
Fair and Efficient Dynamic Bandwidth

Allocation for Multi-Application Networks

Ronaldo M. Salles 1

Department of Systems Engineering
Military Institute of Engineering
22290-270, Rio de Janeiro, Brazil

Email: salles@ieee.org

and

Javier A. Barria

Department of Electrical and Electronic Engineering
Imperial College London

London, SW7 2BT, United Kingdom.
E-mail: j.barria@imperial.ac.uk

Abstract

The large diversity of applications and requirements posed to current network en-
vironments make the resource allocation problem difficult to work out. This paper
proposes a dynamic algorithm based on weighted fair queueing (WFQ) to promote
fairness (in the Rawlsian sense) and efficiency (in the Paretian sense) in the al-
location of bandwidth for multi-application networks. Utility functions are used
to characterize application requirements and provide the informational basis from
where the algorithm operates. Aggregation techniques are employed to ensure scal-
ability in the network core. Simulation results confirm a significant improvement
of our approach over traditional bandwidth allocation algorithms: gains over 59%
(62%) on minimum utility in relation to maxmin (proportional) fairness without
compromising system utility. The algorithm also provides low errors (below 10%
when compared to the zero-delay centralized approach) whenever response time
does not exceed 1000 times the timescale involving flow arrivals and departures.

Key words: multi-application networks, fairness, utility functions, lexicographic
criterion, bandwidth allocation

1 This research was carried out during the author’s stay at Imperial College London
and was supported by CNPq Brazil, under Grant: 200049/99.

Preprint submitted to Elsevier Science 10 December 2004

1 Introduction

Multi-application networks are increasingly predominant in today’s telecom-
munication enterprises. The convergence trend towards IP technology has fa-
cilitated the deployment of environments where a wide variety of applications,
ranging from highly adaptive to strict real-time, coexist and have their traffic
transmitted over the same network infrastructure. In this case, as opposed to
the homogeneous scenario, the amount of resources required by each type of
application to perform well may differ substantially imposing an extra diffi-
culty to the resource allocation problem. The concept of utility function 2 can
be used to provide information about the amount of resources needed by each
application and also to support the determination of an adequate solution for
the bandwidth allocation problem.

In a multi-application network environment several different types of utility
functions (concave, step, s-shaped, linear, etc.) are envisioned and have been
qualitatively described in the literature [SHE95]. Quantitative studies on the
determination of utility functions are also the subject of intensive research,
methodologies to assess the quality of video and audio transmissions have
long been addressed by the ITU [ITU97,ITU00a]. By employing subjective
testing based on Mean-Opinion-Scores (MOS), alloted network resources can
be directly associated with different levels of application performance (QoS).
Fig.1 illustrates an example of piecewise linear utility function that is usu-
ally obtained from quantitative studies. In fact, quantitative utility functions

BW
b1 b2 b3 b4

1

2

3

4

5

U

b5

u(x)= k +
x− bk

bk+1 − bk

bk ≤ x < bk+1

Fig. 1. Piecewise Linear Utility Functions - MOS scale

can be determined for a large variety of applications: multimedia conferenc-
ing [ITU99], video streaming [LU03], VoIP [COL01], MPEG-4 transmissions
[ZHA02], TCP flows [LIA00].

In this paper, we consider the QoS requirements imposed by the multi-application
environment represented by general monotone utilities expressed as functions
of the allotted bandwidth. Utility functions provide the informational basis

2 In general terms, utility functions represent how each particular application per-
ceives quality according to the amount of allocated resources.

2

from where our algorithm operates and decision are made. They also estab-
lish a common ground that allows the performance of different applications to
be related and the optimal bandwidth allocation solution obtained. By focus-
ing on utility (application performance) the algorithm improves the quality
of service delivered to network users, which constitutes an important goal for
service providers in a competitive market.

Besides the natural appeal to allocate resources in the most efficient way, it
is equally important to avoid that an individual (or a group of individuals) is
over-penalised when compared to others. Several works in the literature have
brought the attention to this issue [CHE98,NAH98,MA99,FLO99,MIT99] and
illustrate the lack of fairness in the allocation of network resources specially
when multiple types of applications share the same network infrastructure.
In [BON01] the authors proved that unfair allocations cause instability to the
network and advocated that fairness should be considered as a design objective
for the system.

The theory of social choice and welfare economics provides a broader view
to the problem. Under this framework the bandwidth allocation problem in
multi-application environments can be generally formulated as a division prob-
lem [SEN95]. From [DAS77,ROB80] a realm of different criteria are avail-
able, when utility functions are comparable and defined over the same scale,
where the selection of a given criterion depends on the properties to be satis-
fied at the solution. To overcome the difficulties faced by previous allocation
schemes we want the solution to be fair and efficient. In social choice theory,
fairness is generally characterized by the egalitarian principle due to Rawls
[RAW99]: “the system is no better-off than its worse-off individual”, i.e. it
implies the maximization of the benefit (utility) of the worse-off individual
(max min{utility}). While efficiency in welfare economics is related to Pareto
Efficiency : “an allocation is Pareto Efficient if no one can improve his benefit
without decreasing the benefit of another” [SEN99]. Among several different
criteria the lexicographic criterion emerged as the one that enjoys both fair-
ness and efficiency as defined above. We use the lexicographic criterion to
sort out the bandwidth allocation problem and propose an algorithm based
on weighted fair queueing (WFQ) to enforce the solution.

In Section 2 we review some traditional work on bandwidth allocation and
comment about the problems that might occur if such schemes are applied
in multi-application environments. In Section 3 we formulate the bandwidth
allocation problem under the lexicographic criterion. Utility aggregation tech-
niques are presented in Section 4 in order to simplify the whole framework
and allow the solution to scale according to the number of flows in the sys-
tem. Section 5 proposes the dynamic bandwidth allocation algorithm based on
weighted fair queueing updates. Simulation results are presented in Section 6
and finally in Section 7 the paper ends with the main conclusions.

3

2 Related Work

Traditionally, maxmin fairness [BER92] has been widely accepted as the fair-
ness notion in computer networks, being used as a standard to perform band-
width allocation among homogeneous connections 3 . However, it has been ar-
gued that it may generate sub-optimal allocations in several contexts depend-
ing on the actual utility function of the applications [CRO01].

Kelly in [KEL98] using microeconomics theory introduced the idea of propor-
tional fairness where each application j is associated with a strictly concave
utility function uj (logarithmic) and allocations x are determined from the
solution of max

x

∑N
j=1 uj(x). It was further shown that the additive increase,

multiplicative decrease congestion control in TCP tends to realize proportional
fairness rather than maxmin fairness. Thus, proportional fairness fits well in
homogeneous environments with best-effort applications.

However, as mentioned in the previous section, in a multi-application environ-
ment utility functions are not all concave and so proportional fair allocations
are no more unique (several local solutions may exist) and may be completely
unbalanced (some flows get zero utilities while others experience a very good
performance). In fact, fairness embedded in proportional fairness depends on
the concavity of the utility functions [Mo00]. The next example illustrates
this idea and compares maxmin and proportional fair allocations with the
lexicographic solution studied in this paper.

Example 1 Consider the line network in Fig.2 where it is assumed that all
links have same capacity c and each route has the same number of connections
(n0 = n1 = n2 = n3 = n).For this network we have the following allocations,

Link 1 Link 2 Link 3

Route 0 (n0 connections)

Route 1
(n1 connections)

Route 2
(n2 connections)

Route 3
(n3 connections)

Fig. 2. Line Network

allocation of a route i connection: xi

max-min fair allocations: x0 = x1 = x2 = x3 = c
2n

proportional fair allocations: x0 = c
4n

x1 = x2 = x3 = 3c
4n

Assume now connections on route 0 described by S-shaped utility functions
while all other connections described by strictly concave curves. The perfor-
mance of maxmin and proportional fair allocations are indicated in Fig.3(a)
and Fig.3(b). It can be observed from the figure a considerable difference on

3 ATM Forum - Traffic Management Specificaiton 4.0, April 1996

4

other
flows

route 0
 flows

1

Utility

BW

Difference

c
2n

c
4n

other
flows

route 0
flows

1

Utility

BW

Difference

3c
4n

other
flows

route 0
 flows

1

Utility

BW
c

3n
2c
3n

(a) maxmin (b) proportional (c) lexicographic

Fig. 3. Example of maxmin, proportional fair, and lexicographic allocations for the
line network.

performance experienced by route 0 flows when compared to the others. The
figure shows that both schemes are quite unfair from an utilitarian perspec-
tive. The performance of route 0 connections under proportional fairness is
indeed very poor, the applications are almost getting absolute no utility from
the offered network service. At the same time, applications not using route 0
perform well and provide high satisfaction. If instead we apply the lexicographic
criterion, from Fig.3(c) a much fairer allocation is obtained. This allocation
conforms with the fairness and efficiency definitions adopted. Now all applica-
tions are satisfied and there is no discrimination according to the performance
(utility) viewpoint.

