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Abstract

In this paper, we study how to predict the polarization of the Cosmic Microwave
Background using knowledge of only the temperature (intensity) and the cross-correlation
between temperature and polarization. We derive a “Wiener prediction” method and
apply it to the WMAP all-sky CMB temperature maps and to the MAXIMA field.

1 Introduction

Fluctuations in the temperature of the Cosmic Microwave Background (CMB) have been
used to map the surface of last scattering for the last decade, since the first results from the
DMR instrument on the COBE Satellite (Smoot et al., 1992). Now, we have the first results
from WMAP (Bennett et al., 2003, references therein and elsewhere in this volume) which
confirm the CMB anisotropy results gathered over the intervening decade. But the WMAP
data promise more than just confirmation: they also offer the first high-sensitivity analysis
of the polarization of the CMB (Kogut et al., 2003) [although DASI can justly be credited
with the first detection of cosmological polarization (Kovac et al., 2002)].

The polarized CMB provides independent information on cosmological physics; it traces
the flow of the plasma at the surface of last scattering. This flow itself can be decom-
posed into an irrotational component, corresponding to the action of gravity by the den-
sity perturbations responsible for the temperature fluctuations, and a rotational compo-
nent which can be produced by a background of gravitational waves (e.g., from inflation).
These components result in patterns of CMB polarization known, respectively, as “grad”
and “curl” (Kamionkowski et al., 1997) or, in analogy with electrodynamics, “E” and “B”
(Zaldarriaga and Seljak, 1997). The latter (curl or B) thus has the promise of exploring the
physics of the early Universe, but the amplitude of the signal remains well below current
detections. Here, then, we concern ourselves with grad or E modes.
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However, the WMAP team has yet to produce actual maps of the polarized component of
the CMB. Here we investigate a statistical technique to predict the polarization component
based on knowledge of the auto- and cross-correlations of the components.

2 Formalism

In this section, we ask the question: if we know the temperature pattern on the sky, as
well as the cross-correlation between the temperature and the polarization, what is our best
guess at the latter? There are many ways to tackle this question, mathematically if not
philosophically equivalent. Here, we take a Bayesian approach, and so start with Bayes’
theorem,

P (θ|DI) =
P (θ|I)P (D|θI)

P (D|I)
(1)

where θ labels the parameters we are trying to determine, D the data, and I the back-
ground information we are bringing to the problem. P (a|b) is the probability (or probability
density) of a given b, so P (θ|I) is the “prior” for θ and P (D|θI) is the likelihood — the
probability of getting the specific data D given a fixed set of parameters. The left hand side
is the posterior probability, and the denominator just enforces the normalization condition:
P (D|I) =

∫

dθP (θ|I)P (D|θI).
How do we apply this to the CMB problem? Let us start with a model for the data, ∆p

as a sum of signal, sp and noise, np,

∆p = sp + np , (2)

where ∆p gives the value of the data labeled by p, which can include pixel number, frequency
of observation, polarization state, etc. We will take the noise to be described by a zero-mean
Gaussian distribution with

〈np〉 = 0; 〈npnp′〉 = Npp′ (3)

where angle brackets are averages over the distribution of the data, and Npp′ is the noise
covariance matrix (which we assume is known, but see Ferreira and Jaffe (2000); Doré et al.
(2001)). We will also take the signal to be a zero-mean Gaussian, with analogous properties
to those above, and a signal covariance given by 〈spsp′〉 = Spp′.

Thus the actual likelihood function is given by

P (∆|SN) =
1

|2π(S + N)|1/2
exp

[

−
1

2
∆†(S + N)−1∆

]

(4)

where we use matrix notation, † refers to the Hermitian conjugate, and vertical bars to the
determinant. We can then use Bayes’ theorem to ask for the posterior distribution of any
quantity related to the signal, sp.

The most obvious quantity we might estimate is the signal itself,

P (s|∆SN) ∝ P (s|SN)P (∆|SN)
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∝ exp[−
1

2
s†S−1s −

1

2
∆†(S + N)−1∆]

∝ exp
[

−
1

2
(s − 〈s|∆〉)† C−1

s (s − 〈s|∆〉)
]

, (5)

where the second line comes from assigning a Gaussian prior with variance Spp′ to the signal,
and the final line comes from completing the square, and we have defined

〈s|∆〉 = S(S + N)−1∆ and Cs = 〈δs δs†|∆〉 = S − S(S + N)−1S (6)

which give the Wiener filter itself, and the variance about the mean. The Wiener filter
has been used in the context of the CMB many times before (e.g., Bunn et al., 1996), but
primarily as a method of smoothing or for the separation of various foreground components
in the signal.

