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Abstract

We characterise the class SRaCAn of subalgebras of relation algebra reducts of n-
dimensional cylindric algebras (for finite n ≥ 5) by the notion of a ‘hyper-basis’, analo-
gous to the cylindric basis of Maddux, and by relativised representations. A corollary is
that SRaCAn = SRa(CAn ∩ Crsn) = SRa(CAn ∩ Gn). We outline a game-theoretic ap-
proximation to the existence of a representation, and how to use it to obtain a recursive
axiomatisation of SRaCAn.

1 Introduction

In the nineteenth century there were two main approaches to the formalization of quantifi-
cation in logic. The first approach, due to de Morgan and taken up by Peirce, led to what
we now call relation algebra (see [Mad91b] for an account of the early history of relation al-
gebra); the other approach, due to Frege, became the standard formalism of first-order logic
with its explicit universal and existential quantifiers. Both can express quantification, though
in different ways — in the algebraic approach to binary relations we use the composition of
binary relations. For example, in first-order logic we can say ‘there exists a person who is my
parent and your sibling’, which could be expressed in relation algebra as ‘you are either my
uncle or my aunt’.

Then, in the twentieth century, first-order logic was given an algebraic setting in the frame-
work of cylindric algebra [HMT71, HMT85]. So we now have two main algebraic formalisms
for relations of various ranks: relation algebras constitute an algebraization of binary relations
and n-dimensional cylindric algebras are an algebraization of n-ary relations. Ever since these
algebras were defined, researchers have investigated the connections between them [Mad91a,
for example]. The relation algebra reduct is a known way of turning a cylindric algebra into
a relation algebra: we extract the essentially binary relations of the cylindric algebra and
interpret the relation algebra operations on them by suitable cylindric algebra terms. But
the question arises as to when a given relation algebra can be obtained as such a reduct —
or at least as a subalgebra of such a reduct. To put it another way, if C is an n-dimensional
cylindric algebra and A is a subalgebra of the relation algebra reduct Ra(C) of C, is there a
trace purely within A of its origin as a n-dimensional cylindric algebra? This, in essence, is
the question that we will investigate in this paper.

∗Research of the first author partially supported by UK EPSRC grant GR/L85961; research of the second
author partially supported by UK EPSRC grants GR/K54946 and GR/L85978. Thanks to Maarten Marx,
Szabolcs Mikulás, and Mark Reynolds for helpful comments.
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The class SRaCAn is by definition the class of subalgebras of relation algebras of the form
RaC for sone n-dimensional cylindric algebra C. We wish to find an intrinsic characterisation
of SRaCAn. Maddux has shown that any atomic relation algebra with an n-dimensional
cylindric basis, and hence any subalgebra of such a relation algebra, belongs to SRaCAn. We
will show here that there are (atomic) algebras in SRaCAn that have no such basis, though
whether every relation algebra in SRaCAn embeds in a relation algebra with an n-dimensional
cylindric basis remains an open problem. On the other hand, the class RAn of subalgebras of
atomic relation algebras with n-dimensional relational bases does include SRaCAn, but this
time we define too big a class. The definitions of these different bases will be given later, and
can be found in [Mad89].

In this paper, we introduce the notion of an n-dimensional hyper-basis. Hyper-bases
are very similar to Maddux’s cylindric bases, but their elements are hyper-networks which
carry relations of arity up to n, not just two as with cylindric and relational bases. In our
main theorem (theorem 1), we show that the class of subalgebras of relation algebras with
n-dimensional hyper-bases is exactly SRaCAn.

Further, we provide a representation theory for the algebras of SRaCAn. These algebras
are not always in RRA and so are not necessarily representable in the classical sense. None
the less, they have useful non-classical ‘relativised’ representations. In [HH97c], we gave
relativised ‘n-square’ semantics for the algebras of RAn. An n-square representation is ‘locally
classical’ in that without simultaneously considering more than n points, one cannot tell at
first sight that it is not classical. Here, we define the related but stronger notion of n-flat
relativised representation, in which detecting its non-classical nature is even harder. We show
that a relation algebra has such a representation if and only if it belongs to SRaCAn. We
then give an alternative kind of representation, which we call n-smooth, and show that the
relation algebras with such a representation are again precisely those in SRaCAn.

Game-theoretic approximations to n-smooth relativised representations can be used to
obtain a recursive axiomatisation of SRaCAn, and, using the fact that this class is an equa-
tional variety, we can turn such axioms into equations. We will outline how to do this, but
we will not go into full detail.

Various other results will be stated in remarks in the text. Proofs are omitted through
lack of space.

Further work It is easily seen that for n ≥ 4 (or even 3, if we generalise from relation
algebras to non-associative algebras), SRaCAn ⊇ SRaCAn+1. In [HHM98], we showed that
this inclusion is strict, for each n. Using game-theoretic techniques, we will show in part II
of this paper [HH99a] that the gap cannot be finitely axiomatised.

Plan of paper

We will prove:

Theorem 1 Let A be a relation algebra and let n ≥ 5. Then the following are equivalent:

1. A ∈ SRaCAn.

2. The canonical embedding algebra A+ of A has an n-dimensional hyper-basis.

3. A has an n-flat relativised representation.
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4. A has an n-smooth relativised representation.

5. A satisfies certain explicitly-given equations εk (k < ω).

Definitions of the terms in this theorem will be given at the appropriate places: in definitions 7,
14, 41, and immediately before theorem 51. The theorem also holds (degenerately) for n = 4:
see remark 52.
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Figure 1: Summary of the proof of theorem 1

The proof will proceed as follows. First, we recall the definition of a relativised repre-
sentation of a relation algebra, though instead of the usual definition using homomorphisms
on algebras, we define our representations as models of a certain first-order theory. In such
a representation, n-variable first-order formulas can be interpreted, roughly by relativising
existential quantifiers to the unit of the relation algebra. We then define an n-flat relativised
representation to be a relativised representation with the additional property that these rel-
ativised quantifiers commute (∃xi∃xjϕ is always equivalent to ∃xj∃xiϕ). It follows that the
definable sets form an n-dimensional cylindric algebra, and so we prove in theorem 11 the
implication (3) ⇒ (1) of theorem 1.

In section 3, we introduce hyper-networks and hyper-bases. Hyper-networks are very like
the basic matrices of [Mad82, section 4] or the atomic networks of [HH97b], but as well as
using atoms to label edges of these hyper-networks, we also have labels for sequences of length
greater than two. Hyper-bases correspond approximately to Maddux’s cylindric bases, the
only difference being that the elements of a hyper-basis are hyper-networks rather than basic
matrices. We then develop some results on substitutions in cylindric algebras, based on results
of [Tho93] showing that the effect of a string of substitutions in an n-dimensional cylindric
algebra is determined by an associated map induced on {0, 1, . . . , n − 1}. This work is used
in proposition 33, which proves (1) ⇒ (2) of theorem 1.

In section 4, we prove (2) ⇒ (3) by showing that any atomic relation algebra with an n-
dimensional hyper-basis has a (complete) n-flat relativised representation (theorem 39). This
is done in a ‘step-by-step’ fashion. This completes the proof of the equivalence of parts (1)
to (3) in theorem 1. The proof of (1) ⇒ (2) ⇒ (3) has some similarity to that in [AT88].

Another kind of relativised representation for algebras in SRaCAn, which we call n-smooth,
is introduced in section 5. Its defining property is reminiscent of ‘bisimulations’, the rough
idea being that certain local isomorphisms of size less than n − 1 can be extended so that
their domain includes an arbitrary additional point, provided the extended domain forms a
‘clique’ in the relativised representation. We show that the existence of an n-smooth rel-
ativised representation is equivalent to the previous parts of theorem 1 by proving (3) ⇒
(4) (proposition 44, using an ω-saturated relativised representation), and (4) ⇒ (2) (theo-
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rem 45, again using ω-saturation, and theorem 46, by taking a complete n-smooth relativised
representation and considering the set of all hyper-networks that embed in it).

In section 6, we outline how to use n-smooth relativised representations to obtain a re-
cursive equational axiomatisation of SRaCAn. We use a two-player game where the play-
ers construct better and better ‘approximations’ to an n-smooth relativised representation.
Proposition 48 uses these games to find a first-order characterisation of the countable relation
algebras with n-smooth relativised representations. It states that in the infinite length game,
at least for countable relation algebras, a winning strategy for the second player is equivalent
to the existence of an n-smooth relativised representation, and that a winning strategy in all
finite length games is equivalent (by König’s tree lemma) to a winning strategy in the infinite
length game. Moreover, the existence of a winning strategy for the second player in the game
of finite length k can be expressed by a universal sentence σnk . This gives a recursive set of
universal first-order axioms σnk (k < ω) which are true in a countable relation algebra A iff
A has an n-smooth relativised representation. By the other parts of theorem 1, this holds iff
A ∈ SRaCAn.

In this paper we will only sketch all this, as it is becoming a standard method and
also for the following reason. SRaCAn is defined to be the class of subalgebras of relation-
algebra reducts of n-dimensional cylindric algebras, and, as we outlined above, it can also be
characterised as either (i) the class of subalgebras of algebras with n-dimensional hyperbases,
(ii) the class of algebras with n-flat relativised representations, or (iii) the class of algebras
with n-smooth relativised representations. The definition of SRaCAn and each of these three
characterisations fit the definition of a PC ′

∆ class [Hod93, chapters 5, 6]. Roughly, a PC ′
∆

class consists of every L-structure (for some first-order signature L) that arises in a uniform
way as a definable part of a model of some first-order theory in a language extending L. In a
forthcoming publication it will be shown how to obtain universal axioms for any PC ′

∆ class
that is closed under subalgebras. This method of axiomatising a PC ′

∆ class generalises the
axiomatisation we provide here.

