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Introduction 

In quantum mechanics there are many interesting 
tasks which do not admit accurate solution. 
Therefore, the approximate approaches, which are 
often more useful for understanding the physical 
phenomena than numerical solutions of the 
appropriate equations, play a key role. 

The principal approximate approaches of 
quantum mechanics are based on the theory of 
indignations and variation principles. The critical 
application of asymptotical method by  
L .A. Lyusternik – M. I. Vishik has become widely 
used in many sections of mechanics. 

This method enables to research the problems on 
a program layer, problems on a spectrum, problems 
on fast oscillation, problems on barriers and many 
other things. Many works are devoted to the research 
of asymptotical behavior of solutions, proper 
numbers and proper functions of differential 
operators with ruptured coefficients. 

In this article the asymptotics of proper numbers 
and proper functions of double-measured operator 
Shredinger with strong potential functions were 
researched. 

Asymptotics of proper values and appropriate 
proper functions for the boundary values is 
considered which depend on parameter ε  such that 
ε→ 0 coefficients grow in a subarea without limit. 

Therefore, the equations which are determined in 
all spaces of the value2E  are considered in such a 

way that the coefficients in subarea−D -are final, 

and in addition to +D  when ε→ 0, they grow 

without limit and let Γ  is general border of −D  

and +D . 

If εu  is a solution to the problem, the first 

approximation to εu in the area −D  is a solution of 

the boundary value in this area with the certain 
boundary conditions on Γ , and on this basis it 
appears appropriate to make expansion of scale in a 

vicinity of Γ  on the part of +D  . 
During the work the first iterative process passes 

in the area of −D , and the second iterative process 
passes in the area of+D . In the first approximation 

we are on a spectrum−D , where the proper 
functions can appear in asymptotical decomposition 
of the task solution. 

Let’s assume that in x, y-plane the Shredinger’s 
equation with the coefficients, which suffer the 
rupture on a compact smooth curveΓ  the interior of 

which is designated as−D  , and its addition 

as Γ= −+ UDED 2 .  
The coefficients include small parameterε , 

where 0ε →  and in this way the potential function 
increases without limit. 

Besides this, the coefficient at the leading 
coefficient is also disruptive onΓ . So, now we shall 
consider a following spectral problem: 

2 2

2 2
( ) ,

u u
L u a k x u u

x y
ε ε

ε ε ε ε ε ε ε
 ∂ ∂≡ + − = λ ∂ ∂ 

       (1) 

where 

2

( ), ,
1, ,

( ) ( )
, , , ,

k x x D
x D

a k x k x
x D x D

− −
−

+
ε ε+ +

 ∈
 ∈ = = 
ε ∈ ∈  ε

   (2) 

∞→≥ −− )(,0)( xkxk  when ∞→x .   (3) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/295239077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Physical  and  mathematical  sciences 
 

 

192 

On the border Γ the factor conditions (conditions 
of sewing together) are specified: 
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Now we’ll seek the solution of the problem, 
limited in all space. Under conditions (3) the 
problem (1) – (5) has absolutely discrete spectrum. 

The coefficients εL in −D  are supposed to be 

limited and decaying on degrees. 
The aim is to construct the asymptotics on aε  

small parameter of proper numbers and appropriate 
proper functions of the equation (1) on all x, y-plane. 
In order to construct the asymptotics of proper 
numbers and proper functions we record the second 
decomposition of the operator in a vicinity ofΓ . 

Now we’ll add local coordinates ( ), , nρ ϕ ϕ =  

in a vicinity of Γ  and the area +D , where 0ρ >  

corresponds to +D  points.  
Then the equation (1) in the area+D  has a 

following structure: 

2 2 2

1 1 ( )
,

u u k x
L u u u

+
ε ε

ε ε ε ε ε

  ∂ ∂≡ ε ρ + − = λ  ρ ∂ρ ρ ∂ϕ ε  
 

If tερ = , we have 
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Asymptotical decomposition of the proper 
value ελ  and appropriate proper function( )u xε  the 

equation (8) in the area +D  and the equation 
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In the area −D  we’ll seek 
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where ( )u x+
ε has a type of function in the form of a 

boundary layer, that is they are noticeably distinct 
from zero only near Γ by means of the smoothing 
function ( )φ ς  continued in zero.  

Let's substitute expression ελ from (7) and 

( )u xε where +− ∈∈ DxDx ,  from (8), (9) in the 

equation for the proper function 
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and the factor conditions 
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Equating the coefficients at identical degrees 
onε , from (10) – (13) we’ll receive  
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iM , ( ,...2,1,0=i ) – are well-known 
differential expressions. 

It is visible, that there is a connection between 
boundary conditions which is defined as follows: 
there is a problem for the equation with private 
derivatives on,t ϕ : 
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The common solution of the equation (20) is 
given by the formula 

0 1 2( ) ( ) ( ), ,n nt d J t d N t t
ρϑ = + =
ε

  

where )(tJn  – is Bessel’s function; 

)(tNn  – is Neumann’s function of nkind. 

