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Abstract 
 

A method, called spectral response surface method, is proposed for the study of the ringing phenomenon of offshore 
structures. Newman’s results for diffraction force on a column were reformulated in terms of the frequency components 
of the ocean surface and their Hilbert transforms. Using a first-order reliability method together with a dynamic model 
for the structural response, it is straightforward to calculate the ocean surface history most likely to generate an extreme 
ringing response and the ringing response history. 
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1. Introduction 
 
Ringing response usually features a rapid build up and 
slow decay of energy at the resonant frequency of the 
structure. It may be possible that ocean waves excite 
ringing in an offshore structure. Indeed, it has been 
observed in small scale experiments on a vertical 
column during the passage of steep waves [1, 2]. The 
natural frequency of the structure and the observed 
response were relatively high compared to the dominant 
wave frequencies. However, some frequencies in the 
exciting force must have coincided with the natural 
frequency of the structure. This implies a non-linear 
loading model is required to predict the forces at the 
sum frequencies of the ocean wave field. 
 
Newman [3] studied the interaction between a body and 
random waves in the long wavelength regime. He 
concluded that non-linearity in loading is due more to 
fluid-structure interaction than to non-linear features in 
the incident waves. In particular, if one considers only 
the loads which occur at the sum of the wave 
frequencies, the incident wave field is described 
adequately by linear theory for loads up to third order. 
Newman’s expression for horizontal force on a column 
is consistent with the slender body results of Rainey [4]. 
We shall use Newman’s formulation in this paper. 
 
Ringing becomes important if it influences significantly 
the extreme response of a structure to a random sea. 
Therefore, a stochastic analysis is required and we shall 
use the spectral response surface method. The random 
sea is represented as a sum of many frequency 

components, each obeying a normal distribution. In 
many cases, a structural response can be expressed as a 
function of these components and their Hilbert 
transforms. The Hilbert transform is the signal phase 
shifted by 90 degrees. A first order reliability method 
(FORM) type of analysis is then applied, treating a 
surface of constant response level as a limit state [5, 6]. 
The method has been used in several ocean engineering 
problems [7, 8]. 
 
Consistent with a linear description of the incident 
waves, we assume that the ocean surface elevation is a 
sum of many, random, narrow banded components. 
Each component is normally distributed. All the 
components are independent and uncorrelated. Thus, the 
ocean surface at a fixed point is 
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where Aj is random amplitude, ωj is frequency, θj is 
random phase angle, and t is time. The frequency 
components can be transformed into standardized (unit-
variance, zero mean) variables by dividing each by its 
standard deviation σj. Thus, 
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where ηj is the jth spectral component and %η j  is its 
Hilbert transform. The joint density function of the 



MAKARA, TEKNOLOGI, VOL. 12, NO. 2, NOVEMBER 2008: 99-103 100

standardized variables, x j , ~x j , is then unit-variance 
normal. 
 
Newman [3] calculated the diffraction forces generated 
by such an incident sea on a vertical, cylindrical column 
in the limit where the wavelength is long compared with 
the column diameter. In a coordinate system with the x 
and y axes in the mean water surface, x oriented in the 
wave direction and z vertical, the first order force on the 
column is 
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This is the ‘Morison inertia load’ below mean water 
line. 
 
The second-order force is 
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The third-order force is 
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and 
 

( ) ( ) ( )F D g u u Ot3
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Both the third order terms are point forces acting at 
mean water line. 
 
In Eqs (3a), (3b) and (3c) D is the column diameter, ρ is 
the mass density of the water, g is the gravitational 
acceleration, u and w are respectively the horizontal and 
vertical orbital velocities, and η1 is the first-order 
estimate of the ocean surface. 
 
Given linear wave kinematics, we can use Eq. (2) to 
express Newman’s forces in terms of the standardized 
variables, x j , ~x j . The following expressions result: 
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2. Methods 
 
The dynamic behaviour of the structure is modelled as a 
single degree of freedom system. The load is applied 
directly on the mass and the response is the force 
transmitted by the spring. The dynamic amplification 
factor D(ω) and the phase shift θ(ω) are given 
respectively as 
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In Eqs (5a) and (5b) ωn is the natural frequency of the 
system and ζ is a non-dimensional damping parameter 
(relative damping). 
 
The application of the transfer function (5a) and (5b) to 
Eqs (4a) to (4c) leads to the corresponding responses R1, 
R2, R3. 
 
The first order response is 
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where Dj = D(ωj) and θj = θ(ωj), are the dynamic 
amplification factor and the phase shift at frequency ωj. 
 