The example has shown that both maxmin and proportional fairness notions
are restricted to the homogeneous environment and although they can be
extended to the respective weighted versions, it is still necessary to determine
the optimal weight settings for each network scenario. More discussion about
this issue is left to Subsection 6.1 where the performance of different criteria
are compared.

Several algorithms have been proposed to return fair solutions for bandwidth
allocation problems. Regarding maxmin fairness, the main approach has been
the development of asynchronous distributed procedures with explicit rate
computations for individual sessions [CHA95,ARU96,ABR01]. Approximated
solutions have also been proposed so that allocations could be returned in
logarithmic time [AWE98]. Other approaches focus on distributed algorithms
that can be implemented without the complexity of explicit rate calculations,
it can be proved that maxmin allocations are obtained in the stationary regime
if all links employ fair queueing policies [MAS02].

Regarding proportional fairness, distributed algorithms have been proposed
using microeconomics theory and/or convex optimisation. The basic approach
is to work with primal-dual decomposition so that only one price (Lagrange

5

multiplier) needs to be kept updated at each link for the solution of the primal
problem [KEL98,ABR01,LOW99]. Such framework based on convex duality
uses the fundamental assumption that utility functions are all concave. Again,
in multi-application environments where utilities are of general shape the di-
rect application of this approach is compromised.

In contrast, the approach proposed in this paper return fair allocations based
on the lexicographic criterion (see Section 3). The proposed scheme does not
follow the primal-dual approach since it does not restrict utility functions to
be concave (but only strictly increasing), and also because the lexicographic
criterion does not have a closed-form expression which is mild for common
optimisation procedures.

Instead, the distributed algorithm proposed in this paper uses fair queue-
ing policies. It differs from traditional maxmin fairness algorithms in several
aspects. First, the algorithm considers utility information to perform the al-
locations, and thus it takes into account different QoS requirements of several
applications. Second, the algorithm works at the aggregate level with piecewise
linear utility functions in order to reduce complexity and allow the system to
scale. Third, it is based on simple messages exchanges between nodes that
while requiring some sort of synchronisation introduces very low overheads to
the network.

3 The Lexicographic Criterion

First we introduce the notation to formalize the bandwidth allocation problem.
The network is defined by a directed graph G = (V,L), where V is the set
of nodes and L the set of links; each link l ∈ L has a capacity of Cl > 0; N
represent the set of application flows sharing the network resources. Flows are
routed through single paths according to a routing matrix A, if alj = 1 flow
j crosses link l, alj = 0 otherwise. Note that any routing algorithm can be
used as long as flows are not split over multiple paths. However, the approach
can be also extended for this case whenever splitted flows are treated as a
collection of individual sub-flows. The set of feasible allocations X (domain
set) must satisfy all capacity constraints and non-negativity conditions,

X =
{

∑

j∈N

aljxj ≤ Cl; xj ≥ 0; l ∈ L
}

(1)

According to [ROB80], the solution that satisfies the lexicographic criterion

6

(leximin) is given by:

xlex = arg max
x∈X

{

lim
γ→∞

∑

j∈N

[u(x, j)]1−γ

1− γ

}

(2)

where u(xj, j) is the utility function of flow j. The limit in (2) makes the
use of traditional optimization procedures not directly applicable to compute
xlex. In fact, a better way to characterize this point would be in terms of the
objective set (image of the domain set X) and preference relations [MAS95].

Let Z ⊆ ℜN defines the objective set if it contains all points z : (z1, z2, . . . , zN)T ,
where zj = u(x, j), x ∈ X and j ∈ N . We want to characterize zlex ∈ Z so
that its components are given by u(xlex, j). Let π be a permutation for any
z ∈ Z, such that π(z) = zp if,

zp
j ≥ zp

j−1 (3)

zp
j = zk (4)

j, k ∈ N (5)

Thus, π(z) simply puts the components of z in a nondecreasing order. 4 We
also define the preference operator ≻ over Z, such that for any two feasible
objective vectors y, z ∈ Z and permutations yp = π(y), zp = π(z), y ≻ z if
∃m, 1 ≤ m ≤ N , satisfying:

yp
j = zp

j , for j < m (6)

yp
m > zp

m (7)

Definition 1 The lexicographic objective vector zlex is the largest with respect
to ≻, i.e. ∄z ∈ Z such that z ≻ zlex.

From the domain set X and Definition 1 some important properties are readily
available:

(i) xlex exists if Z 6= ∅

(ii) zlex (xlex) is unique in the objective (domain) set

(iii) xlex is fair in the Rawlsian sense

(iv) xlex is Pareto Efficient.

In fact, the lexicographic criterion when applied to the bandwidth allocation
problem can be viewed as a generalization over maxmin fairness to consider
the utility viewpoint. The objective vector zlex can be also characterized when

4 For instance, if z = (0.7, 0.9, 0.3, 0.1) then π(z) = (0.1, 0.3, 0.7, 0.9)

7

maxmin fairness is applied directly to the objective set Z ⊆ ℜN representing
an allocation of utilities. The lexicographic bandwidth allocation for each flow
is then given by the inverse utility functions xlex

j = u−1(zlex, j). The next def-
inition illustrates this generalisation.

Definition 2 A feasible allocation x : (x1, x2, . . . , xJ) is lexicographically op-
timal if and only if an increase of any utility within the domain of feasible
allocations must be at the cost of a decrease of some already smaller utility.
Formally, for any other feasible allocation y, if u(y, j) > u(x, j) then there
must exist some k such that u(x, k) ≤ u(x, j) and u(y, k) < u(x, k).

Work along this direction can be found in [CAO99] where bottleneck theory
[JAF81,BER92] was employed to define utility bottleneck links as follows.

Definition 3 Given a feasible allocation vector x ∈ X , link l is the utility-
bottleneck link of crossing flow j ∈ N , if

∑

i∈N alixi = Cl and u(xj , j) ≥
u(xi, i), ∀i ∈ N such that ali = 1.

Note that, if all utilities are given by the identity function u(x, ·) = x, Def. 2
reduces to the definition of maxmin fairness and Def. 3 to the definition of
botlleneck links.

Two important properties follow directly from Def. 3 being stated below.

Property 1 Any two flows i and j bottlenecked at link l achieve the same
utility levels: u(xi, i) = u(xj, j) = ū(l), or alternatively, link l provides utility
ū(l) for all flows bottlenecked locally.

Property 2 If a flow k crosses link l but is bottlenecked elsewhere in the
network, then u(xk, k) < ū(l).

The following theorem relates the lexicographic solution with utility bottleneck
links and together with Definition 3, Property 1 and Property 2 provides all
the necessary ingredients for the construction of an interative procedure to
find the lexicographic solution.

Theorem 1 A feasible allocation vector x ∈ X leads to the lexicographic
solution, if and only if each flow has an utility bottleneck link with respect to
x. Proof see the Appendix.

In this way, it is possible to construct the lexicographic solution from a hier-
archy of optimization problems similarly to what was done before for maxmin
allocations [GAF84]. At each stage, an utility bottleneck link is determined
along with the corresponding bottlenecked flows, then they are eliminated al-
together from the network and a new reduced problem is solved. The procedure

8

is repeated iteratively until all flows get blocked, at this stage the lexicographic
solution is achieved.

Let ū(l) represents the utilities achieved by the flows crossing link l (alj = 1),
from Definition 3, Property 1 and 2, the global utility-bottleneck link 5 can be
obtained through the solution of,

ū(g) = min
l∈L∗







ū(l)

∣

∣

∣

∣

∑

j

xj = Cl; u(xj , j) = ū(l); ∀j ∈ N , s.t. alj = 1







(8)

where L∗ ⊆ L represents the used links only.

The solution of problem (8) determines the link g and also gives lexicographic
allocations for the flows crossing g: ∀j ∈ N such that agj = 1 ⇒ xj =
u−1(ū(g), j). After that, if we eliminate link g from the network together with
its flows, and by doing the corresponding updates on the sets L∗,N and on the
available capacities Al of the remaining links, we generate a new independent
and reduced problem. Equation (8) can be applied again to this new problem
and the whole procedure repeated until all flows get blocked by their respective
bottleneck links. At this point we have the lexicographic solution (Theorem 1),
which has been obtained from the lowest to the highest utility components,
and the allocation returned is unique for the initial set of flows N .