But we can ask a somewhat more general question: what is the distribution of some
quantity, ep for which the prior information is that 〈epep′〉 ≡ Epp′ and that it is correlated
with the signal, 〈epsp′〉 = Xpp′? Again, the result is a Gaussian distribution, this time with
mean and variance given by

〈e|∆〉 = X(S + N)−1∆ and Ce = E − X(S + N)−1X (7)

In fact, all of these results can be compressed into two equations, using the notation of
Bardeen et al. (1986), already used to some extent above,

〈x|d〉 = 〈xd†〉〈dd†〉−1d , and

〈δx δx†|d〉 = 〈xx†〉 − 〈xd†〉〈dd†〉−1〈dx†〉 , (8)

where d = s + n and x is correlated with s, so 〈xd†〉 = 〈xs†〉, which is the cross-correlation,
X, above. If x = s, this reduces the original Wiener filter, Eq. 6, above.

Information about the variance of the Wiener filter is crucial. The Wiener mean itself,
〈x|d〉, is over-smoothed—low in regimes of low signal-to-noise ratio. A more “typical” signal
value is provided by an actual realization from the full posterior distribution: the mean plus
a realization of the correlation matrix.

3 Applications

3.1 Full-sky maps

The action of the Wiener filter prediction is clearest when we consider its action on an all-sky
map with uniform (or axisymmetric) noise. We start with a noisy temperature map, which
we transform into its spherical harmonic components, dℓm = aℓm + nℓm, where aℓm gives the
CMB signal and nℓm the noise. The Wiener filter and variance are given by

〈aℓm|dℓm〉 =
Cℓ

B2

ℓ Cℓ + Nℓ
dℓm
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〈Eℓm|dℓm〉 =
CTE

ℓ

B2

ℓ Cℓ + Nℓ
dℓm

〈δaℓmδaℓm|dℓm〉 = Cℓ −
(Cℓ)

2

B2

ℓ Cℓ + Nℓ

〈δEℓmδEℓm|dℓm〉 = CEE
ℓ −

(

CTE
ℓ

)

2

B2

ℓ Cℓ + Nℓ

〈δaℓmδEℓm|dℓm〉 = CTE
ℓ −

CEE
ℓ Cℓ

B2

ℓ Cℓ + Nℓ
, (9)

where we have introduced the experimental beam, Bℓ, the temperature power spectrum,
Cℓ = 〈|aℓm|

2〉, the E-mode polarization power spectrum, CE
ℓ = 〈|Eℓm|

2〉 and the E-mode
polarization/temperature cross power spectrum, CTE

ℓ = 〈a∗
ℓmEℓm〉. These power spectra

are diagonal in ℓ, and we impose a similar constraint on the noise power, which we denote
Nℓ = 〈|nℓm|

2〉. Note that this is an unphysical condition, corresponding to isotropic noise
over the sky; if we restrict ourselves to high signal-to-noise experiments and large scales. In
these equations, we show the Wiener filter for the temperature itself and for the polarization,
and, by extension of the equations from the previous section, the covariance between the
two.

We note in passing that the formalism also correctly accounts for the statistics of the
polarization “B-modes”. Since the cross-spectrum CTB

ℓ = 0, we just have 〈aB
ℓm|dℓm〉 = 0 with

〈δBℓmδBℓm|dℓm〉 = CB
ℓ — the data give no new information about them.

We show these formulae for the Wiener filter of the multipole coefficients themselves, but
in fact we will always want to smooth the resulting map with some beam (although it is not
necessary to use the same as the original experimental beam, Bℓ).