We continue with a proof (proposition 49) that SRaCAn is a variety. This eliminates the
countability restriction. Further, since RA is a discriminator class, for each universal formula
σnk we can find an equation εnk which is equivalent to σnk over simple relation algebras. Since
every relation algebra A is a subdirect product of simple relation algebras which are quotients
of A, we deduce in theorem 51 that the equations {εnk : k < ω}, together with the basic Tarski
equations for relation algebras, exactly define the class SRaCAn. This completes the proof of
theorem 1.

In section 7, we discuss matters arising from the theorem. Section 8 investigates the con-
nections between hyper-bases, cylindric bases and relational bases. We outline how cylindric
bases correspond to a kind of homogeneity in a representation (see theorem 60).

Notation 2

Ordinals. Most ordinals in this paper are finite. For ordinals m,n, we write mn for the set
of maps from m to n, and <mn for

⋃
i<m

in. We use ≤mn to denote <m+1n.

Tuples. We often view a map in mn as an m-tuple, and write it as ā = (a0, . . . , am−1) and
its length m as |ā|. We will switch between the map view and the tuple view whenever
appropriate. We may specify an m-tuple ā be defining the elements ai for i < m.

If ā, b̄ are tuples, we write āb̄ for their concatenation (a0, . . . , am−1, b0, . . . , bn−1). Thus,
āb denotes ā concatenated with the 1-tuple b. For n-tuples ā, b̄ and i0, . . . , ik−1 < n, we
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write ā ≡i0,...,ik−1
b̄ if aj = bj for all j ∈ n \ {i0, . . . , ik−1}. We also write (ā 7→ b̄) for the

relation {(ai, bi) : i < n}; this may or may not be a well-defined map or function.

For any m-tuple ā and any map θ with rng(ā) ⊆ dom(θ), we write θ(ā) for the m-tuple
(θ(a0), . . . , θ(am−1)). As a map, this is θ ◦ ā. On the other side, if l is an ordinal and
θ : l→ m a map, we let ā ◦ θ denote the l-tuple (aθ(0), . . . , aθ(l−1)).

Structures. If L is a signature and M an L-structure, we write SM for the interpretation
in M of a symbol S ∈ L. For example, 1′A is the identity of the relation algebra A. We
usually identify (notationally) a structure with its domain.

2 Representation theory

In [Mad82], it was shown that the weakly associative algebras are precisely those that have
relativised representations in which the unit is a reflexive and symmetric relation. We will
extend this to provide a representation theory for algebras in SRaCAn: the unit remains
reflexive and symmetric, but the representation is rather more complicated. In [HH97c], we
did this for the variety RAn of subalgebras of relation algebras with n-dimensional relational
bases. The approach here is rather similar.

Let A be a relation algebra. Let L(A) be the first-order language in a signature consisting
of one binary predicate symbol for each element of A. That is, each element of (the domain of)
the algebra A will be regarded as a binary relation symbol. (This will not lead to ambiguity:
for r ∈ A, if we write r(x, y), we are thinking of r as a relation symbol, but if we write simply
r, we are thinking of r as an element of A.)

2.1 Relativised representations

Definition 3

1. SA is the L(A)-theory consisting of the following axioms:

∀xy[1′(x, y) ↔ (x = y)]
∀xy[r(x, y) ↔ s(x, y) ∨ t(x, y)] for all r, s, t ∈ A with A |= r = s+ t

∀xy[1(x, y) → (r(x, y) ↔ ¬s(x, y))] for all r, s ∈ A with A |= r = −s
∀xy[r(x, y) ↔ s(y, x)] for all r, s ∈ A with A |= r = s̆

∀xy[1(x, y) → (r(x, y) ↔ ∃z(s(x, z) ∧ t(z, y)))] for all r, s, t ∈ A with A |= r = s ; t
∃xy r(x, y) for all r ∈ A with A |= r 6= 0.

2. A relativised representation of A is a model of SA.

3. A complete relativised representation of A is a model of SA satisfying the (potentially
infinitary) axiom

∀xy[(
∧
s∈S

s(x, y)) ↔ (
∏

S)(x, y)]

for each set S of elements of A whose infimum
∏
S exists in A.

The reader should check the next lemma. For the second part, see [HH97b, theorem 5].
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Lemma 4 Let M be a relativised representation of the relation algebra A. Then as boolean
algebras, we have

(A,+,−, 0, 1) ∼= ({rM : r ∈ A},∪, \,∅, 1M ),

where, for r ∈ A, rM denotes the interpretation of the binary relation symbol r as a binary
relation on M (so rM ⊆ 2M). Also, 1M is a reflexive and symmetric relation on M .

M is a complete relativised representation iff for every x, y ∈M with M |= 1(x, y), there
is an atom (minimal non-zero element) α ∈ A such that M |= α(x, y).

2.2 Flat relativised representations

Until the end of this section we fix n with 3 ≤ n < ω.

Definition 5 Let M be a relativised representation of the relation algebra A. A clique in
M is a subset X ⊆ M such that M |= 1(x, y) for all x, y ∈ X. We write Cn(M) for the set
{ā ∈ nM : rng(ā) is a clique in M}.

Definition 6 We consider the set Ln(A) of first-order formulas of L(A) that are written
with the variables x0, . . . , xn−1 only. Let M be a structure for this language. We define the
clique-relativised semantics M |=C ϕ(ā), for ϕ ∈ Ln(A) and ā ∈ Cn(M) as follows.

• If ϕ is r(xi, xj) for r ∈ A and i, j < n, then M |=C ϕ(ā) iff M |= r(ai, aj).

• If ϕ is xi = xj for some i, j < n, then M |=C ϕ(ā) iff M |= ai = aj .

• M |=C ¬ϕ(ā) iff M 6|=C ϕ(ā).

• M |=C (ϕ ∧ ψ)(ā) iff M |=C ϕ(ā) and M |=C ψ(ā), where ϕ,ψ ∈ Ln(A).

• For i < n, M |=C ∃xiϕ(ā) iff M |=C ϕ(b̄) for some b̄ ∈ Cn(M) with b̄ ≡i ā.

Notations here are as given in notation 2. We define the abbreviations ∨,→,∀ in the usual
way.

Definition 7 Let A be a relation algebra. An n-flat relativised representation of A is a
relativised representation M of A with the additional property that for all ϕ ∈ Ln(A), all
ā ∈ Cn(M), and all i, j < n, we have

M |=C (∃xi∃xjϕ↔ ∃xj∃xiϕ)(ā).

2.3 Properties of flat relativised representations

We establish two basic properties of any n-flat relativised representation M of a relation
algebra A.

Lemma 8 Let i0, . . . , ik−1 < n for some k < n, and let ϕ ∈ Ln(A) and ā ∈ Cn(M). Then
M |=C (∃xi0 . . .∃xik−1

ϕ)(ā) iff M |=C ϕ(b̄) for some b̄ ∈ Cn(M) with ā ≡i0,...,ik−1
b̄.

Proof:
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‘⇒’ is clear. We prove ‘⇐’ by induction on k. If k = 0, it is trivial, and
if k = 1, it holds by definition of |=C . Let k > 1, and assume the result for
smaller k. Since k < n, there is j ∈ n \ {i0, . . . , ik−1}. Then aj = bj . Let
ā′ ∈ Cn(M) be the result of replacing aik−1

by aj in ā. Define b̄′ similarly. Clearly,
ā ≡ik−1

ā′ ≡i0,...,ik−2
b̄′ ≡ik−1

b̄. So if M |=C ϕ(b̄), then by three applications of the
inductive hypothesis we obtain M |=C (∃xik−1

ϕ)(b̄′), M |=C (∃xi0 . . .∃xik−1
ϕ)(ā′),

and M |=C (∃xik−1
(∃xi0 . . .∃xik−1

ϕ))(ā). Now M is n-flat, so by the commuta-
tivity of existential quantifiers and a straightforward induction on k, we obtain
M |=C (∃xi0 . . .∃xik−1

ϕ)(ā), as required. 2

Now we prove that free variables of Ln(A)-formulas behave as we would hope. Cf. [Mad89,
lemma 20]. Bear in mind that variables can be ‘re-used’ in n-variable formulas, so that x0

occurs both free and bound in r(x0, x1) ∧ ∃x0 s(x0, x1), for example.

Lemma 9 Let ϕ ∈ Ln(A) and let xi (for some i < n) be a variable that does not occur free
in ϕ. Then M |=C (ϕ↔ ∃xiϕ)(ā) for all ā ∈ Cn(M).

Proof:

We show by induction on ϕ that if xi is not free in ϕ, ā, b̄ ∈ Cn(M), and
ā ≡i b̄, then M |=C ϕ(ā) iff M |=C ϕ(b̄). If ϕ is atomic, this is trivial, and
the boolean cases are also straightforward. Assume the result for ϕ and consider
∃xjϕ, assuming that xi is not free in ∃xjϕ. If j = i, the result follows from the
fact that ≡i is an equivalence relation on Cn(M). So assume that j 6= i. We let
ā ≡i b̄ and M |=C ∃xjϕ(ā), and check that M |=C ∃xjϕ(b̄), also. (The converse is
similar.) Plainly, M |=C ∃xi∃xjϕ(b̄). By n-flatness, M |=C ∃xj∃xiϕ(b̄). So there
are c̄, d̄ ∈ Cn(M) with b̄ ≡j c̄ ≡i d̄ and M |=C ϕ(d̄). Now as i 6= j, xi is not free
in ϕ. So by the inductive hypothesis, M |=C ϕ(c̄). Hence, M |=C ∃xjϕ(b̄), as
required. 2

2.4 From flat representations to RA-reducts

There is a well-known method of obtaining a relation-type algebra Ra(C) from an n-dimen-
sional cylindric algebra C (for any n ≥ 3): Ra(C) is constructed by taking the two-dimensional
elements of C and using the spare dimensions to define converse and composition (see [HMT85,
5.3.7]). Ra(C) is called the relation algebra reduct of C.

More formally, this is done as follows. Recall that for i, j < n, the substitution operator
sij is defined by

sijx =
{
x, if i = j;
ci(dij · x), otherwise.