The procedure just described is summarized below in Algorithm–1.

ALGORITHM–1: Lexicographic Allocations

1. compute g and ū(g) from problem (8)
2. for each j ∈ N s.t. agj = 1,

xj ← u−1(ū(g), j)
save xj

for each l ∈ L, s.t. alj = 1: Al ← Al − xj end
N ← N \ {j}

end
L∗ ← L∗ \ {a}

3. if N = ∅: STOP
else goto 1.

The complexity of Algorithm–1 depends on the solution of the nonlinear prob-
lem in (8) and on the size of the set N . The aggregation techniques studied
next have a direct effect over these two aspects.

5 First bottleneck link obtained in the hierarchy of optimization problems. Link g

constraints the flows so that it provides the minimum utility in the whole network.

9

4 Piecewise Linear Utility Aggregation

The techniques discussed in this section are based on the assumption that
utility functions are given in the piecewise linear form (as illustrated in Fig.1)
and on the adoption of the lexicographic criterion to solve the network resource
allocation problem. If the functions are not in the piecewise linear form they
can be converted to it by choosing the number of piecewise linear intervals.

Fairness embedded in the lexicographic criterion guarantees that every com-
modity flow that shares the same network resources achieves the same utility.
Therefore, individual flows that use the same path (share same resources) can
be aggregated into a single path flow so that in the solution the utility of the
aggregate along that path will directly reflect the utility of each individual
flow. This constitutes the main idea behind the aggregation procedures dis-
cussed in this section, which allows the lexicographic solution to be obtained
using aggregated information only. Individual allocations are then computed
using the specific inverse utility functions of the individual flows. The ad-
vantage of using piecewise linear utility functions as it will be shown next is
that this aggregation process is facilitated even when commodity flows have
different utility functions [BIA00].

For a flow j ∈ N its piecewise linear utility function is expressed as follows,

u(xj, j) = k +
xj − bj

k

bj
k+1 − bj

k

bj
k ≤ xj ≤ bj

k+1 k = {0, . . . , K}. (9)

In fact, such functions are completely defined by a sequence of K intervals
given by the points (bj

0, b
j
1, . . . , b

j
K). A different set of points defines a new

function. Let N (p) be a subset of N containing all flows that uses path p,
since they are sharing the same network resources along the path, in the
lexicographic solution they will achieve the same utility up: ∀j ∈ N (p) ⇒
u(xj, j) = up,

up = k +
xj − bj

k

bj
k+1 − bj

k

; bj
k ≤ xj ≤ bj

k+1 (10)

xj = (up − k)(bj
k+1 − bj

k) + bj
k; bj

k ≤ xj ≤ bj
k+1 (11)

The overall allocation on path p will be,

Xp =
∑

j∈N (p)

xj (12)

Xp =
∑

j∈N (p)

(up− k)(bj
k+1− bj

k) +
∑

j∈N (p)

bj
k;

∑

j∈N (p)

bj
k ≤ Xp ≤

∑

j∈N (p)

bj
k+1 (13)

10

Hence, up can be also expressed by

up = k +
Xp −

∑

j∈N (p) b
j
k

∑

j∈N (p) b
j
k+1 −

∑

j∈N (p) b
j
k

;
∑

j∈N (p)

bj
k ≤ Xp ≤

∑

j∈N (p)

bj
k+1 (14)

by making Bp
k =

∑

j∈N (p) bj
k in (14) we have,

up = u(Xp, p) = k +
Xp −Bp

k

Bp
k+1 −Bp

k

; Bp
k ≤ Xp ≤ Bp

k+1 (15)

Equation (15) indicates that no matter how many individual flows are using
path p, they can be aggregated into a single flow and utility function. After
obtaining up from the lexicographic solution, individual allocations can be
computed using (11). In this way, the size of N is limited to the number of
paths in the network, if there is just one path per origin-destination pair:
|N | = |V||V − 1|.

The only problem with the above aggregation approach is the large amount
of information that should be collected in order compute the parameter Bp

k .
In fact, for each individual flow j the vector (bj

0, b
j
1, . . . , b

j
K) should be known

somehow previously to the aggregation takes place. To overcome this difficulty
a class-based approach is used instead, where a limited number of classes are
available according to publicly known utility functions. Users select the class
they want to use depending on the characteristics of their traffic. Thus, there
is no need to know each individual parameter bj

k but only the number of
individuals per class per path. If Q is the set of classes,

Bp
k =

∑

c∈Q

n(c, p)bc
k (16)

where n(c, p) is the number of class-c flows on path p, and bc
k’s represent the

parameters of the piecewise linear utility functions associated to class-c.

Fig.4(a) illustrates the aggregation procedure described so far. Assume there
are nine individual flows using path p: three of class type 1, four of class type 2,
and two of class type 3. Utility functions are assumed to be piecewise linear
defined over 10 different segments (K = 10). In order to compute the lexico-
graphic allocations without applying the aggregation technique, all the nine
individual flows have to be considered in the bandwidth allocation problem as
well as the 99 parameters 6 bj

k defining their individual utility functions. How-
ever, using the aggregation technique it is only necessary to consider in the
problem one flow over path p whose utility is described by the 11 parameters
Bp

k below:
Bp

k = 3b1
k + 4b2

k + 2b3
k k = {0, . . . , 10} (17)

6 b
j
k for j ∈ {1, . . . , 9} and k ∈ {0, . . . , 10}

11

After the solution is determined the allocations for each one of the nine indi-
vidual flows can be directly obtained from (11). With this approach the size
of the problem is reduced since it was just considered one utility function per
path.

Aggregated
flow on
path p

type 1

type 3

type 2

individual connections

C

Agg.1

Agg.2

Agg.3

individual
connections

(a) path flow (b) link flow

Fig. 4. Aggregated flows.

The same aggregation techniques can be used to further aggregate path flows
into link flows as illustrated in Fig.4(b). For a given link l all path flows that
are bottlenecked at l achieve the same utility. Assume the particular situation
where all flows that cross link l happen to be bottlenecked locally at ū(l). For
this case, ∀p such that alp = 1 ⇒ up = ū(l). From (15),

ū(l) = u(Xp, p) = k +
Xp − Bp

k

Bp
k+1 −Bp

k

; Bp
k ≤ Xp ≤ Bp

k+1 (18)

and
Xp = (ū(l)− k)(Bp

k+1 − Bp
k) + Bp

k ; Bp
k ≤ Xp ≤ Bp

k+1 (19)

All Xp sum up to the available bandwidth on link l, Al (= Cl for this case).
Thus,

Al =
∑

p

alpXp (20)

Al =
∑

p

alp(ū(l)− k)(Bp
k+1 − Bp

k) +
∑

p

alpB
p
k (21)

∑

p

alpB
p
k ≤ Al ≤

∑

p

alpB
p
k+1 (22)

From (21) and (22):

ū(l) = k +
Al −

∑

p alpB
p
k

∑

p alpB
p
k+1 −

∑

p alpB
p
k

;
∑

p

alpB
p
k ≤ Al ≤

∑

p

alpB
p
k+1 (23)

Similarly as before, let Bl
k =

∑

p alpB
p
k, we have

ū(l) = k +
Al − Bl

k

Bl
k+1 − Bl

k

; Bl
k ≤ Al ≤ Bl

k+1 (24)

12

Note that equation (24) preserves the piecewise linear form of individual flow
utilities as in (9). However, in this case individual flows have been aggregated
into path flows and further into link flows, since Bl

k is the sum of parameters
Bp

k for the paths that use l. Equation (24) may be viewed as the aggregated
utility of flows bottleneck at link l, which was obtained in a two step approach:
the first level of aggregation performed by source nodes to generate the path
flows, while the second level performed at link l using path flow parameters
Bp

k ’s.

It can be seen that the global utility bottleneck link can be now obtained from,

ū(g) = min
l∈L∗

{

k +
Al − Bl

k

Bl
k+1 − Bl

k

; Bl
k ≤ Al ≤ Bl

k+1

}

(25)

Given all the necessary information, Bl
k’s and Al, the complexity of problem

(25) is O(|L∗| log K) since it takes a maximum of log K operations to find the
correct interval for each Al (and so the value of k), and a maximum of |L∗|
operations to compute the minimum ū(l).