We can apply these formulae directly to the temperature data from the WMAP satel-
lite. Our requirement of isotropic noise should be adequate for ℓ < 400 where the noise is
negligible. In fact, in the following we use the Wiener-filtered temperature maps provided
by Tegmark et al. (2003). Note that starting from the temperature Wiener filter enables a
slight simplification:

〈Eℓm|dℓm〉 =
CTE

ℓ

Cℓ

〈aℓm|dℓm〉 . (10)

Starting from these Wiener-filtered data, which are in fact available in pixel space, we
apply these formulae by going back and forth between pixels and multipole coefficients
by performing a spherical-harmonic transform using routines from the HEALPix package
(Gorski et al., 1999).1 In Figure 1 we show the Wiener-filtered map of the WMAP data,
with the polarization superposed on the temperature.

In Figure 2 we show 4 realizations of the temperature and polarization drawn from
the variances of Eq. 9. It is evident that, in fact, the polarization field contains a large
uncorrelated component. We can understand this by examining the correlation coefficient,

r2

ℓ =
(CTE

ℓ )2

CE
ℓ Cℓ

. (11)

1http://www.eso.org/science/healpix/
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Figure 1: Wiener-filtered map of the CMB temperature and polarization using the WMAP
data as prepared by Tegmark et al. (2003).

Figure 2: Two realizations of the map of the CMB temperature and polarization using the
Wiener-filtered map Figure 1.
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This correlation coefficient gives the fraction of the power at a given multipole that is corre-
lated between the E-mode polarization and the temperature. In the signal-dominated regime
(here, low ℓ) this gives the correlated fraction of the power in the Wiener filter, as well. In
addition, the quantity 1 − r2

ℓ gives the fractional amplitude of the variance of the Wiener
filter. Thus, if rℓ ∼ 1, a realization of the Wiener variance is small compared to the Wiener
mean, and the mean is a good indication of the actual signal, but if rℓ is closer to 0, dif-
ferent realizations can look very dissimilar. We plot the correlation coefficient in Figure 3.
We see that the correlated fraction depends strongly on ℓ (and indeed drops to zero where
CTE

ℓ = 0) and is everywhere less than about 0.8. In practice, this means that the realizations
do vary considerably, but this can in principle be ameliorated by careful filtering of the map
to remove those modes where CTE

ℓ ≃ 0.

3.2 Small areas

We can also use the same technique to predict the polarization for small areas of sky, where
the available data may be more complicated than that from WMAP. In Figure 4 we show
a prediction of the polarization for the field probed by the MAXIMA experiment (e.g.,
Lee et al., 2001). Here, we take the full noise and signal covariance into account, and per-
form the calculation in pixel space. Instead of performing the calculation ℓ-by-ℓ, we must
now perform full matrix operations. For the isotropic CMB temperature field with power
spectrum Cℓ,

Spp′ =
∑

ℓ

2ℓ + 1

4π
CℓB

2

ℓ Pℓ(cos θpp′) (12)

where Bℓ gives the spherical harmonic transform of the experimental beam and θpp′ is the
angle between pixels p and p′. Analogous formulae hold for the covariances of the polariza-
tion components, and slightly more complicated ones for the cross-correlations amongst and
between different polarization and temperature components.

4 Discussion

As mentioned above, the correlation coefficient, rℓ gives an indication of the degree to which
the the polarization signal is completely predicted by the temperature signal (and the power
spectra CXX′

ℓ ). The fact that |rℓ| < 0.8 is an indication that a significant fraction of the
E-mode polarization signal is not correlated with the temperature. This leads, finally, to
a question about the physics of the temperature-polarization correlations: the correlated
component of the polarization and temperature is due in large part to correlations between
density and velocity perturbations on the surface of last scattering (Kamionkowski et al.,
1997; Zaldarriaga and Seljak, 1997; Jaffe et al., 2000; Hu and Dodelson, 2002). Having only
temperature data as discussed here means that the results assume such a relationship be-
tween the two components. However, with the availability of actual polarization maps, we
should be able to use only minimal theoretical input and yet still recover a two-dimensional
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Figure 3: Top Panel: the correlation coefficient, r, between temperature and E-mode CMB
Fluctuations (bottom curve); the top curve shows 1− r2. The bottom three panels show the
individual power spectra, CXY

ℓ . The vertical lines give the locations where CTE
ℓ = 0. Note

that the model we use here has optical depth, τ = 0.17, responsible for the upturn in the
spectra and correlation at low ℓ.
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Figure 4: Wiener predicted polarization for the MAXIMA-1 field.
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snapshot of the plasma flow on the surface of last scattering. We leave the details of this to
a future work and, we hope, future data.
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