verified. Node a is the first one to be visited in post-order
and contributes with one recursive call. For each of the two partial extensions generated
at a (yz and zy), we will “complete” them by generating (and combining) all the linear
extensions of P’ — {z}. This will be done calling the internal nodes of To(P") recursivelly,
in the same way we did to generate E(P’).

It follows from (2) and (4),

NRC(Tc(P)) <2[2e(P') — 1]+ 1 =4e(P) -1
The proof is completed by applying (3) to the above inequality.
(b) a is a series node. Then :

o(P) 2 e(P) 5)

NRC(T¢(P)) = NRC(Te(P')) + 1 (6)

Equation (6) is similar to (4), but now only one partial extension is generated at a. On
the other hand, equation (5) needs a more careful analysis. e(P)/e(P’) is minimum when o
and its father 3 satisfy : (i) o has exactly two children; (ii) the other child of B is a leaf; and

7

(iii) B is composed in series with the remaining elements of the poset. (See Figure 8). two
children. Then for each pair yzzé.yzzé € E(P’), we have ywyzé, ywzyé, y2wyé € E(P),
w,y being the elements added to P’ together with a. Node a was inserted as the right

son of 3 in Figure 8 without loss of generality.
Finally, from (2) and (6),

NRC(To(P)) < 2¢(P') (7)

Since e(P') > 1,
o(P) < e(P) -

By replacing in (7), we have proved the validity of the induction hypothesis for P.

4 Conclusion

We have presented a constant average time algorithm for the lexicographic order gen-
eration of the linear extensions of a series-parallel poset. Besides it was proved that
every poset has a generation by insertion. It would be interesting to verify the following
generalizations of the two problems above :

1. a constant average time algorithm for the lexicographic order generation of a general
poset;

2. a constant average time algorithm for the generation by insertion.

References

[1] G. Brightwell and P. Winkler. Counting linear extensions is #P-complete. Technical Report
TR 90-49, DIMACS, 1990.

(2] M. Habib and R.H. Mohring. On some complexity properties of n-free posets and posets
with bounded decomposition diameter. Discrete Math., 63:157-182, 1937.

[3] S.M. Johnson. Generation of permutations by adjacent transposition. AMath. Comp., 17:282-
285, 1963.

(4] A.D. Kalvin and Y.L. Varol. On the generation of all topological sortings. J. Algorithms,
4:150-162, 1983.

[5] D.E. Knuth and J.L. Szwarcfiter. A structured program to generate all topological sorting
arrangements. Inf. Proc. Letters. 2:153-157, 1974.

[6] A. Nijenhius and S. Wilf. Combinatorial Algorithms. Academic Press. New York, 1975.

[7) G. Pruesse and F. Ruskey. Generating linear extensions fast. to appear. SIAM J. Comput.

(8] G. Pruesse and F. Ruskey. Generating the linear extensions of certain posets by transpo-
sition. SIAM J. Discrete Math., 4:413-422, 1991.

(9] E.M. Reignold, J. Nievergelt, and N. Deo. Combinatorial Algorithms : Theory and Practice.
Prentice-Hall, Englewood Cliffs, 1977.

(10] A.W. Richa. Geragao e enumeragio de extensdes lineares de conjuntos parcialmente orde-
nados. Master’s thesis, UFRJ, Rio de Janeiro, Brazil, 1992.

[11] F. Ruskey. Generating linear extensions of posets by transpositions. J. Combinatorial
Theory (B), 1991.

[12] H. Steinhaus. One Hundred Problems in Elementary Mathmatics. Basic, 1964.
(13] H.F. Trotter. Algorithm 115 : Perm. Comm. ACM, 5:434-435, 1962.

(14] J. Valdes, R.E. Tarjan, and E.L. Lawler. The recognition of series parallel digraphs. ACM,
1979.

[15] Y.L. Varol and D. Rotem. An algorithm to generate all topological sorting arrangements.
Comput. J., 24:83-84, 1981.

[16] M.B. Wells. Elements of Combinatorial Computing. Pergamon Press, Elmsford, 1971.

Phe..Ds.. +Pn-2Pn-1
Di...Ds.. Pn—-2TPpn-1

P1...PsPs41T ... Pn—2Pn-1
P1...PsTPsq1-..-Pn—2Pn-1

Figure 1: Adding the maximal element z to an extension p;...p,_; using (left) 1-
insertions of = only. p, is the rightmost element < z of this extension.

D1-. .p,'pj ceo Pl .p,'_l;tp,'_H eeePn—1
Pr.-.PiPj---Pk...PiciDi+1T ... Pn—1

P1.--PiPj Pk Pic1Dit1 - -PnaT 1
P1.-.-PiPj-. Pk - TPi1Pi41 - - - Pn—1
.. p,p] e Pk .'Ep,'_2p,'_.1p,'+1 oo Pn—1

P1..-PiPj---PkT...Pi—1Pit1 - - - Pn—1

Figure 2: s = 1.

PL--PiPj - -PsT ... Pno
D1.. .pipj «r e PsPs41T .. . Pp-1

Pr.-PiPj..-Ps--.TPn-1
Pl---Pin---Ps---Pn-ll'

Figure 3: s # 1.

10

| R

4 5 6 7

Figure 4: A series-parallel poset and its associated collapsed decomposition tree. Symbol
® denotes a series node and symbol & a parallel node.

|/[/]\‘\|/;// /4]/

le—— 5§ —— S5 —| S-1 S

P MR i T S P e W = I A - B R P oA BN

Figure 5: Data structure employed by the algorithm : a vector with n pointers to the n
elements in the doubly linked list.

11

pl

Figure 6: a can be inserted in exactly 3 different positions at T (P).

P P

Figure 7: « is a parallel node.

12

P P

Figure 8: «a is a series node.

13