While the previous problem in (8) was defined for all individual path variables
xj , the equivalent problem in (25) uses only link variables Al and link para-
meters Bl

k. Moreover, problem (8) requires the use of non-linear optimization
techniques to return a solution, while from (25) the solution can be returned
straightway in a maximum of O(|L∗| log K) operations. Therefore, the aggrega-
tion techniques have contributed to simplify computations since they are based
on simple summation of utility function parameters and reduce the problem
to a link-flow formulation. Algorithm–1 as well as the upcoming algorithms
directly benefit from such techniques.

5 Distributed Bandwidth Allocation for the Lexicographic Solu-
tion

5.1 The Proposed Algorithm

The bandwidth allocation algorithm presented in Section 3 is based on a cen-
tralized approach where the complete information of all flows should be avail-
able at a single point in order to compute the optimal allocations. Clearly it
is not possible to meet this requirement in large scale and dynamic network
scenarios, thus it is convenient to investigate possible distributed implemen-
tations.

Our starting point is the work of Massoulie and Roberts [MAS02] which fo-

13

cuses on distributed algorithms that can be implemented without the complex-
ity of explicit rate calculations. From their framework it can be proved that
if all links employ fair queueing scheduling policies, maxmin fair bandwidth
allocations are reached on the stationary regime for all contending network
flows.

As commented before, if we were interested in a homogeneous environment
with u(xj , j) = xj the lexicographic criterion would be reduced to maxmin
fairness and the above work suffices to cover our goal. Nevertheless, for any
linear utility function on the form: u(xj , j) = kjxj , the lexicographic solution
can be achieved using weighted fair queueing – WFQ with individual weights
wj = 1/kj. The question is now what should be the weight settings for a
heterogeneous environment where utility functions are given in the piecewise
linear form.

lexx2
lexx1

(1)b3
(1)b4

(2)b5
(2)b6

L1
U1

L2

U2

X

U

Fig. 5. Piecewise linear utilities and line equations

Fig.5 illustrates the approach for two piecewise linear utility functions U1

and U2. If we knew beforehand the line segments containing the lexicographic
solution, which are represented in the figure by the forth (for U1) and sixth
(for U2) segments, we could substitute the utility curves by the lines L1 and
L2 and for this case, the lexicographic solution would be given by the same
points xlex

1 and xlex
2 . Within those intervals,

flow 1 allocation: b
(1)
3 ≤ x1 ≤ b

(1)
4 L1 angular coefficient:

1

b
(1)
4 − b

(1)
3

(26)

flow 2 allocation: b
(2)
5 ≤ x2 ≤ b

(2)
6 L2 angular coefficient:

1

b
(2)
6 − b

(2)
5

(27)

and from Massoulie and Roberts’s results, this solution can be obtained in
the stationary regime if flows 1 and 2 are scheduled by WFQ policies along
their routes. The WFQ weights should guarantee the lower bounds, b

(1)
3 and

b
(2)
5 , and that any spare capacity is shared according to the factors b

(1)
4 − b

(1)
3

(allocation along line L1) and b
(2)
6 − b

(2)
5 (allocation along line L2) in order to

14

achieve equal utility for the lexicographic solution.

The WFQ policy works at the packet level and guarantees to each flow i an
overall bandwidth of [ZHA95]

BWi =
wi

∑

j wj

C (28)

where wi is the weight associated to flow i and C the capacity of the link.
Assuming C > b

(1)
3 + b

(2)
5 , from conditions (26) and (27) we must have:

BW1 = b
(1)
3 + BW∗

1 (29)

BW2 = b
(2)
5 + BW∗

2 (30)

BW∗
1 + BW∗

2 = C − (b
(1)
3 + b

(2)
5) (31)

BW∗
1

BW∗
2

=
b
(1)
4 − b

(1)
3

b
(2)
6 − b

(2)
5

(32)

Hence, the WFQ weights that satisfy (28)–(32) are given by:

w1 =
b
(1)
3

C
+

b
(1)
4 − b

(1)
3

b
(1)
4 − b

(1)
3 + b

(2)
6 − b

(2)
5

(C − b
(1)
3 − b

(2)
5)

C
(33)

w2 =
b
(2)
5

C
+

b
(2)
6 − b

(2)
5

b
(1)
4 − b

(1)
3 + b

(2)
6 − b

(2)
5

(C − b
(1)
3 − b

(2)
5)

C
(34)

In general, when there is N (l) flows sharing a link l, if b
(i)
ki−1 and b

(i)
ki

represent
the limits of the piecewise linear segment containing the solution point for
flow i, the necessary WFQ weights will be in the form

wi =
b
(i)
ki−1

Cl

+
b
(i)
ki
− b

(i)
ki−1

∑

j∈N (l) b
(j)
kj
−

∑

j∈N (l) b
(j)
kj−1

Cl −
∑

j∈N (l) b
(j)
kj−1

Cl

(35)

where
∑

j∈N (l) wj = 1.

From (35) it can be seen that weights depend only on the determination of the
piecewise intervals and on the capacity of the link. Therefore, if we are able
to locate those intervals and inform the links about the corresponding utility
parameters, they can set the correct WFQ weights to obtain the lexicographic
solution. This idea will be explored next to build up a distributed algorithm
for the bandwidth allocation problem. However, some important issues should
be highlighted before presenting the algorithm

To avoid scalability problems due to the scheduling of a large number of indi-
vidual flows in the core of the network, the algorithm works at the aggregate

15

level. Flows that use the same path are aggregated according to the procedures
explained in Section 4 and illustrated in Fig.4(a). In this case the aggregate
utility functions are given by (15) and the aggregate bandwidth parameters

B
(i)
ki

are used in (35) instead of the individual parameters. After final allo-
cations are obtained for the aggregates, source nodes will be responsible to
further share such allocations among individual flows inside the aggregates. In
other words, the algorithm guarantees the solution for the aggregated flows,
however once each aggregate receives its allocation it is up to source nodes
to employ regulation procedures (scheduling, buffer management, etc.) to fur-
ther share that allocation among the individual flows inside the aggregate
[GUE99][DAS02]. These type of two level approach is a key issue in the solu-
tion of large-scale problems. For instance, such conceptual idea is the base of
DiffServ networks [BLA98].

By working directly with WFQ weights we have a much more effective and
stable procedure since network mechanisms can be set straight away to pro-
duce the optimal bandwidth allocation, and also there is no need to measure
and constraint flows to secure the solution. Besides that, WFQ is a working
conserving service discipline which means that there is no wasted resources
and even when the weights are not yet set to their optimal values, all flows will
continue to be served by the network. Furthermore, most of the routers and
switches available in the market provide some form of WFQ implementation.

Another advantage of the approach is that the algorithm runs in the “control
plane” without directly interfering or altering the flows in any way during
operation. Thus, all network protocols are preserved and apart from control
messages exchanged, no additional “data plane” procedure is necessary. When
the algorithm terminates and the optimal weights for the lexicographic solu-
tion are obtained, each network node simply update the WFQ mechanisms
associated with their outgoing links.

We split the algorithm into flow (Algorithm–2: Aggregate flow on path p) and
link (Algorithm–2: Link-l) procedures in order to facilitate exposition despite
both of them being executed by network nodes, the first procedure by the
nodes which are source of the aggregate and the second by the nodes that
control the transmission on the links. Fig.8 illustrates the messages exchanged
by aggregate flows and links. The status field is responsible to provide the
necessary order in which the lexicographic solution should be obtained. A value
of zero indicates the flow is blocked by some saturated link (no more available
bandwidth) along its path. Any other value indicates the piecewise linear
utility segment in which the algorithm is operating – the current iteration.

Flows send to the links along their paths the corresponding parameters Bp
k

obtained from (16). Note that Bp
k may be viewed as the bandwidth request of

that flow along path p for interval k, and thus each link can allocate resources

16

STATUSaggregate
flow p Bk-1

pp
Bk

IDT STATUSlink l

0: blocked
1...k: iterations

0: saturated
1...k: iterations

Fig. 6. Aggregate flow and link messages

taking into account this information. If links have enough resources to allocate
to the flows the corresponding Bp

k , the solution will fall above Bp
k and the

algorithm will continue to search in the upper intervals k + 1, k + 2 and so
on. On the other hand, if a given link cannot provide the requested resources,
it will act as a bottleneck for the crossing flows, whose lexicographic solution
will fall inside the k-th interval.