The second order response is 
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where ( )D Dj k j k± = ±ω ω  and 

( )θ θ ω ωj k j k± = ±  are the dynamic amplification 

factor and the phase shift at frequency ( )ω ωj k± . 

 
The expression for the third order response, R3, is 
similar, but rather long. It can be found in Suastika [9]. 
 
The total response is R = R1 + R2 + R3. The condition R 
= constant defines a surface in the space of the 
standardized variables, x j , ~x j . 
 
3. Results and Discussion 
 
Using the expressions above, it is possible to generate 
surfaces of constant response in the space of the spectral 
components of the ocean surface. We recall that the 
spectral components and their Hilbert transforms are un-
correlated, linear processes. They obey a joint normal 
distribution with zero cross correlation. Thus, surfaces 
of constant probability density are concentric spheres in 
the space of the standardised variables. The probability 
density is highest at the origin and falls monotonically 
as a function of distance from the origin. Under these 
circumstances, it is straightforward to treat the response 
surfaces as limit states in a FORM type of analysis. The 
point on a surface of constant response where the 
distance to the origin is shortest and the probability 
density greatest is called the “design point.” This is, to a 
good approximation, the point where a response 
maximum is most likely. We find the design point using 
Lagrange’s method of undetermined multipliers [5]. 
 
Since the design point ( x j *, ~x j *) defines the amplitude 
and phase of the frequency components at the instant 
when the extreme occurs, it allows us to deduce the time 
histories of the response and related variables around 
the time of the extreme. These histories are those most 
likely to be associated with a response maximum. Thus, 
in the case of the ringing problem, we can identify if 
ringing determines the extreme and identify the type of 
applied load history that excites it. In addition, we find 
the ocean surface history that generated it all. Finally, 

we can estimate the exceedance probabilities of extreme 
ringing responses very efficiently. 
 
We studied the case of a uniform 10 m diameter column 
in a sea with a significant wave height of 15 m and a 
zero crossing period of 13.5 s that obeys a JONSWAP 
spectrum. The peak of the surface energy spectrum is 
approximately 0.36 rad/s. The water depth is 300 m. 
The dynamics are modeled with a damping coefficient 
that is 2.5 % of critical and a natural frequency of 1.57 
rad/s. We shall discuss the case of the maximum 
negative or “swing back” response, that is in the 
direction opposed to the waves. We select this since it is 
more severe than the swing forward response. We 
describe here the solutions we found for an extreme 
response level such that the probability that an 
individual maximum exceeds it is 10-4. Results of the 
study have been presented in the 1998 OTRC 
Symposium in Houston, Texas, USA [10]. 
 
We investigated the effects of using the Newman load 
model to first, second and third order. The response 
time histories are plotted in Figs 1 to 3. The contribution 
to the dynamic response from the higher order forces is 
very significant. There is some evidence of ringing from 
second order forcing. With third-order forcing the 
ringing is unmistakable. The corresponding surface 
elevation is shown in Fig. 4. 
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Figure 1. Dynamic response with only first-order excitation 
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Figure 2. Response with first and second-order excitation 
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Figure 3. Response with first, second and third-order 

excitation 
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Figure 4. Surface elevation generating the response time 

series plotted in Fig. 3 
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Figure 5. Third-order component of the dynamic response 
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Figure 6. Third-order component of the force excitation 

To gain insight into the processes, we look more closely 
at the third order contribution to the response. From the 
design point we have calculated, it is possible to 
reconstruct the time series of all the components of the 
response and of the excitation. The time history of the 
third order component of the response is plotted in Fig. 
5 and the corresponding force excitation in Fig. 6. The 
third-order component of the response resembles the 
response of a linear oscillator to an impulse excitation: a 
rapid increase of energy at the natural frequency 
followed by a slow decay due to damping. The 
corresponding exciting force in Fig. 6 supports this 
view. In fact, the excitation takes the form of a double 
impulse. The double impulse is associated with a wave 
crest; the positive impulse immediately precedes the 
crest and the negative impulse follows it. Apart from the 
isolated double impulse, the third order excitation is 
remarkably small. Though not plotted here, similar, but 
less pronounced, effects are seen at second order. 
 
Finally, we note that the results provided here involved 
a few minutes of computer simulation. To achieve 
similar results by time domain calculation of random 
waves would involve many hours of computing. 
 
4. Conclusion 
 
The ringing generated by non-linear terms in Newman’s 
model can have a significant effect on the dynamic 
response of offshore structures such as gravity base 
structures (GBS) or tension leg platforms (TLP). Some 
ringing effects can be found in the response with only 
second order excitation. Ringing arises from an impulse 
generated by non-linear loading. The spectral response 
surface method is tractable and much faster than a 
random time-domain simulation. 
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