Definition 10 [HMT85, 5.3.7] Let C be any n-dimensional cylindric algebra. For m ≤ n, the
neat m-reduct of C (in symbols, NrmC) is the m-dimensional cylindric algebra with domain
{a ∈ C : cja = a for all m ≤ j < n} and with operations +,−, 0, 1, cj , djk for j, k < m induced
from C.

The relation algebra reduct of C — in symbols, Ra(C) — is the algebra

〈dom(Nr2C),+,−, 0, 1, 1′,^ , ; 〉,

where
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• +,−, 0, 1 are as in C

• 1′ = d01 (∈ Nr2C)

• converse is defined by r̆ = s20s
0
1s

1
2r, for r ∈ Nr2C.

• composition is defined by r1 ; r2 = c2(s12r1 · s02r2), for r1, r2 ∈ Nr2C.

Ra(C) can be checked to be closed under these operations. For n ≥ 3, it is a weakly associative
algebra; when n ≥ 4, it is actually a relation algebra [HMT85, 5.3.8]. For finite n, if C is
atomic then so are the algebras NrmC (m < n), and hence also RaC. The set AtNrmC of
atoms of NrmC is {cmcm+1 . . . cn−1x : x an atom of C}.

We generally identify notationally the algebras NrmC, RaC with their domains.

We now prove our first main result.

Theorem 11 Let A be a relation algebra with an n-flat relativised representation. Then
A ∈ SRaCAn. Indeed, A ∈ SRa(CAn ∩ Gn), Gn being the cylindric relativised set algebras
whose unit is closed under substitutions and permutations (‘locally cubic’).

Proof:

Let M be an n-flat relativised representation of A. For ϕ ∈ Ln(A), write

ϕC = {ā ∈ Cn(M) : M |=C ϕ(ā)}.

Let C be the following CAn-type algebra (its signature is {+,−, 0, 1, dij , ci : i, j <
n}).

• The domain of C is the set {ϕC : ϕ ∈ Ln(A)} of all sets definable by n-variable
formulas in the clique-relativised semantics.

• 0 is interpreted in C as ∅ = 0(x0, x1)C , and 1 as Cn(M) = 1(x0, x1)C .

• + and − are interpreted in C as follows: ϕC + ψC = ϕC ∪ ψC = (ϕ ∨ ψ)C ,
and −(ϕC) = Cn(M) \ ϕC = (¬ϕ)C (this is plainly well-defined).

• dij is interpreted as {ā ∈ Cn(M) : ai = aj} = (xi = xj)C .

• ci is interpreted by: ci(ϕC) = (∃xiϕ)C (this is well-defined).

C is a subalgebra of the cylindric relativised set algebra (Crsn) with domain
℘(Cn(M)). The unit Cn(M) of C is clearly closed under permutations and sub-
stitutions, and so C ∈ Gn. Also, n-flatness implies that C |= ∀x(cicjx = cjcix) for
all i, j < n. Hence, C ∈ CAn. We show that A embeds into RaC. For r ∈ A, let

ι(r) = r(x0, x1)C ∈ C.

By lemma 9, ι(r) ∈ RaC for all r ∈ A. We check that ι is an algebra embedding
of A into RaC.

ι plainly preserves the boolean operations, because M is a relativised repre-
sentation of A. (For negation, note that if ā ∈ Cn(M) then M |= 1(a0, a1), so
M |=C (¬r(x0, x1) ↔ −r(x0, x1))(ā) by the negation axiom of SA.) Now, to show
that ι is one-one, we only need check that if r ∈ A \ {0} then ι(r) 6= 0 in C. But
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M |= SA, so there are a, b ∈ M with M |= r(a, b). One may check that {a, b}
is a clique in M , so that ā = (a, b, b, . . . , b) ∈ Cn(M). Then ā ∈ ι(r), which is
therefore non-empty, as required.

We check the relation algebra operations. By the identity axiom of SA, M |=
∀xy(1′(x, y) ↔ x = y). So ι(1′) = (x0 = x1)C = d01. For converse, let r ∈ A: we
require ι(r̆) = s20s

0
1s

1
2ι(r). By definition of C,

s20s
0
1s

1
2ι(r) =

(
∃x2(x2 = x0 ∧ ∃x0(x0 = x1 ∧ ∃x1(x1 = x2 ∧ r(x0, x1))))

)C
.

It follows that for any ā ∈ Cn(M), ā ∈ s20s
0
1s

1
2ι(r) iff M |= r(a1, a0). By the

converse axiom of SA, this is iff M |= r̆(a0, a1) — i.e., iff ā ∈ ι(r̆), as required.
Finally, we check composition. We require that ι(r ; s) = c2(s12ι(r) · s02ι(s)) for

all r, s ∈ A. Fix such r, s, and let

χ = ∃x1(x1 = x2 ∧ r(x0, x1)) ∧ ∃x0(x0 = x2 ∧ s(x0, x1)).

We require [r ; s](x0, x1)C = (∃x2χ)C .
First, let ā ∈ (∃x2χ)C . So there is b̄ ∈ Cn(M) with b̄ ≡2 ā and M |= r(b0, b2)∧

s(b2, b1). Because M |= 1(a0, a1), it follows by the composition axiom in SA that
M |= [r ; s](a0, a1). So ā ∈ [r ; s](x0, x1)C .

Conversely, let ā ∈ [r ; s](x0, x1)C . The composition axiom of SA yields b ∈M
with M |= r(a0, b)∧s(b, a1). Other SA-axioms ensure that {a0, a1, b} is a clique in
M , so that b̄ = (a0, a1, b, b, . . . , b) ∈ Cn(M). Now, b̄ ≡23···(n−1) ā and b̄ ∈ χC . By
lemma 8, ā ∈ (∃x3 . . .∃xn−1∃x2χ)C . By repeated use of lemma 9, ā ∈ (∃x2χ)C ,
as required. 2

This proves (3) ⇒ (1) of theorem 1.

3 Hyper-networks and hyper-bases

In this section, we will define the terms of part 2 of theorem 1, and prove (1) ⇒ 2) of the
theorem. This is a more substantial matter than before. We fix finite n ≥ 4, an atomic
relation algebra A, and a non-empty set Λ (of ‘labels’) disjoint from At(A).

Definition 12 An n-dimensional Λ-hyper-network over A is a map N : ≤nn → Λ ∪ At(A),
such that N(ā) ∈ AtA if and only if |ā| = 2, with the following properties.

1. N(i, i) ≤ 1′ for each i < n.

2. For all i, j, k < n, N(i, j) ;N(j, k) ≥ N(i, k).

3. For every ā, b̄ ∈ ≤nn of equal length, if N(ai, bi) ≤ 1′ for each i < |ā|, then N(ā) = N(b̄).

As notation, for Λ-hyper-networks N,M and i, j < n, we write N ≡i M iff N(ā) = M(ā)
for all ā ∈ ≤n(n \ {i}), and similarly, N ≡ij M iff N(ā) = M(ā) for all ā ∈ ≤n(n \ {i, j}).

The important labels in hyper-networks are the labels of n − 2-tuples: see in particular
lemma 32. We let hyper-networks have labels on longer and shorter sequences in our definition
purely for convenience; these labels have less significance. See, for example, definition 28
where sequences of length n− 1 and n are labelled by a constant — such labelling carries no
information. The following is a basic property of hyper-networks.

9



Lemma 13 Let N be an n-dimensional Λ-hyper-network over A, and let i, j < n. Then
N(i, j) = N(j, i)^.

Proof:

By property 2, N(i, j) ;N(j, i) ≥ N(i, i), so by property 1, (N(i, j) ;N(j, i)) ·
1′ 6= 0. By the Peircean law in A, N(i, j) ·N(j, i)^ 6= 0. As these are atoms, we
obtain N(i, j) = N(j, i)^, as required. 2

Now we can define the terms used in part 2 of theorem 1.

Definition 14 An n-dimensional Λ-hyper-basis for A is a set H of n-dimensional Λ-hyper-
networks over A satisfying:

1. If r ∈ A is non-zero, then there is N ∈ H with N(0, 1) ≤ r.

2. If N ∈ H, i, j < n, k ∈ n \ {i, j}, and r, s ∈ A satisfy N(i, j) ≤ r ; s, then there is
M ∈ H with M ≡k N , M(i, k) ≤ r, and M(k, j) ≤ s.

3. If N,M ∈ H, i, j < n, and N ≡ij M , then there is P ∈ H with N ≡i P ≡j M .

We drop terms such as ‘n-dimensional’, ‘Λ’, and ‘over A’ when they are clear from the
context. Also, ‘an n-dimensional hyper-basis’ will sometimes mean ‘an n-dimensional Λ-
hyper-basis for some Λ’.

In the case where |Λ| = 1, a Λ-hyper-basis is essentially a ‘cylindric basis’ in the sense of
Maddux. The conditions above amount to those of a relational basis plus the ‘amalgamation’
condition of cylindric bases. See [Mad83, Mad89]. We will discuss this further in section 8.

3.1 Substitutions in cylindric algebras

We aim to prove that the canonical embedding algebra of any subalgebra of the relation
algebra reduct of an n-dimensional cylindric algebra has an n-dimensional hyper-basis. In
this section, we prove some necessary preliminary results about substitutions in cylindric
algebras. n ≥ 4 remains fixed. Recall again that the substitution operator sij is defined by

sijx =
{
x, if i = j;
ci(dij · x), otherwise,

for i, j < n. As is standard, e.g., in [HMT71], the map [i/j] : n→ n is given by:

[i/j](k) =
{
j, if k = i;
k, otherwise.

Of course, this definition depends implicitly on n. We write maps on the left, and ◦ denotes
map composition, so that for example, ([1/2] ◦ [2/3])(1) = [1/2]([2/3](1)) = 2.