Figs 7 and 8 illustrate the messages exchanged by the algorithm. Assume two
flows, gray and white, share link L of capacity cL = 8. In the first iteration
both flows send their initial bandwidth requests (first piecewise interval) to
link L. Since link L has enough capacity it sends back a status message for the
next iteration. The flows continue to ask for more bandwidth following their
respectives utility functions until iteration 3 (e), where the aggregate request
is over CL. At this time, link L is saturated and sends back a status message
’0’. The flows once receiving this message know they are blocked and cannot
ask for more bandwidth, link L can now set the corresponding WFQ weights
to secure the allocation.

1 2 3 4 5 6

U

BW

white

1

2

3

4

10

5

6

7

8

9

1 2 3 4 5 6

U

BW

gray

1

2

3

4

10

5

6

7

8

9

(a) white flow (b) gray flow

Fig. 7. Utility functions of white and gray flows.

0 1.5 1

0 2.5 1
L 2

1.5 2 2

2.5 3.5 2
L 3

2 4 3

3.5 4.2 3
L 0

2 4 0

3.5 4.2 0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 8. Example of messages exchanged between flows and link

17

The algorithm continue until all flows get blocked and all intervals are deter-
mined, at this point the WFQ weights are set for each link according to (35).
All computations are simple and the algorithm guarantees that information is
exchanged in the proper order.

ALGORITHM–2: Agg. flow on path p ALGORITHM–2: Link-l

1. k ← 1 1. k ← 1, B ← ∅
2. send {Bp

k−1, B
p
k, k} to ∀l ∈ p 2. collect all msg. from j ∈ N (l) \ B

3. collect all link l ∈ p broadcast wait all report status–flow 0 or k

wait until all report next phase 3. for each j ∈ N (l) \ B
(= k + 1), or at least one report if status–flow = 0
saturation (phase–link = 0) save B

p
k and B

p
k−1

4. if ∃l ∈ p such that status–link = 0 Rb ← Rb + B
p
k

send {Bp
k−1, B

p
k , 0} to all l ∈ p B ← B ∪ {j}

STOP else Ru ← Ru + B
p
k

else k ← k + 1 end

if k > K, if B = N (l)
send {Bp

K−1, B
p
K , 0} to all l ∈ p set WFQ as in Eq. (35)

STOP STOP

end 4. if Rb + Ru < Cl,
goto 2. k ← k + 1

send {IDT, k}
Ru ← 0

else send {IDT, 0}
goto 2.

Algorithm–2 (Link-l) has to handle the additional complexity of flows that
are already blocked (maybe by some other links) and flows that may be still
not blocked at each iteration. The sets N (l) (set of flows using link-l) and
B (set of blocked flows) as well as the variables Rb (bandwidth requests of
blocked flows) and Ru (bandwidth requests of unblocked flows) are used for
this purpose.

In Step (3) blocked flows have the bandwidth parameters corresponding to
the last piecewise interval saved for future computation of the WFQ weights.
Variable Rb is updated to account for the reserved link capacity for the already
blocked flows, and the set B is also updated to include such flows. Note that
when flows are blocked by an utility bottleneck link, the link computes ū(l)
from (18) and transmits this parameter to the crossing flows.

For the flows not already blocked, a temporary variable Ru is updated instead
of Rb since their bandwidth limits are not yet fixed and may be changed in the
next iteration. However, if all flows are blocked the algorithm set the WFQ
weights and terminates. In case there are still unblocked flows, Step (4) verifies
if link capacity is above the maximum bandwidth requirements.

The assumptions are that all exchanging messages are correctly received within

18

a finite time interval and that algorithms are restarted from time to time back
to step (1) to track aggregate flow dynamics. Each node may start the algo-
rithm using private clocks on common agreed periods, there are several works
in the literature and practical implementations that can be applied to support
this procedure [AZE94] [PAT94] [MIL96]. Note that such approach is only nec-
essary to start the algorithms and do not need to have high precision since
after the algorithm is started the waiting steps enforce the synchronization
required to obtain the lexicographic solution.

5.2 Algorithm Analysis

The first important observation about the algorithm is its minimal overhead
incurred in computations. The whole flow procedure (Algorithm–2 Agg. flow
on path p) is basically composed by communication steps, while the link pro-
cedure just requires few summations and variable updates. The messages also
pose very little overhead to network traffic since they consist of a maximum
of three numbers: Bp

k (real), Bp
k−1 (real), and status (integer). Since control

messages are very small and should be transmitted with priority through the
network, it is expected that the greatest time components incurred in control
message transmission are given by propagation delays on links.

Proposition 1 The algorithm converges in a maximum of K iterations if
all control messages are exchanged in finite time, where K is the number of
piecewise intervals defining the utility functions.
Proof see the Appendix.

Proposition 2 The estimated complexity of the algorithm is O(Km).
Proof see the Appendix

It is important to note that Algorithm–2 computational complexity does not
depend on the size of the network but only on K and m. For a fixed K,
complexity increases linearly with the number of aggregates. Therefore, the
main observation is that in terms of computational burden Algorithm–2 scales
with both network topology (nodes and links, v and l) and network traffic
(aggregates, m).

6 Simulation Results

In this section we carry out two different experiments. Firstly in Subsec-
tion 6.1, we compare the solution returned by the lexicographic criterion with
the results from the two most well known bandwidth allocation algorithms:

19

maxmin [BER92] and proportional fairness [KEL98]. We are interested in as-
sessing the gains that may be achieved by using our approach when compared
to those traditional bandwidth allocation schemes.

Then in Subsection 6.2 we set up an experiment to study the behaviour of
the proposed bandwidth allocation algorithm (Algorithm–2) and assess its
response under dynamic network environments. Given system dynamics and
delays incurred in information exchange, no distributed procedure is able to re-
turn exact optimal solutions, but only approximations. We compare the results
retuned by our distributed algorithm (Algorithm–2) with optimal allocations
computed offline by its centralized counterpart (Algorithm–1).

6.1 Comparison with Maxmin and Proportional Fairness

In this subsection, the bandwidth allocation solution under the lexicographic
(lex) criterion is computed and compared here with maxmin fairness (mmf)
proportional fairness (ppf) solutions. The objectives of this experiment are
twofold: (i) to determine whether the lexicographic criterion is able to improve
fairness in the system, and (ii) whether the possible improvement is achieved
at the expenses of other important system performance parameter – average
utility.

The topology used is based on the high speed links (above Gbps) of the Multi-
Gigabit pan-European Network Backbone Topology 7 . We assume that a ca-
pacity of 100Mbps was reserved for the experiment in all network links and
should be adequately allocated to the different applications in the system. Ap-
plications may generate traffic from any network node (origin) to any other
node (destination) and have an associated utility function on the form of the
logarithmic expressions below:

u(x, j) = aj .ln(bjx + cj), u(I, j) = 1, u(M, j) = 0 (36)

aj =
1

kj − 10
, bj =

e
1

a − 1

I −M
, cj =

I −Me
1

a

I −M
(37)

where I represents the ideal allocation and M the minimum requirement. By
changing the parameter k different functions can be obtained: strictly concave
for k > 10, linear for k → 10, and convex for k < 10.

Figure 9 shows a plot of such expressions for M = 10Kpbs (minimum require-
ment, utility = 0), I = 100Kbps (ideal, utility = 1), and k = {5, 6, . . . , 14, 15}
(concavity parameter).

7 www.dante.net/geant/about-geant.html

20

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

U
til

ity

BW (Kbps)

k = 15

k = 5

Fig. 9. Logarithm-based utility functions for k = {5, . . . , 15} (eleven curves).

We use the minimum utility in the system and the average utility as the
performance measures to assess the quality of each solution returned,

minu = min
j∈N
{u(x, j)} avgu =

1

|N |

∑

j∈N

u(x, j) (38)

Thus, for each of the three schemes we obtained the respective solutions and
computed: {minmmf

u , avgmmf
u } for maxmin fairness, {minppf

u , avgppf
u } for pro-

portional fairness, and {minlex
u , avglex

u } for the lexicographic solution. The
solution of higher minimum utility is preferred under a Rawlsian perspective,
while a higher average utility is more desirable from an utilitarian viewpoint.
The gains on using the lexicographic criterion can be evaluated from the ratios
below:

gain in minu =
minlex

u

minppf
u

and
minlex

u

minmmf
u

gain in avgu =
avglex

u

avgppf
u

and
avglex

u

avgmmf
u

where gains above one indicates a better performance since in this case the
minimum and average utility in the system under the lexicographic criterion
are greater than the others.