If we consider boundary conditions (21) we’ll 
have 0 0,ϑ ≡  which has the character of function in 

the form of boundary layer. Then we’ll find the 
regional conditions of a problem (14), (15) for 
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Thus, we have received a regional condition for 

the first approximation 0u  in −D to the accurate 

solutionuε . For function 0u  we have received the 

problems (22), (23) which are outside the area−D , 

0u  is continuously precede by means of the function  

0 1 2( ) ( ) ( )n nt d J t d N tϑ = + ,  

which have a boundary layer. 
It is obvious, that above-mentioned asymptotical 

decomposition of the problems with greater 

coefficients in the area +D  shows, that the solution 

of some boundary values which are in+D  by the 
simple functions in the form of a boundary layer 

serve like their first approximations in the area−D . 

As )(xk −  is real-valued, therefore the 

operator 0L , is created by the differential expressions 

(22) and a boundary condition (23). From limitation 

)(xk −  follows, that the operator0L  has absolutely 

discrete spectrum. The proper values of the operator 
we shall designate like 

0 1 2 ... ...nλ ≤ λ ≤ λ ≤ ≤ λ ≤  

And orthonormal functions through 

0 1( ), ( ),..., ( ),...nx x xϕ ϕ ϕ . After the determination 

of 0u , from (18), (19) we’ll solve the problem 

for 1ϑ , 
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Solving the equation (24), we receive the 
common solution in a following type 

1 1 2( ) ( ) ( ),n nt d J t d N tϑ = +   

Where 1( )tϑ  have a boundary layer character, 

and satisfy the condition (25). 
Knowing 1( )tϑ , it is possible to find a boundary 

condition for )(1 xu , i.e. from (16), (17) 
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The homogeneous problem which corresponds to 
the problem (26), (27), is on a spectrum and is not 
always tractable. Therefore we select 1λ in order to 
solve this problem. To solve the non-uniform 
boundary problem, it is necessary that the right part 
of a problem (26), (27) is orthogonal to the solution 

0Ζ of the conjugate homogeneous problem. 

Similarly, continuing the process it is possible to 
found all functions ,,...,, 110 −kuuu 0 1, ,..., ,kϑ ϑ ϑ  

and the number 0 1 1, ,..., k−λ λ λ , where 

, 0,1,..., 1,i i k kϑ = −  is a function of boundary 

layer.  
Apparently, that if kϑ  are known, it is possible to 

define the function ku , as the solution of a following 

problem in the area −D  
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u
− +

Γ =+
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The problem (28), (29) is not always tractable; 
the appropriate homogeneous problem is on a 
spectrum. Therefore we choose kλ  in such a way to 

solve it. In order to solve the problem (28), (29) it is 
necessary that the right part of a problem is 
orthogonal to the solution 0Ζ  of the self-conjugated 

homogeneous problem. At such choice the problem 
(28), (29) becomes tractable. 

Solving the problem (28), (29), we find its 
common solution in the form of 

1,k k k ku u e u−= +ɶ    

Where ku~  - is the partial solution to the problem 

(28), (29). A constant is chosen to be orthogonal 
to 1−ku , i.e.( ) 0, 1 =−kk uu , from here we 

find ( )1, −= kkk uue . After such choice, kk ue ,  

becomes unequivocal.  

Conclusoins 

So, continuing the process, it is possible to define 
other functions of decomposition if the appropriate 
conditions of smoothness of the given problems are 
completed. We have the following theorems. 

The theorem 1. If ∞→− )(xk , where ∞→x , 

the problem (1) - (5) has absolutely discrete 
spectrum, and for every ,...2,1, =ii  there is a 

constant ib  that is 

1
2

0i i ibελ − λ ≤ ε ,  

where ελi  of i -kind proper value of the 

operator εL ; 

0iλ  of i -kind, the proper value of the 

operator 0L .  

The theorem 2. Let the self- conjugated 
differential operator of the second order (1)  
on space under the condition of (2), (5) is  
given. The following asymptotical concepts for  

i -kind of the proper function εiu of this operator 

look like: 
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where 00 iuu =  is the appropriate proper function of 

this problem, and the function0iv  is in the form of 

boundary layer.  
The theorem 3. Letε  is fixed in (1), 

for , ( , )x D k x−∈ ε  is distinct from zero and 

for +∈ Dx  has only one solution, 
consequently 0λ =  is not a point of a spectrum of 
the operator 0λ = in the area 0λ = , where 

,0=
Γ

u so the assessment is correct. 

1
,u L uε≤ α   

where ,0=
Γ

u  does not depend on u andε , i.e. 

proportional convertibility of the operatorLε . 
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