10



3.1.1 s-c-words

Definition 15

1. An s-word is a finite string of substitutions (sij), a c-word is a finite string of cylindrifi-
cations (ck), and an s-c-word is a finite string of substitutions and cylindrifications, all
of the signature of CAn.

2. If u,w are s-c-words, we write simply uw for their concatenation. The length (number
of symbols) of w is written |w|.

3. With each s-c-word w, we associate a partial map ŵ : n→ n by induction on |w|:

• If w is the empty string then ŵ = Idn, the identity map on n.

• ŵsij = ŵ ◦ [i/j], for i, j < n.

• ŵci = ŵ|n\{i} = ŵ ◦ Idn\{i}, for i < n.

Clearly, for any variable x and s-c-word w, wx is a term of the signature of n-dimensional
cylindric algebras. And if x ∈ C ∈ CAn, then wx ∈ C.

For familiarisation, the following useful lemma may help.

Lemma 16 Let u,w be s-c-words.

1. ûw = û ◦ ŵ.

2. CAn |= wdij = d bw(i) bw(j), for all i, j ∈ dom(ŵ).

Proof:

1. We prove ûw = û ◦ ŵ for all u, by a trivial induction on the length of w.
If this is zero, then ŵ = Idn and we are done. Assume the result for w,
and let i, j < n. Then ûwsij = ûw ◦ [i/j] = (û ◦ ŵ) ◦ [i/j] (by the inductive

hypothesis), = û ◦ (ŵ ◦ [i/j]) = û ◦ ŵsij , as required. The proof for wci is
similar.

2. The proof is by induction on the length of w. If this is zero, there is nothing
to prove. Assume the result for w. We first prove it for u = wskl . Let
i, j ∈ dom(û). If i = j, then in any n-dimensional cylindric algebra, dij =
1 = dbu(i),bu(j). So suppose that i 6= j. Now, by [HMT71, theorem 1.5.4(i)] we
have wskl dij = wd[k/l](i),[k/l](j); by assumption, [k/l](i), [k/l](j) ∈ dom(ŵ), so
by the induction hypothesis this is dbw([k/l](i)),bw([k/l](j)) = dbu(i),bu(j).
Next let u = wck. Assume that i, j ∈ dom(û) — that is, i, j ∈ dom(ŵ) and
i, j 6= k. Then udij = wdij , which by the inductive hypothesis is dbw(i),bw(j);
and this is clearly equal to dbu(i),bu(j), as required.

2
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3.1.2 Adapting known results on substitutions

We will need some corollaries of the following known results.

Fact 17 Let α ≥ 2 be an ordinal.

1. If θ : α→ α is not a permutation of α, and {i < α : θ(i) 6= i} is finite, then θ is either
of the form [i/j] (for some i, j < α) or a composition of maps of this form.

This is a not-too-difficult exercise, or it can be derived from [Jón62]. [How78, theorem
1] proves it for finite α, and [Tho93, corollary 1.2] for arbitrary α.

2. [Tho93, theorem 3.6] Let q, r < ω. Assume that i1, j1, . . . , iq, jq, k1,m1, . . . , kr,mr < α
are such that [i1/j1]◦· · ·◦ [iq/jq] = [k1/m1]◦· · ·◦ [kr/mr] = f ∈ αα and |α\rng(f)| ≥ 2.
Then

CAα |= ∀x(si1j1 . . . s
iq
jq

(x) = sk1m1
. . . skr

mr
(x)).

We need to generalise these facts to partial maps and s-c-words. We are only interested
in the case α = n. Similar results can be obtained using theorem 3.2.52 of [HMT85], but
because we deal with partial maps θ : n → n whose range is not necessarily contained in
n− 2, it is more convenient to use fact 17 as a starting point.

Definition 18 Two s-c-words u,w are said to be congruent if û = ŵ and CAn |= ∀x(ux =
wx). We write u ' w in this case.

Lemma 19 If v, v′ are s-c-words and v ' v′ then uvw ' uv′w for all s-c-words u,w.

Proof:

Assume that v ' v′. Then CAn |= ∀x(v(wx) = v′(wx)), so CAn |= ∀x(uvwx =
uv′wx). By lemma 16.1 and associativity of composition of partial maps, ûvw =
û ◦ v̂ ◦ ŵ = û ◦ v̂′ ◦ ŵ = ûv′w. So uvw ' uv′w. 2

Definition 20 An s-c-word w is said to be modest if whenever u, v are s-c-words, i < n, and
w = uciv, then |v̂−1(i)| ≤ 1. Here, v̂−1(i) = {j ∈ dom(v̂) : v̂(j) = i}.

Examples 21 The following are easily checked.

1. c0s
2
0s

0
1c0s

1
2c2 is a modest s-c-word.

2. The word c0s
1
0 is not modest, as ŝ10

−1
(0) = {0, 1}.

3. If u is an s-word and v a c-word, then uv is modest.

4. More generally, if u, v are modest s-c-words and v̂ is one-one, then uv is also modest.

5. If u is a modest s-c-word, i < n, and i /∈ rng(û), then ciu is modest.

6. More generally, if u, v are modest s-c-words and rng(v̂) ⊆ dom(û), then uv is modest.

We will prove:

12



Theorem 22

1. For any partial map θ : n→ n with |rng(θ)| ≤ n− 1, there exists a modest s-c-word w
with ŵ = θ.

2. Let u,w be modest s-c-words with |rng(û)|, |rng(ŵ)| ≤ n − 2. If û = ŵ, then CAn |=
∀x(ux = wx), so that u ' w.

Part 2 can fail if the words are not modest. For example, ĉ0s10 = ĉ0c1, yet c0s
1
0(−d01) = 0 and

c0c1(−d01) = −d01 6= 0, in general.

Proof:

The proof of the first part is straightforward. If θ is the empty map, it is
trivial — let w = c0c1 . . . cn−1. Assume not; let n \ dom(θ) = {i0, . . . , ik−1}, take
j ∈ rng(θ), and consider the total map θ+ = θ ∪ {(il, j) : l < k} : n → n. Now
rng(θ+) = rng(θ), so by fact 17.1, there is an s-word u with û = θ+. Then
w = uci0 . . . cik−1

is modest (example 21.3) and ŵ = θ+|dom(θ) = θ.

To prove the second part, we need to be able to move cylindrifications right-
wards within s-c-words. Lemma 23 below shows that we can do this. Cf. [HMT85,
theorem 3.2.51(vi,vii)].

Lemma 23 Let ciw be a modest s-c-word, for some s-c-word w and some i < n.
Then

ciw '
{
w, if i /∈ rng(ŵ);
wcl, if l < n and ŵ(l) = i.

(The ‘l’ in the second case is unique, as ciw is modest. Note that w and wcl above
are modest.)

Proof:

The proof is by induction on |w|. If this is zero, there is nothing to
prove. Assume the result for u. We prove it for modest words w = cju

and w = sjku. We use lemma 19 freely in the proof.
First, consider the case of w = cju. Assume that cicju is modest. If

i = j, then i /∈ rng(ĉiw) and plainly, ciciu ' ciu, which is as required.
Assume that i 6= j. Then cicju ' cjciu. Clearly, ciu is modest, so
by the inductive hypothesis, ciu ' u if i /∈ rng(û), while ciu ' ucl if
û(l) = i. But as j 6= i, for any l < n we have û(l) = i iff ĉju(l) = i. So

ciw = cicju ' cjciu '
{

cju = w, if i /∈ rng(ĉju);
cjucl = wcl, if ĉju(l) = i.

We pass to the case w = sjku; we can assume that j 6= k. Consider
cis

j
ku. Here, there are three cases.

13



Case i 6= j, k. By [HMT71, theorem 1.5.8(ii)], cis
j
kx = sjkcix holds in

CAn; and clearly, ĉis
j
k = ŝjkci. So cis

j
k ' sjkci. Now ciu is modest,

and by the case assumption, for any l < n we have i = ŝjku(l) iff
i = û(l). So by the inductive hypothesis,

ciw = cis
j
ku ' sjkciu '

{
sjku = w, if i /∈ rng(ŝjku);
sjkucl = wcl, if ŝjku(l) = i.

Case i = j. By [HMT71, theorem 1.5.9(ii)], cjs
j
kx = sjkx holds in CAn;

also, ĉjs
j
k = ŝjk. So cjs

j
k ' sjk, whence cjs

j
ku ' sjku. Also, i /∈

rng(ŝjku). We are done.

Case i = k. So we are considering cks
j
ku. Since this is assumed modest,

either j or k (or both) is not in rng(û). Inductively, therefore,
u ' cju or u ' cku, so that cks

j
ku ' cks

j
kcju or cks

j
ku ' cks

j
kcku.

Now by [HMT71, theorems 1.5.8(i), 1.5.9(i)], sjkcjx = cjx and

cks
j
kx = cjs

k
jx are valid in CAn. Of course, ŝjkcj = ĉj and ĉks

j
k =

ĉjskj . So sjkcj ' cj and cks
j
k ' cjs

k
j . Hence, cks

j
kcj ' ckcj ' cjck '

sjkcjck and cks
j
kck ' cjs

k
j ck ' cjck ' sjkcjck. We conclude that our

cks
j
ku is congruent to sjkcjcku.

Now k /∈ rng(ŝjku) iff j, k /∈ rng(û), and k = ŝjku(l) iff û(l) ∈ {j, k}.
The above and two applications of the inductive hypothesis now
yield cjcku ' u in the first case, and cjcku ' ucl, in the second.
Since cks

j
ku ' sjkcjcku, the result follows.

2

Definition 24 An s-c-word w is said to be in normal form if it has the form uv
for some s-word u and some c-word v.

By example 21.3, any s-c-word in normal form is modest. Conversely, repeated
use of the preceding lemma allows us to push all cylindrifications in a modest s-c-
word rightwards until they either disappear or emerge on the right-hand side, all
the time preserving modesty. Thus, any modest s-c-word is congruent to one in
normal form. Note that if w = uv is in normal form, with u an s-word and v a
c-word, then dom(ŵ) = dom(v̂) = {i < n : ci does not occur in v}.