The system was subjected to 10,000 individual applications whose utility func-
tion were described by the logarithmic curves in Figure 9. A total of 20 scenar-
ios were considered in the experiment, where for each scenario a different and
random assignment of flows to origin-destination pairs and utility functions
took place.

Table–1 presents a summary of all the results obtained in terms of minimum
utility gains (minu) and average utility gains (avgu). The results are presented
using two decimal digit precision. According to the table, lexicographic allo-
cations provided a sound improvement on the performance of the system since
the gains in minimum utility were expressly high. The lowest improvement in

21

relation to minimum utility (minu) was about 62% over proportional fairness,
and 59% over maxmin fairness. One important aspect is that the improvement
on minimum utility was achieved without compromising the average utility.
In fact, for most of the cases the average utility was slightly higher under
lexicographic allocations.

The experiment presents further evidence that under a multi-application en-
vironment, where different types of utility functions coexist, the lexicographic
criterion provides better allocations in terms of the utility viewpoint (higher
minimum without compromising the average). Since utility functions are as-
sociated with the performance of each application, lexicographic allocations
improve overall system performance in this environment.

Scenario Gain in minu Gain in avgu

lex/ppf lex/mmf lex/ppf lex/mmf

1 3.72 3.72 0.99 1.01
2 2.62 3.39 1.06 1.00
3 2.76 1.62 0.90 1.01
4 4.88 3.44 1.01 1.01
5 6.34 4.12 1.03 1.11
6 3.70 2.51 0.95 0.97
7 2.55 1.62 1.07 1.08
8 2.70 3.28 1.00 0.98
9 2.57 2.83 1.02 1.04
10 3.17 1.84 0.97 1.02
11 3.49 3.98 1.04 1.03
12 2.66 2.72 1.06 1.09
13 3.93 3.68 1.02 1.01
14 2.83 1.59 0.97 0.99
15 1.62 1.73 1.00 0.97
16 3.96 1.68 0.96 0.98
17 3.76 2.02 1.00 1.05
18 3.90 3.09 1.00 1.01
19 3.44 2.98 1.00 1.01
20 1.84 1.94 1.03 1.01

Lowest 1.62 1.59 0.90 0.97

Mean 3.32 2.69 1.00 1.02

Highest 6.34 4.12 1.07 1.11

Table–1: Gains obtained on each of the 20 scenarios studied

6.2 Evaluation of Proposed Algorithm

In this experiment we use the same network topology as before but this time
the system is subjected to two different types of traffic: regular best-effort
(BE) flows and G.711 flows. For the BE flows we adopt the utility function

22

derived in [LIA00], using bmin = 22Kbps 8 we have: uBE ≈ 1−
(

22
x

)2
. Including

all packet headers and packetization interval, G.711 encoded voice flows may
need up to 96Kbits/s of bandwidth for a high quality transmission [YAM01].
The results presented in [JIA02] show an almost straight line relating the
performance of G.711 applications to packet losses, we use those performance
results to build up a linear utility function for G.711 flows: uG711 = x

39
− 1.46.

We consider a system where a fixed number of aggregated flows are routed
through pre-established paths from origin to destination pairs. Each aggre-
gate was composed by individual flows whose utility functions are the piece-
wise linear forms of BE and G.711 just described. The number of individual
flows inside each aggregate was varied to resemble a dynamic environment.
To achieve that we simply model the number of active connections n inside
each aggregate by a M/M/1 system with arrival rate λ and departure rate µ.
The exit rate from any state is given by λ + µ and the mean time in which
the process leaves the state is: ∆t = 1/(λ+µ) [KAR75]. This equation gives a
simple temporal measure about the dynamics of the system, i.e. how fast the
process changes states. We evaluate the performance of the algorithm when
subjected to this simplified aggregate traffic model.

We assume that control messages used in Algorithm–2 have priority over reg-
ular data packets so that they are likely to be subjected just to the propa-
gation delays on the links. According to the distances between the European
capitals and speed of light in the fiber cables, the diameter 9 of the chosen
network topology is around 15 ms, and so the minimum round-trip-time is
approximately 30 ms. Given the priority queueing of control packets, the high
reliability of the links and low dropping probability, we also assume that a
control message is very likely to be acknowledged before 300 ms, which is used
to bound the maximum round-trip-time.

Algorithm–2 takes a maximum of K iterations (number of piecewise linear
segments defining the utility functions) to find the solution. In our experiment
the utility functions were defined over 10 line segments (K = 10), that is a
maximum of 10 iterations will take place on each run of the algorithm. Given
the low complexity of the algorithm, we assume that iteration time takes no
more than the bound considered (300 ms). Hence, one algorithm run takes less
than 3 s, which gives also the lower bound between two consecutive runs of the
algorithm. We varied the parameters ∆T (time between two consecutive runs
of the algorithm ≥ 3 s) and ∆t (aggregated flow dynamics), and computed
the errors incurred in allocation and utility when compared to the optimal

8 From [MAT97] this value correspond to MSS = 1460 bytes, RTT = 500ms and
κ = 1
9 maximum shortest path among all end-to-end nodes using the propagation delay
as metrics

23

bandwidth allocation given by a centralized approach (Algorithm–1) for the
most updated global network state. The errors were measured according to
the percentage deviation from such optimal values.

For each different scenario we ran a 30000 s simulation experiment and com-
puted the errors just before a new algorithm update. It is expected that errors
will increase with the difference between ∆T and ∆t, since high aggregate
dynamics makes algorithm solutions be outdated faster. The results are pre-
sented next in the form of scattered and histogram plots.

6.3 Scenario 1: ∆T = 3 s

For this case, Algorithm–2 run at each 3 s period requiring good synchroniza-
tion among network links to start the procedures on time. It is not expected
that such timed approach will be used in practice, but as long as it provides a
lower bound for ∆T as explained before, we present the results as reference.

Figs. 10(a)–10(f) presents the maximum utility errors 10 experienced by the
flows at each 3 s interval. The results in the graphs reflect the behavior of the
algorithm for three different aggregate dynamics: ∆t = 300 ms (low), ∆t =
3 ms (medium), and ∆t = 30 µs (high). Left column graphs show scattered
plots, and right column graphs the corresponding histogram computed for 10
equally spaced intervals (bins).

For the case of low aggregated flow dynamics, Figs. 10(a) and 10(b) show that
all errors fell below 2% and so the distributed algorithm was able to track
the state of the system with high accuracy. The results confirmed a very good
performance of the distributed algorithm when network delays are comparable
to aggregate dynamics.

When aggregated flow dynamics is increased by a factor of 100 (∆t is reduced
from 300 ms to 3 ms) maximum utility errors are also increased: the mean of
the histogram in Fig.10(c) grows to more than 10 times the previous mean in
Fig.10(a). In this faster environment the delays involving algorithm updates
have a stronger effect on the optimality of the allocations returned, however
most of the errors fell below 10% still characterizing a good algorithm perfor-
mance.

10 maximum error in utility among all flows in the system, computed from the
percentual deviations of instantaneous optimal values

24

0

1

2

3

4

5

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(a) scattered plot, ∆t = 300ms

0

50

100

150

200

250

300

350

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
re

qu
en

cy
 (

co

un
ts

)

Maximum Utility Error (%)

(b) histogram, ∆t = 300ms

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(c) scattered plot, ∆t = 3ms

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

F
re

qu
en

cy
 (

co

un
ts

)

Maximum Utility Error (%)

(d) histogram, ∆t = 3ms

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(e) scattered plot, ∆t = 30us

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

F
re

qu
en

cy
 (

co

un
ts

)

Maximum Utility Error (%)

(f) histogram, ∆t = 30us

Fig. 10. Maximum utility errors.

25

If we further increase aggregate dynamics up to ∆t = 30 µs as shown in
Fig.10(f), the effect of network dynamics is exacerbated and the algorithm is
not able to cope with such fast environment. In the case of utility, errors were
as high as 90% making the use of the algorithm in this extremely dynamic
situation not applicable. In fact, according to our model and the results pre-
sented, the algorithm is able to accurately track network dynamics up to a
timescale of 3 ms, three orders of magnitude faster than algorithm response
for the studied topology.

6.4 Scenario 2: ∆T = 300 s

This scenario provides light network overhead since the algorithm is executed
in a lower frequency, at 5 min intervals. The expected drawback is the lack
of capacity to track high network dynamics, however the behavior observed
in the previous scenarios recurs here and the results obtained indicate good
performance for ∆t up to 300 ms.