We may now prove the second part of theorem 22. We have to show that if
u, v are modest s-c-words with û = v̂ = θ, say, and |rng(θ)| ≤ n− 2, then u and v
are congruent. As outlined above, we may suppose that they are in normal form;
and since û, v̂ have the same domain, we can suppose u = u′w and v = v′w for
some s-words u′, v′ and some fixed c-word w (with dom(ŵ) = dom(θ)).

Let n \ dom(θ) = {i0, . . . , ik−1}. Choose j ∈ dom(θ), if θ is non-empty; other-
wise, choose j < n arbitrarily. Let t = si0j . . . s

ik−1

j . Then clearly, û′t = v̂′t = θ+,
say. θ+ is a total map : n→ n, and |rng(θ+)| ≤ n−2. So by fact 17.1, the s-words
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u′t and v′t are congruent. By [HMT71, theorem 1.5.8(i)] (to wit, sijcix = cix) and
induction on k, tw and w are also congruent. So

u = u′w ' u′tw ' v′tw ' v′w = v.

This completes the proof of theorem 22. 2

We will need the following corollary.

Corollary 25 Let w be a modest s-c-word, let m ≤ n, and suppose that m ⊆ dom(ŵ). Let
C ∈ CAn. Then the map x 7→ wx, for x ∈ NrmC, is a homomorphism from the boolean reduct
of NrmC into the boolean reduct of C.

Proof:

Let x, y ∈ NrmC. Given that substitutions and cylindrifications are addi-
tive operators on cylindric algebras and preserve 0 and 1 (for substitutions, see
[HMT71, theorem 1.5.3]), a trivial induction on the length of w shows that w0 = 0,
w1 = 1, and w(x+ y) = wx+ wy for all x, y ∈ C. We check that w(−x) = −wx,
for x ∈ NrmC. We may suppose that w is in normal form, so has the form uv for
an s-word u and a c-word v. If ci occurs in v, then i /∈ dom(ŵ), so i ≥ m. As
x,−x ∈ NrmC, we have cix = x and similarly for −x. Thus, we obtain wx = ux
and w(−x) = u(−x). But by [HMT71, theorem 1.5.3(ii)], sij(−x) = −sijx for any
i, j < n and any x ∈ C. So by induction on |u|, we obtain

w(−x) = u(−x) = −ux = −wx,

as required. 2

3.2 A hyper-basis from a cylindric algebra

Now fix finite n ≥ 5. (All but one of our results go through unchanged if n = 4; and even the
one (lemma 32) that requires n ≥ 5 can be generalised to cover the case n = 4 at the cost of
complicating the definition of hyper-basis.) We will now prove (1) ⇒ (2) of theorem 1: that
the canonical embedding algebra A+ of any A ∈ SRaCAn has an n-dimensional hyper-basis.
We assume familiarity with canonical embedding algebras of relation algebras and cylindric
algebras; cf. [JT51]. In particular, we identify elements of A with elements of A+ in the
natural way, so that A ⊆ A+, and similarly for cylindric algebras.

So suppose that A ∈ SRaCAn. So there is B ∈ CAn with A ⊆ RaB. Let C = B+, the
canonical embedding algebra of B. Then C is atomic, and A ⊆ RaC. Most of the time we will
work in C. We generally write r, s, . . . for elements of A, f, g, . . . for filters on A, and x, y, . . .
for atoms of C.

Notation 26 If ā ∈ <n−1n, we write sā for an arbitrarily-chosen modest s-c-word w with
ŵ = ā. Such a word exists by theorem 22.1; any two such are congruent (theorem 22.2), so
sāx for x ∈ C is independent of the choice of sā. As a slight abbreviation of this, we may
write sa0a1...al−1

for sā, where ā = (a0, . . . , al−1). In this way, we can write sijk instead of, say,
s(i,j,k). It will help to remember that ŝijk is the partial map from n to n that takes 0 to i, 1
to j, 2 to k, and is undefined on larger numbers.
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The definition of relation algebra composition in RaC is in terms of the indices 0, 1, and
2. These indices can be ‘moved’, using substitutions.

Lemma 27 Let i, j, k < n with k 6= i, j. Then sij(r ; s) = ck(sikr · skjs) for all r, s ∈ A.

Proof:

First, as k 6= i, j, the s-c-word cksijk is modest, ĉksijk = ŝijc2, and clearly
this map has range of size at most n − 2. As sijc2 is also modest, we obtain
cksijk ' sijc2 by theorem 22.2. Similarly, sik ' sijks

1
2c2 and skj ' sijks

0
2c2.

Second, if 3 ≤ i < n then by [HMT71, theorem 1.5.8(ii)], cis
1
2r = s12cir = s12r

(as r ∈ Nr2C), and similarly, cis
0
2s = s02cis = s02s. So s12r, s

0
2s ∈ Nr3C, and

3 ⊆ dom(ŝijk).
Now,

sij(r ; s) = sijc2(s12r · s02s) by definition of composition
= cksijk(s

1
2r · s02s) as cksijk ' sijc2

= ck(sijks
1
2r · sijks02s) by corollary 25, as s12r, s

0
2s ∈ Nr3C

= ck(sijks
1
2c2r · sijks02c2s) as r, s ∈ Nr2C

= ck(sikr · skjs) as sijks
1
2c2 ' sik and sijks

0
2c2 ' skj ,

as required. 2

For m < n − 1 let Λm be the set of ultrafilters of NrmC, or up to a natural identification
the set of atoms of its canonical embedding algebra (NrmC)+, and let λ be any fixed element
disjoint from

⋃
m<n−1 Λm. Let Λ =

⋃
m<n−1 Λm.

Definition 28 For each atom x ∈ C, we define an n-dimensional Λ-hyper-network Nx over
A+, as follows. For ā ∈ ≤nn, we let:

Nx(ā) =


{r ∈ A : x ≤ sār}, if |ā| = 2;
λ, if |ā| ∈ {n− 1, n};
{r ∈ Nr|ā|C : x ≤ sār}, otherwise (i.e. 2 6= |ā| < n− 1).

Lemma 29 Let x ∈ AtC and ā ∈ <n−1n.

1. If |ā| = 2, Nx(ā) is an ultrafilter of A, and so an atom of A+.

2. If |ā| 6= 2, Nx(ā) is an ultrafilter of Nr|ā|C, and so an atom of (Nr|ā|C)+.

In the second case, it can be shown that Nx(ā) is actually a principal ultrafilter.

Proof:

Assume that |ā| = m 6= 2. Trivially, m ⊆ dom(ŝā). So by corollary 25,
the map ψ : NrmC → C given by ψ(r) = sār is a boolean homomorphism. Let
f = {y ∈ C : y ≥ x}, an ultrafilter of C. Then Nx(ā) is the inverse image under
ψ of f , and hence is an ultrafilter of Nrm(C). This proves the second part. The
proof of the first part is similar, using ψ : A → C given by ψ(r) = sār; this is a
boolean homomorphism as A ⊆ Nr2C. 2
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Lemma 30 Let x ∈ AtC. Then Nx is an n-dimensional Λ-hyper-network over A+.

Proof:

Bear in mind that n ≥ 4. We first check that A+ |= Nx(i, i) ≤ 1′ for each
i < n. That is, we must show that 1′ A ∈ Nx(i, i), or, that C |= x ≤ siid01. By
lemma 16.2, siid01 = dii = 1 in C, and we are done.

Next, we let i, j, k < n and check that Nx(i, k) ;Nx(k, j) ≥ Nx(i, j) in A+. We
require r ; s ∈ Nx(i, j) whenever r ∈ Nx(i, k) and s ∈ Nx(k, j). So we let r, s ∈ A,
assume that x ≤ sikr and x ≤ skjs, and prove that x ≤ sij(r ; s). But by lemma 27,
x ≤ sikr · skjs ≤ ck(sikr · skjs) = sij(r ; s), and we are done.

Finally, we have to check that if ā, b̄ ∈ ≤nn are of equal length l ≤ n and satisfy
Nx(ai, bi) ≤ 1′ for each i < l, then Nx(ā) = Nx(b̄). If |ā| = |b̄| ∈ {n − 1, n} then
Nx(ā) = Nx(b̄) = λ, so suppose |ā| = |b̄| = l (say) < n− 1. By lemma 16.2 again,
the condition is equivalent to x ≤ daibi for each i < l. Let d(ā, b̄) = |{i < l : ai 6=
bi}|. The proof is by induction on d(ā, b̄).

If d(ā, b̄) = 0, then ā = b̄ and there is nothing to prove. Assume that d(ā, b̄) =
1. Let i < l be the index with ai 6= bi. Now |rng(ā) ∪ rng(b̄)| ≤ n− 1, so we may
choose j < n with j /∈ rng(ā)∪rng(b̄). Let c̄ ∈ ln be given by c̄ ≡i ā, ci = j. Then
ŝā = (sjaisc̄)̂ and ŝ

b̄
= (sjbisc̄)̂ ; and clearly, the words sjaisc̄ and sjbisc̄ are modest.

So by theorem 22.2, sā ' sjaisc̄ and s
b̄
' sjbisc̄.

Now we show Nx(ā) ⊆ Nx(b̄); the converse is similar (and indeed is not needed
as Nx(ā), Nx(b̄) are ultrafilters). Let r ∈ Nx(ā). Then x ≤ sār. Also, by assump-
tion, x ≤ daibi . So

x ≤ daibi · sār by assumption
= daibi · s

j
aisc̄r as sā ' sjaisc̄

= daibi · cj(dj,ai · sc̄r) by definition of sjai

= cjdaibi · cj(dj,ai · sc̄r) by a CAn axiom, as j 6= ai, bi
= cj(cjdaibi · (dj,ai · sc̄r)) by a CAn axiom
= cj(daibi · dj,ai · sc̄r) as 2 lines above
≤ cj(dj,bi · sc̄r) by another CAn axiom
= sjbisc̄r by definition of sjbi
= s

b̄
r as sjbisc̄ ' s

b̄
.