Figs. 11(a) and 11(b) give results for ∆t = 3 s, where maximum errors were
around 2% and mean errors around 0.4%. For the faster environment in
Figs. 11(c) and 11(d) almost all errors fell below 10%, which ensure a good
response of the algorithm up to this timescale. The last two graphs, Figs. 11(e)
and 11(f), show results for even faster dynamics and similarly to the previous
scenario errors are high characterizing poor performance.

Both scenarios have shown a very similar pattern in terms of performance.
According to the results presented, the algorithm was able to track aggregate
dynamics with low errors up to a ratio ∆T/∆t ≈ 1000. The choice for the
algorithm update intervals will depend on two main issues: the timescales of
aggregate dynamics and the network delays incurred in messages exchange.

From the network topology studied, we have estimated beforehand that the
algorithm will need at least 3 s to successfully complete the whole cycle and
return a solution. This provides a physical bound to algorithm performance
as seen in Scenario 1 where for ∆t < 3 ms errors were exacerbated. For the
extreme case where network delays are large and aggregate dynamics are ex-
cessively high, most of the distributed approaches will be ineffective since
there will be no feasible way to track system dynamics. In this case, the sim-
plest solution may be the use of fixed allocations for the aggregates instead of
employing dynamic bandwidth allocation algorithms.

26

0

2

4

6

8

10

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(a) Max. utility errors for ∆t = 3s

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000

M
ea

n
U

til
ity

 E
rr

or
 (

%
)

Time (sec)

(b) Mean utility errors for ∆t = 3s

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(c) Max. utility errors for ∆t = 300ms

0

0.5

1

1.5

2

0 5000 10000 15000 20000 25000 30000

M
ea

n
U

til
ity

 E
rr

or
 (

%
)

Time (sec)

(d) Mean utility errors for ∆t = 300ms

0

5

10

15

20

25

30

35

40

0 5000 10000 15000 20000 25000 30000

M
ax

im
um

 U
til

ity
 E

rr
or

 (
%

)

Time (sec)

(e) Max. utility errors for ∆t = 30ms

0

2

4

6

8

10

0 5000 10000 15000 20000 25000 30000

M
ea

n
U

til
ity

 E
rr

or
 (

%
)

Time (sec)

(f) Mean utility errors for ∆t = 30ms

Fig. 11. Maximum and Mean utility errors.

27

7 Conclusion

We studied the problem of bandwidth allocation of network resources in an
environment where multiple types of applications coexist. The framework of
Welfare Economics was employed to characterize fair and efficient solutions.
Among several different allocation criteria, the lexicographic criterion was se-
lected given that it satisfies simultaneously those two fundamental properties.
From simulation results it could be seen that such criterion produces desirable
allocation solutions. The underlying conclusion is that the lexicographic crite-
rion emerges as a good method to tackle network resource allocation problems
and should be more widely employed in the networking area. It is particularly
advantageous in the case of multi-class / multi-service networks where it can
be used to determine dynamic interclass partitions.

The use of piecewise linear utility functions while simplifies the algorithm,
did not impose any constraint on the concavity of the functions making the
approach suitable for a wide range of applications. Furthermore, the num-
ber of intervals defining the piecewise functions can be arbitrarily increased
tightening deviations from any given utility function closed-form expression.

One initial centralized procedure (Algorithm–1) was studied and further a
distributed bandwidth allocation algorithm (Algorithm–2) was proposed based
on WFQ weight settings to enforce lexicographic solutions. Simulation results
showed that our proposed distributed algorithm was able to track network
dynamics with low errors from the zero-delay centralized solution. Although
it requires some sort of synchronization among network nodes, its simplicity
and possibility to handle flow aggregates constitute necessary ingredients for
the application in large scale IP networks.

Acknowledgements

The authors would like to thank the referees for their most helpful and con-
structive comments. The first author would also like to express his sincere
gratitude to the Military Institute of Engineering and to the CNPq - Brazil-
ian Government for all the support received during this research.

References

[ABR01] S. P. Abraham and A. Kumar, “A New Approach for Asynchronous
Distributed Rate Control of Elastic Sessions in Integrated Packet
Networks,” IEEE/ACM Transactions on Networking, 9(1):15–30, February
2001.

28

[ARU96] A. Arulambalam, X. Chen, and N. Ansari, “Allocationg Fair Rates for
Available Bit Rate Service in ATM Networks,” IEEE Communications
Magazine, 34(11):92–100, November 1996.

[AWE98] B. Awerbusch and Y. Shavitt, “Converging to Approximated Max-Min
Flow Fairness in Logarithmic Time,” IEEE INFOCOM’98, 3:1350–1357,
April 1998.

[AZE94] M.M. de Azevedo and D.M. Blough, “Fault-tolerant Clock Synchronization
for Distributed Systems with High Message Delay Variation”, Proceedings
of the IEEE Workshop on Fault-tolerant Parallel and Distributed Systems,
1994, pp. 268–277.

[BER92] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 2nd Edition,
1992.

[BIA00] G. Bianchi and A.T. Campbell, “A Programmable MAC Framework for
Utility-Based Adaptive Quality of Service Support,” IEEE Journal on
Selected Areas in Communications, 18(2):244–255, Feb. 2000.

[BLA98] S. Blake, D. Black, M. Carlson, E. Davies, and W. Weiss, “An Architecture
for Differentiated Services,” IETF DiffServ-WG, RFC 2475, December,
1998.

[BON01] T. Bonald and L. Massoulie, “Impact of Fairness on Internet Performance,”
ACM SIGMETRICS Performance Evaluation Review, 29:82–91, June
2001.

[CAO99] Z. Cao and E. W. Zegura, “Utility Max-Min: An Application-Oriented
Bandwidth Allocation Scheme,” Proceedings of the IEEE INFOCOM’99,
2:793–801, March 1999.

[CHA95] A. Charny, D. Clark, and R. Jain, “Congestion Control with Explicit Rate
Indication,” IEEE ICC’95, 3:1954–1963, June 1995.

[CHE98] S. Chen and K. Nahrstedt, “An Overview of Quality of Service routing
for the Next Generation High-Speed Networks: Problems and Solutions,”
IEEE Network Magazine, 12(6):64–79, Dec. 1998.

[COL01] R. G. Cole and J. Rosenbluth, “Voice over IP Performance Monitoring,”
ACM Computer Communication Review, 4(3), 2001.

[CRO01] P. Gevros, J. Crowcroft, P. Kirstein, and S. Bhatti, “Congestion Control
Mechanisms and the Best Effort Service Model,” IEEE Network, 15(3):16–
26, May/June 2001.

[DAS02] A. Das, D. Dutta, and A. Helmy, “Fair Stateless Aggregate Traffic
Marking Using Active Queue Management Techniques,” LNCS 2496 -
5th IFIP/IEEE International Conference on Management of Multimedia
Networks and Services, 211–223, Oct. 2002.

[DAS77] C. D’Aspremont and L. Gevers, “Equity and the Informational Basis of
Collective Choice,” The Review of Economic Studies, 44(2):199–209, June
1977.

29

[FLO99] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking,
7(4):458–472, Aug. 1999.

[GAF84] E.M. Gafni and D.P. Bertsekas, “Dynamic Control of Session Input Rates
in Communication Networks,” IEEE Transactions on Automatic Control,
AC-29(11):1009–1016, Nov. 1984.

[GUE99] R. Guerin and V. Peris, “Quality-of-Service in Packet Networks: Basic
Mechanisms and Directions,” Computer Networks, 31(3):169–189, Feb.
1999.

[ITU00a] Inter. Telecomm. Union, “Methodology for the Subjective Assessment of
the Quality of Television Picture,” Radiocommunication Sector of ITU,
Recommendation ITU-R BT.500-10, March 2000.

[ITU97] Inter. Telecomm. Union, “Methods for the Subjective Assessment of Sound
Quality – General Requirements,” Radiocommunication Sector of ITU,
Recommendation ITU-R BS.1284, Oct. 1997.

[ITU99] Inter. Telecomm. Union, “Subjective Video Quality Assessment Methods
for Multimedia Applications,” Telecommunication Standardization Sector
of ITU, Recommendation ITU-T P.910, Sep. 1999.

[JAF81] J.M. Jaffe, “Bottleneck Flow Control,” IEEE Transactions on
Communications, Vol. 29, No. 7, July, 1981, pp. 954–962.

[JIA02] W. Jiang and H. Schulzrinne, “Comparison and Optimization of Packet
Loss Repair Methods on VoIP Perceived Quality under Bursty Loss,” Proc.
of ACM Inter. Work. on Net. and Oper. Sys. for Dig. Audio and Video,
73–81, May 2002.