Hence, r ∈ Nx(b̄), as required.
Now let d(ā, b̄) ≥ 2 and assume the result for smaller d. Choose i < l with

ai 6= bi, and let c̄ ∈ ln be given by c̄ ≡i ā, ci = bi. Then clearly, d(ā, c̄), d(c̄, b̄) <
d(ā, b̄), and x ≤ dajcj , x ≤ dcjbj for all j < l. By the inductive hypothesis,
Nx(ā) = Nx(c̄) = Nx(b̄), which completes the induction and the proof. 2

The next two lemmas relate atoms to hyper-networks. The second is in some way the
converse of the first.

Lemma 31 Let x, y ∈ AtC, i < n, and suppose that cix = ciy. Then Nx ≡i Ny.

Proof:
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Let ā ∈ ≤n(n \ {i}). We show Nx(ā) = Ny(ā). If |ā| ∈ {n − 1, n} then
Nx(ā) = Ny(ā) = λ, so we assume |ā| < n − 1. As Nx(ā), Ny(b̄) are ultrafilters,
it suffices to show Nx(ā) ⊆ Ny(ā). Let r ∈ Nx(ā), so that x ≤ sār. Then
y ≤ cix ≤ cisār. But i /∈ rng(ā), so cisā is modest, and cisā ' sā by lemma 23.
Hence, cisār = sār, so that y ≤ sār and r ∈ Ny(ā). Hence, Nx(ā) ⊆ Ny(ā), as
required. 2

Lemma 32 Let x, y ∈ AtC, let i, j < n be distinct, and suppose that Nx ≡ij Ny. Then
cicjx = cicjy.

Proof:

Pick ā ∈ n−2n with rng(ā) = n \ {i, j}. Then Nx(ā) = Ny(ā).
Let w be a modest s-c-word with ŵ = (ā)−1, so that rng(ŵ) = n − 2 and

ā ◦ ŵ = Idn\{i,j}. Such a w exists by theorem 22.1 and because ā is one-one.
By lemma 16.1, ŝāw = ā ◦ ŵ = ĉicj . The word sāw is modest, because sā and
w are, and ŵ is one-one (see example 21.4). As cicj is certainly modest, and
|rng(ĉicj)| = n− 2, we obtain sāw ' cicj by theorem 22.2.

Thus, x ≤ cicjx = sāwx.
Now n−2, n−1 /∈ rng(ŵ), so cn−2w is modest and (by lemma 23) cn−2w ' w,

and similarly for cn−1. Hence, wx ∈ Nrn−2C. As n − 2 6= 2 (here, we use
our assumption that n ≥ 5 for the only time) we obtain wx ∈ Nx(ā). But
Nx(ā) = Ny(ā), so y ≤ sāwx = cicjx. Because y is an atom of C, we obtain
cicjx = cicjy. 2

Now let H = {Nx : x ∈ AtC}.

Proposition 33 H is an n-dimensional Λ-hyper-basis for A+.

Proof:

Recall that we assumed A ⊆ RaB for some B ∈ CAn, and B+ = C. We will
use the following properties of C:

Fact 34

1. If S ⊆ B is a filter base (that is, for every finite S′ ⊆ S there is s ∈ S with
0 < s ≤ s′ for every s′ ∈ S′), then there is an atom x ∈ C with C |= x ≤ s for
every s ∈ S.
For, the upward closure {b ∈ B : ∃s ∈ S(s ≤ b)} of S in B is a proper filter
in B and so extends to an ultrafilter of C. This ultrafilter corresponds to an
atom x of C which lies beneath every element of S.

2. If x ∈ AtC and k < n, then in C we have ckx =
∏
b∈B, b≥x ckb. See [JT51,

definition 2.14, theorem 2.15].

We now check that H has the properties of the definition of hyper-basis. First,
let f ∈ A+ be non-zero. We must find N ∈ H with A+ |= N(0, 1) ≤ f . Since
A+ is atomic, we may suppose that f is an atom of A+. Regarding f as an
ultrafilter on A, it is a filter base in B, so fact 34.1 gives an atom x of C with
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C |= x ≤ r for every r ∈ f . Let r ∈ f . As C |= x ≤ s01r — for example, by
taking s01 = c2c3 . . . cn−1 — we have r ∈ Nx(0, 1). In terms of A+, this says that
A+ |= Nx(0, 1) ≤ f , as required.

Second, we let Nx ∈ H, i, j < n, k ∈ n\{i, j}, and f, g ∈ A+, and assume that
A+ |= Nx(i, j) ≤ f ; g. We must find Ny ∈ H with Ny ≡k Nx, Ny(i, k) ≤ f , and
Ny(k, j) ≤ g. Since Nx(i, j) is an atom of A+, by complete additivity of ‘;’ in A+

we can suppose that f, g ∈ AtA+, also. That is, f and g are ultrafilters of A.
We know that A+ |= Nx(i, j) ≤ f ; g. So for every r ∈ f and s ∈ g, we have

r ; s ∈ Nx(i, j), whence x ≤ sij(r ; s). By lemma 27, x ≤ ck(sikr · skjs). Define:

S = {sikr · skjs : r ∈ f, s ∈ g}
X = {b ∈ B : C |= x ≤ b}
Y = {ckb · s : b ∈ X, s ∈ S}.

Note that each is a subset of B. Then ckx · s 6= 0 for all s ∈ S, so that every
element of Y is non-zero. Since both S and X are filter bases in B (e.g., use
corollary 25 for S), it follows that Y is also a filter base in B, so by fact 34.1, there
is an ultrafilter y of B containing Y . Then y ∈ AtC, so Ny ∈ H. Also, C |= y ≤ ckb
for all b ∈ X. By fact 34.2, in C we have y ≤

∏
b∈X ckb = ckx, so ckx = cky. By

lemma 31, Nx ≡k Ny. Finally, C |= y ≤ s for every s ∈ S, so that r ∈ Ny(i, k) and
s ∈ Ny(k, j) for every r ∈ f , s ∈ g. In terms of A+, this says that Ny(i, k) = f
and Ny(k, j) = g, as we wanted.

Finally, let Nx, Ny ∈ H, let i, j < n be distinct, and suppose that Nx ≡ij Ny.
By lemma 32, cicjx = cicjy. Hence, by additivity of cylindrifications, there is
an atom z ∈ C with cix = ciz and cjz = cjy. Then Nz ∈ H, and by lemma 31,
Nx ≡i Nz ≡j Ny. 2

This completes the proof of (1) ⇒ (2) of theorem 1. The same argument shows that the
atomic relation algebra RaC also has an n-dimensional Λ-hyper-basis.

4 From hyper-basis to relativised representation

In this section, we show that (2) ⇒ (3) in theorem 1. First, we need to make our hyper-bases
more symmetrical.

4.1 Symmetric hyper-bases

Definition 35 If N is a hyper-network and σ : n → n is any map, we write Nσ for the
hyper-network defined by (Nσ)(ā) = N(σ(ā)), for all ā ∈ ≤nn.

It is easy to check that Nσ is indeed a hyper-network. In particular, suppose that ā, b̄ ∈ ≤nn
have equal length l, and (Nσ)(ai, bi) ≤ 1′ for each i < l. We require (Nσ)(ā) = (Nσ)(b̄).
Write ā′ for the l-tuple σ(ā) = (σ(a0), . . . , σ(al−1)), and define b̄′ similarly. Then N(a′i, b

′
i) =

(Nσ)(ai, bi) ≤ 1′ for each i, so (Nσ)(ā) = N(ā′) = N(b̄′) = (Nσ)(b̄), as required.

Lemma 36 Let M,N be hyper-networks, and let i, j < n be distinct. Then M = N [i/j] iff
M ≡i N and M(i, j) ≤ 1′.

Let H be a hyper-basis, let N ∈ H, and let i, j < n. Then N [i/j] ∈ H.
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Proof:

Left-to-right of the first part is clear. For the converse, suppose that M ≡i N
and M(i, j) ≤ 1′. For each k < n, let k′ = [i/j](k). Let ā ∈ ≤nn, and define
ā′ = [i/j](ā). Then N [i/j](ā) = N(ā′) = M(ā′), since ā′ ∈ ≤n(n \ {i}). Now
because M(i, j) ≤ 1′, it follows that M(a′m, am) ≤ 1′ for each m < |ā|. So
M(ā′) = M(ā). It follows that N [i/j] = M .

If i = j, the second part is trivial. Assume otherwise. Let N(j, j) = r. Then
r ≤ 1′, and it follows in relation algebras that r = r ; r. By the second defining
property of hyper-bases, there is M ∈ H with N ≡i M and M(j, i) = M(i, j) = r.
By the first part, M = N [i/j]. 2

Definition 37 A hyper-basis H for a relation algebra A is said to be symmetric if whenever
N ∈ H and σ : n→ n then Nσ ∈ H.

Lemma 38 If an atomic relation algebra has an n-dimensional hyper-basis, then it has a
symmetric n-dimensional hyper-basis.

Proof:

Let H be an n-dimensional hyper-basis for the atomic relation algebra A. Let
H+ = {Nσ : N ∈ H, σ : n→ n}. We show that H+ is also a hyper-basis.

The elements of H+ are certainly hyper-networks, and H+ is certainly sym-
metric. For any non-zero r ∈ A, there is N ∈ H+ with N(0, 1) ≤ r, because
H+ ⊇ H.

We check the second defining property of hyper-bases. Let N ∈ H and σ :
n→ n, let i, j, k < n with k 6= i, j, and let r, s ∈ A with Nσ(i, j) ≤ r ; s. We seek
P ∈ H+ with P ≡k Nσ, P (i, k) ≤ r, and P (k, j) ≤ s.

Well, N(σ(i), σ(j)) ≤ r ; s. Pick l ∈ n \ {σ(m) : m < n,m 6= k}. As N ∈ H,
there is M ∈ H with M ≡l N , M(σ(i), l) ≤ r, and M(l, σ(j)) ≤ s. Define
τ : n → n by τ(k) = l and τ(m) = σ(m) for m 6= k. Then Mτ ∈ H+. If ā ∈
≤n(n\{k}), then Mτ(ā) = M(τ(ā)) = M(σ(ā)) (because k /∈ rng(ā)), = N(σ(ā))
(because l /∈ rng(σ(ā) and M ≡l N), = Nσ(ā). So Mτ ≡k Nσ. Furthermore,
Mτ(i, k) = M(τ(i), τ(k)) = M(σ(i), l) ≤ r, and (similarly) Mτ(k, j) ≤ s. This is
as required.

Lastly, we check that if N,M ∈ H, σ, τ : n → n, and Nσ ≡ij Mτ for some
distinct i, j < n, then Nσ ≡i P ≡j Mτ for some P ∈ H+. Then (Nσ)[i/j] ≡i
Nσ ≡ij Mτ ≡j (Mτ)[j/i], so that (Nσ)[i/j] ≡ij (Mτ)[j/i]. Now (Nσ)[i/j] =
N(σ ◦ [i/j]). By fact 17.1, σ ◦ [i/j] is a product of substitutions, so by lemma 36,
(Nσ)[i/j] ∈ H. Similarly, (Mτ)[j/i] ∈ H. As H is a hyper-basis, there is P ∈ H
with (Nσ)[i/j] ≡i P ≡j (Mτ)[j/i]. So P ∈ H+ and Nσ ≡i P ≡j Mτ , as required.
2

4.2 Constructing a relativised representation from a hyper-basis

Theorem 39 Let A be an atomic relation algebra with an n-dimensional hyper-basis (where
n ≥ 4). Then A has a (complete) n-flat relativised representation.

Proof:
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Let H be an n-dimensional Λ-hyper-basis for A, for some set Λ. By lemma 38,
we may suppose that H is symmetric. We will extract a (complete) n-flat rel-
ativised representation of A directly from H. We will build a chain of possibly
uncountable labelled, directed hyper-graphs Mt (t < ω); they will not be com-
plete hyper-graphs. Their union, Mω, will essentially be the representation we
seek. Each Mt will have edges (ordered pairs) labelled by atoms of A, and hyper-
edges (l-tuples for l ≤ n, l 6= 2) labelled by elements of Λ. No non-edges or
non-hyper-edges are labelled. We will require (inductively) that for each t < ω,
Mt satisfies conditions 1–4 below:

1. The set of edges forms a reflexive and symmetric binary relation on Mt.

2. Each directed edge (x, y) of Mt is labelled by an atom of A, written Mt(x, y).

3. If (x, y) is an edge of Mt, then Mt(x, y) ≤ 1′ iff x = y.

For such a graphMt, and a hyper-networkN ∈ H, a map ν : N →Mt (formally
a map from n into dom(Mt)) is said to be an embedding if whenever i, j < n then
(ν(i), ν(j)) is an edge of Mt and Mt(ν(i), ν(j)) = N(i, j); and whenever ā ∈ ≤nn
with |ā| 6= 2, then ν(ā) is a hyper-edge of Mt and is labelled with N(ā). Note
that despite their name, embeddings need not be one-to-one, but they do preserve
atoms under 1′. Say (as usual in graph theory) that a subset C of Mt is a clique
if (x, y) is an edge of Mt for all x, y ∈ C. We further require of Mt:

4. Any clique in Mt is contained in rng(ν) for some N ∈ H and some embedding
ν : N →Mt.

Let N be a hyper-network and let S ⊆ n. We say that the labelled hypergraph
N |S induced by N on S is strict if for all distinct i, j ∈ S we have N(i, j) · 1′ = 0.
N |S is maximal strict if it is strict and for all S ⊂ T ⊆ n, N |T is not strict. Let
M0 be the disjoint union of all maximal strict labelled hypergraphs N |S , where
N ∈ H and S ⊆ n. Thus, M0 satisfies requirements 1–3 above. If N |S is maximal
strict, then for all i < n there is unique si ∈ S such that N(i, si) ≤ 1′. The map
ν = {(i, si) : i < n} is an embedding of N onto N |S . So M0 satisfies requirement 4,
too.

Assume inductively that Mt is defined for some t < ω. Then we define the
extension Mt+1 of Mt so that for every quadruple (N, ν, k,N ′), where N,N ′ ∈ H,
k < n, N ≡k N ′, and ν : N → Mt is an embedding, the restriction ν|n\{k} of ν
extends to an embedding ν ′ : N ′ →Mt+1. We do this as follows.

• If N ′(k, i) ≤ 1′ for some i 6= k, then we may (must) set ν ′(k) = ν(i). This is
well-defined if there are several such i, and is an embedding. No change to
Mt is made for these (N, ν, k,N ′).

• For each other (N, ν, k,N ′), we adjoin a new point π = π(t,N,ν,k,N ′) to Mt.
We add just the following new edges: (π, π), and (π, ν(i)), (ν(i), π) for each
i ∈ n \ {k}.

• The new edges are labelled by atoms as follows: (π, π) is labelled by N ′(k, k),
(π, ν(i)) by N ′(k, i), and (ν(i), π) by N ′(i, k).

• We may extend ν|n\{k} to ν ′ defined on k, by setting ν ′(k) = π.
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• We also add a new hyper-edge ν ′(ā) for every ā ∈ ≤nn of length 6= 2 with
k ∈ rng(ā). We label it by N ′(ā). This is well-defined.
Because N ′ ≡k N , ν ′ is an embedding : N ′ →Mt+1.

• For distinct (N, ν, k,N ′), the new points π(t,N,ν,k,N ′) are distinct.

• Mt+1 will consist of Mt, with its old labels and edges, together with all these
new points, edges, and labels.

It is easy to check that the properties 1–4 above are preserved by these actions.
For 4, note that any clique in Mt+1 is either a clique in Mt, for which we have the
result inductively, or else it contains a new point π(t,N,ν,k,N ′), in which case it is
contained in rng(ν ′), since the only edges involving π(t,N,ν,k,N ′) lie in this set.

Let M = Mω =
⋃
t<ωMt. Clearly, M satisfies properties 1–4 (for the last,

observe that any clique C in Mω is finite of size at most n, hence C ⊆Mt for some
t < ω). It also has a further property:

5. If k < n, N ≡k N ′ in H, and ν : N → M is an embedding, then ν|n\{k}
extends to an embedding ν ′ : N ′ →M .

Now define M as an L(A)-structure by:

M |= r(x, y) ⇐⇒ ∃t < ω ((x, y) is an edge of Mt ∧Mt(x, y) ≤ r),

for each r ∈ A and x, y ∈M .

Lemma 40 M is an n-flat relativised representation of A.

Proof:

First, we show that M |= SA (see definition 3). To see that M |=
∀xy(1′(x, y) ↔ x = y), use properties 1 and 3 above. The boolean
clauses are easy to check.

We check the axiom for converse, ∀xy(r(x, y) ↔ r̆(y, x)). Suppose
that M |= r(x, y). By property 1, {x, y} is a clique in M . By property 4,
there are N ∈ H, an embedding ν : N →M , and i, j < n with ν(i) = x
and ν(j) = y. Then N(i, j) = M(x, y) ≤ r, and by lemma 13 and as
the map r 7→ r̆ preserves ≤, we have M(y, x) = N(j, i) = N(i, j)^ ≤ r̆.
So M |= r̆(y, x), as required. The other direction is similar.

Now consider the composition axiom. Let x, y ∈ M with M |=
1(x, y). First, suppose that M |= r(x, z) ∧ s(z, y) for some z ∈ M .
We require M |= [r ; s](x, y). By property 1, {x, y, z} is a clique in M ,
so by property 4 there are N ∈ H, an embedding ν : N → M , and
i, j, k < n with ν(i) = x, ν(j) = y, ν(k) = z. Then M(x, y) = N(i, j) ≤
N(i, k) ;N(k, j) = M(x, z) ;M(z, y) ≤ r ; s. So M |= [r ; s](x, y).

Conversely, suppose that M |= [r ; s](x, y). Since {x, y} is a clique in
M , there is N ∈ H and an embedding ν : N →M with x, y ∈ rng(ν) —
say, x = ν(i), y = ν(j). Let k < n with k 6= i, j. Clearly, N(i, j) ≤ r ; s,
so as H is a hyper-basis, there is P ∈ H with N ≡k P , P (i, k) ≤ r,
and P (k, j) ≤ s. By property 5, there is an embedding π : P → M
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extending ν|n\{k}. Let z = π(k). Then M(x, z) = P (i, k) ≤ r and
M(z, y) = P (k, j) ≤ s, as required.

The axiom ∃xy r(x, y), for r 6= 0 in A, holds because for any atom
a ≤ r there is N ∈ H with N(0, 1) = a (as H is an n-dimensional hyper-
basis for A). Note that if a ≤ 1′ then a ; a = ă = a, so N(0, 0) = a, too.
Choose S ⊆ n containing 0 and, if possible, 1, such that N |S is maximal
strict. Since N |S ⊆ M0, there is evidently an edge (x, y) of M0 with
M0(x, y) = a (using the above if a ≤ 1′). Hence, M |= r(x, y).

So M is a relativised representation of A. It remains to show that
M is n-flat. Recall (definition 5) that Cn(M) = {ā ∈ nM : rng(ā) is a
clique in M}. Let ā ∈ Cn(M), ϕ ∈ Ln(A), and i, j < n. We have to
show that M |=C (∃xi∃xjϕ ↔ ∃xj∃xiϕ)(ā) (see definitions 6, 7). We
may assume that i 6= j. We begin with two claims.

Claim 1. Let ā ∈ Cn(M). Then there is N ∈ H and an embedding
ν : N →M with ν(i) = ai for each i < n.