[KAR75] S. Karlin, A First Course in Stochastic Processes, Academic Press,
London, 1975.

[KEL98] F. P. Kelly, A.K. Maulloo, and D.K.H. Tan, “Rate Control for
Communication Networks: Shadow Prices, Proportional Fairness and
Stability,” Journal of the Operational Research Society, 49:237–252, 1998.

[LIA00] R. Liao and A. T. Campbell, “Dynamic Edge Provisioning for Core IP
Networks,” Proceedings of the IEEE International Workshop on Quality of
Service, 148–157, June 2000.

[LOW99] S. Low and D. Lapsey, “Optimization Flow Control-I: Basic Algorithm
and Convergence,” IEEE/ACM Transactions on Networking, 7(6):861–874,
December 1999.

[LU03] X. Lu, S. Tao, M. E. Zarki, and R. Guerin, “Quality-based Adaptive Video
Over the Internet,” Communication Networks and Distributed Systems
Modeling and Simulation Conference, Jan. 2003.

[MA99] Q. Ma and P. Steenkiste, “Supporting Dynamic Inter-Class Resource
Sharing: A Multi-Class QoS Routing Algorithm,” IEEE INFOCOM’99,
2:649–660, March 1999.

30

[MAS02] L. Massoulie and J. Roberts, “Bandwidth Sharing: Objectives and
Algorithms,” IEEE/ACM Transactions on Networking, 10(3):320–328,
June 2002.

[MAS95] A. Mas-Colell, M.D. Whinston, and J.R. Green, Microeconomic Theory,
Oxford University Press, 1995.

[MAT97] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” ACM Computer
Communication Review, 27(3):1–15, July 1997.

[MIL96] D. Mills, “Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6
and OSI,” IETF Network-WG, RFC 2030, October, 1996.

[MIT99] D. Mitra and K. G. Ramakrishnan, “A Case Study of Multiservice,
Multipriority Traffic Engineering Design for Data Networks,” Proceedings
of the IEEE Globecom’99, 1B:1077–1083, Dec. 1999.

[Mo00] J. Mo and J. Walrand, “Fair End-to-End Window-Based Congestion
Control,” IEEE/ACM Transactions on Networking, 8(5):556–567, October
2000.

[NAH98] K. Nahrstedt and S. Chen, “Coexistence of QoS and Best-Effort
Flows: Routing and Scheduling,” 10th International Workshop on Digital
Communications: Multimedia Communications, Italy, September, 1998.

[PAT94] B. Patt, A Theory of Clock Synchronization, PhD Thesis, Massachusetts
Institute of Technology (MIT), United States, 1994.

[RAW99] J. Rawls, A Theory of Justice, Oxford University Press, 1999.

[ROB80] K. W. S. Roberts, “Interpersonal Comparability and Social Choice
Theory,” Review of Economic Studies, 47(2):421–439, Jan. 1980.

[SEN95] A. K. Sen, Collective Choice and Social Welfare, 4th ed., North-Holland
Publishing, 1995.

[SEN99] A. Sen, “The Possibility of Social Choice,” The American Economic
Review, 89(3):349–378, June 1999.

[SHE95] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE
Journal on Selected Areas in Communication, 13(7):1176–1188, Sep. 1995.

[VAR02] H. Varian, Intermediate Microeconomics: A Modern Approach, W. W.
Norton, July 2002.

[YAM01] H. Yamada and N. Higuchi, “Voice Quality Evaluation of IP-based Voice
Stream Multiplexing Schemes,” Proc. of the IEEE Conference on Local
Computer Networks, 356–364, 2001.

[ZHA95] H. Zhang, “Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks,” Proceedings of the IEEE, 83(10):1374–1396,
Oct. 1995.

31

[ZHA02] L. Zhao, J. Kim, and C. C. J. Kuo, “Constant Quality Rate Control for
Streaming MPEG-4 FGS Video,” Proceedings of the IEEE International
Symposium on Circuits and Systems, May 2002.

Appendix

Proof (Theorem 1) (⇒) Let x be the lexicographic solution and assume
that flow j (with allocation xj) does not have an associated utility-bottleneck
link. Let a be a link used by flow j and δa the available capacity on link a.
Case-(1): If δa > 0 for all links a along the path pj of flow j, then flow’s j
allocation can be increased to x′

j = xj + δ, where δ = min{δa | a ∈ pj}. In this
case we have u(x′

j, j) > u(xj , j), which contradicts the optimality of x.

Case-(2): If there is a link a along pj where δa = 0, then flows bottlenecked lo-
cally have utilities greater than u(xj, j). Let S be the set of flows bottlenecked
at some link along pj . For any i ∈ S, we have ∆u = u(xi, i) − u(xj, j) > 0,
and since utility functions are monotone:

∀i ∈ S, ∃x′
i < xi s.t. u(xi, i)−

△u

2
= u(x′

i, i) > u(xj, j)

If we decrease the allocations of all flows i ∈ S from xi down to x′
i there will be

at least an available capacity of △x = min{x
i
− x′

i | i ∈ S} on these links. As
before, let δ > 0 be the minimum available capacity among the non-bottleneck
links, therefore we can increase flow’s j utility to:

u(x′
j, j) > u(xj , j), where x′

j = xj + min{△x, δ}

The resulting vector x′ is feasible and yields a corresponding utility vector
that is preferred in terms of the preference operator, x′ ≻ x ⇒ x is not the
lexicographic solution.

(⇐) Conversely, assume each flow has an associated utility-bottleneck link.
For a given flow i ∈ N let link l be its bottleneck. For any other flow j, such
that al(j) = 1 ⇒ u(xi, i) ≥ u(xj, j) and the only way to increase flow’s i
utility is decreasing the utility of another flow j of lower or equal utility. Since
i can be any flow in N , there is no way to get a larger utility vector with
respect to the operator ≻

32

Proof (Proposition 1) To facilitate explanations we simply refer to Algorithm–
2 (Agg. flow on path p) as “agg-p”, and Algorithm-2 (Link-l) as “link-l”.
First observe that agg-p send messages either in step (2) or step (4), which
are collected by link-l at step (2). On the other hand, link-l only sends mes-
sage in step (4) which are collected by agg-p in step (3). The wait condition
during collection steps (step (3) in agg-p and step (2) in link-l) guarantees
that the procedure only progresses, following the necessary order, once those
messages are exchanged sucessfuly. Assuming that all messages eventually go
through, agg-p passes step (3) and goes to step (4), where there are only two
possibilities: i) if flow is blocked it transmits a status ‘0’ message and stops,
or ii) k is incremented for the next piecewise interval request. In case of (ii),
agg-p may go to step (2) again and the whole procedure is repeated. However,
if k has reached K, agg-p transmits a status ‘0’ message and termintes. Thus,
in a maximum of K iterations agg-p sends a status ‘0’ message to link-l and
terminates. Upon receiving a status ‘0’ message from agg-p, link-l considers
the flow blocked and updates the set B to include this flow. Therefore, in a
maximum of K iterations link-l will have B = N (l) and also terminates, which
completes the proof.

Proof (Proposition 2) We now estimate the computational complexity of
Algorithm–2 iterations according to the number of operations a given network
node running the algorithm has to perform. Let l represents the number of
links in the topology, v the number of nodes, and m the number of aggregates.
First, assume that we have an even distribution of aggregates in the network
so that each node is the source of mv−1 aggregated flows. Algorithm–2 (Agg.
flow on path p) has to run for each aggregate and according to its steps the
only computational burden is to collect messages from the links along path p,
check the status field, and send back the response. Since there is a maximum
of v − 1 links per path the computational complexity will be O(v). Each node
has to run a copy of Algorithm–2 (Agg. flow on path p) for the aggregates in
which it is source (mv−1), thus the computational complexity for the node is
O(m). Regarding the other part of the algorithm (Algorithm–2: Link-l) each
node has also to compute the WFQ weights for their links. This procedure is
of linear complexity on the number of aggregates as can be seen in steps (2)
and (3). For the worst case scenario we may assume that all aggregates in the
network are crossing the node, hence the complexity of Algorithm–2 (Link-
l) is O(m), which makes the complexity of both procedures taken together
(Algorithm–2: Agg. flow on path p and Algorithm–2: Link-l) be also O(m).
Since the algorithm takes a maximum of K iterations to converge, hence the
complexity of the whole algorithm for each network node will be O(Km).

33