Proof of claim. By property 4, there is N ∈ H and an embedding
ν : N → M with rng(ā) ⊆ rng(ν). For each i < n, choose i′ < n
with ν(i′) = ai, and let σ be the map {(i, i′) : i < n} : n → n. As
H is symmetric, Nσ ∈ H; and ν ◦ σ : Nσ → M is an embedding with
ν ◦ σ(i) = ai for each i < n.

Claim 2. Let N ∈ H and let µ, ν : N → M be embeddings. Let
ā, b̄ ∈ Cn(M) be given by ai = µ(i), bi = ν(i), for each i < n. Then
M |=C ϕ(ā) ↔ ϕ(b̄), for all ϕ ∈ Ln(A).

Proof of claim. By induction on ϕ. If ϕ is atomic, of the form
r(xi, xj), the result follows because embeddings preserve labels on edges
of hyper-networks; and if ϕ is xi = xj then ϕ is equivalent in M to
1′(xi, xj), so the preceding case gives the result here. The boolean cases
are easy and we omit them. Consider ∃xiϕ. If M |=C ∃xiϕ(ā), then
there is ā′ ∈ Cn(M) with ā′ ≡i ā and M |=C ϕ(ā′). By claim 1, there
is N ′ ∈ H and an embedding µ′ : N ′ → M with µ′(l) = a′l for all
l < n. It follows that N ′ ≡i N . By property 5 of M , ν|n\{i} extends
to an embedding ν ′ : N ′ → M . Let b̄′ ∈ Cn(M) be given by b′l = ν ′(l),
for l < n. By the inductive hypothesis, M |=C ϕ(b̄′). But b̄′ ≡i b̄, so
M |=C ∃xiϕ(b̄). The converse is similar. This proves the claim.

Now assume that M |=C ∃xi∃xjϕ(ā) for some ā ∈ Cn(M), ϕ ∈
Ln(A), and distinct i, j < n. So there are b̄, c̄ ∈ Cn(M) with ā ≡i b̄ ≡j c̄
and M |=C ϕ(c̄). As ā, c̄ ∈ Cn(M), claim 1 provides P,Q ∈ H and
embeddings π : P →M , ψ : Q→M with π(l) = al and ψ(l) = cl for all
l < n. Thus, π(l) = ψ(l) if l 6= i, j. As π, ψ are embeddings, P ≡ij Q.
As H is a hyper-basis, there is R ∈ H with P ≡j R ≡i Q. By property 5
of M , π|n\{j} extends to an embedding ρ : R→M , and ρ|n\{i} extends
to an embedding ψ′ : Q → M . Let dl = ρ(l) and el = ψ′(l), for l < n.
Then ā ≡j d̄ ≡i ē in Cn(M); and by claim 2, M |=C ϕ(ē). Hence,
M |=C ∃xiϕ(d̄) and M |=C ∃xj∃xiϕ(ā), as required.

Thus, M is n-flat. This proves lemma 40. 2
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Thus M is an n-flat relativised representation of A. By lemma 4, since every edge
of M is labelled by an atom, it has the further property of being complete —
respecting all meets and joins that exist in A. 2

Applying this theorem to the canonical extensionA+ of an arbitrary relation algebraA, we see
that if A+ has an n-dimensional hyper-basis then it has an n-flat relativised representation,
M+, say. M+ is a L(A+)-structure. It follows from the definitions that the reduct of M+ to
the language L(A) is an n-flat relativised representation of A. We obtain theorem 1, (2) ⇒
(3).

So the equivalence of parts 1–3 of theorem 1 has now been shown.

5 Smooth relativised representations

There is an alternative approach to representations of algebras in SRaCAn — what we call
n-smooth relativised representations. Essentially, we make an n-flat relativised representation
n-smooth by dropping explicit mention of the formulas ϕ of Ln(A), and stating instead by
means of equivalence relations which n-tuples of a relativised representation agree on all these
formulas with respect to |=C . We can axiomatise the properties required for quantifiers to
commute, by stating that the equivalence relations should have certain ‘n-back-and-forth’
properties. The reader may consult [DLW95] for similar work in finite model theory, showing
that the equivalence relations can be taken to be definable in fixed-point logic. n-smooth
representations have the disadvantage (over n-flat ones) that one must expand a relativised
representation M by adding further relations, but the advantage that the infinitely many
conditions M |=C (∃xi∃xjϕ ↔ ∃xj∃xiϕ)(ā), for all formulas ϕ, reduce to a single one. In
section 6 we will use them to obtain an equational axiomatisation of SRaCAn.

We fix n ≥ 3 here. Recall from notation 2 that if x̄, ȳ are m-tuples, we write (x̄ 7→ ȳ) for
{(xi, yi) : i < |x̄|}; this may or may not be a well-defined map. The concatenation of tuples
x̄, ȳ is denoted x̄ȳ.

Definition 41 Let M be a relativised representation of the relation algebra A. Recall
that a clique in M is a subset C ⊆ M with M |= 1(x, y) for all x, y ∈ C. For m ≤ n,
Cm(M) = {x̄ ∈ mM : rng(x̄) is a clique in M}.

1. M is said to be n-square if for any clique C in M with |C| < n, if r, s ∈ A, x, y ∈ C,
and M |= (r ; s)(x, y), then there is a point z ∈ M such that C ∪ {z} is a clique in M
and M |= r(x, z) ∧ s(z, y).

2. M is said to be an n-smooth relativised representation if it is n-square,1 and also, for
each 0 < m ≤ n, there is an equivalence relation Em on Cm(M) such that:

• if 0 < l,m ≤ n, (x̄, ȳ) ∈ Em, and θ : l→ m, then
(x̄ ◦ θ, ȳ ◦ θ) = ((xθ(0), . . . , xθ(l−1)), (yθ(0), . . . , yθ(l−1))) ∈ El,

• for any (x̄, ȳ) ∈ Em, r ∈ A, and i, j < m, if M |= r(xi, xj) then M |= r(yi, yj) (i.e.,
(x̄ 7→ ȳ) is a well-defined local isomorphism of M), and

• if (x̄, ȳ) ∈ En−2 and rng(x̄x) and rng(ȳy) are cliques in M , then there exists a
point z ∈M such that (x̄x, ȳz) ∈ En−1 and rng(ȳyz) is a clique.

1This condition is not needed, as it follows from the others; but it is easier to add it explicitly.
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3. We can extend the theory SA to an L(A)-theory Sqn(A) whose models (if any) are
precisely the n-square relativised representations of A; and we can extend the language
L(A) to the language L+(A) by adding n extra symbols Em, for 0 < m ≤ n, where
Em is a 2m-ary predicate symbol, and extend the theory Sqn(A) to a L+(A)-theory
Smn(A) whose models are precisely the n-smooth relativised representations of A. So,
for example, the statement ‘Em is an equivalence relation on Cm(M)’ translates to the
L+(A)-sentence

∀x̄, ȳ, z̄ [(Clique(x̄) ↔ Em(x̄, x̄)) ∧ (Em(x̄, ȳ) ∧ Em(ȳ, z̄) → Em(z̄, x̄))],

where x̄, ȳ, z̄ are sequences ofm distinct variables and Clique(x̄) abbreviates the formula∧
j,k<m 1(xj , xk).

Remark 42 For n-smooth M , the set Θ = {(x̄ 7→ ȳ) : (x̄, ȳ) ∈
⋃
m≤nE

m} is a certain kind of
n-back-and-forth system of local isomorphisms of M . Each map θ ∈ Θ with 0 < |dom(θ)| ≤
n− 2 can be extended within Θ to be defined on a new point a, so long as dom(θ) ∪ {a} is a
clique. Moreover, the extension can be chosen so that its range extends to a clique containing
some other new point b, so long as rng(θ) ∪ {b} was already a clique. Such n-back-and-forth
systems offer an alternative definition of n-smooth.

Remark 43 In [HH97c], we showed that n-square relativised representations correspond to
subalgebras of relation algebras with n-dimensional relational bases: a relation algebra A has
such a representation iff A ∈ RAn, in the notation of [Mad89]. A relativised representation
is n-square iff all formulas of the form 1(xi, xj) ∧ ∃xk(r(xi, xk) ∧ s(xk, xj)), where i, j, k <
n, k 6= i, j, and r, s ∈ A, have the same meaning whether evaluated classically or in the
relativised semantics |=C . We already gave an argument (in theorem 11) that shows that any
n-flat relativised representation is n-square. Theorem 1 will show that n-smooth relativised
representations correspond exactly to SRaCAn.

We now show that (3) ⇒ (4) in theorem 1.

Proposition 44 Let A be a relation algebra with an n-flat relativised representation, for
some n ≥ 3. Then A has an n-smooth relativised representation.

Proof [sketch]:

Let M be an n-flat relativised representation of A. By replacing M with a
suitable elementary extension, we may assume it is ω-saturated. This preserves n-
flatness, as Cn(M) is first-order definable. Using lemmas 8 and 9, it can be checked
that M is n-square; this is similar to the last part of the proof of theorem 11, and
is left to the reader.

A partial map ρ : M →M is said to be n-elementary if whenever ā ∈ Cn(M)
and rng(ā) ⊆ dom(ρ), then M |=C ϕ(ā) iff M |=C ϕ(ρ(ā)) for all formulas ϕ
of Ln(A). Now, for x̄, ȳ ∈ Cm(M) (m ≤ n), let Em(x̄, ȳ) hold iff (x̄ 7→ ȳ) is a
well-defined n-elementary map.

We check that the Em meet the n-smoothness conditions. First, an n-elemen-
tary map must preserve edge relations, as these are just the atomic formulas of
Ln(A). Second, if (x̄, ȳ) ∈ Em and θ : l → m is any map, we must check that
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(x̄ ◦ θ, ȳ ◦ θ) ∈ El — i.e., (x̄ ◦ θ 7→ ȳ ◦ θ) is a well-defined n-elementary map. But
this is clear, since it is a restriction of (x̄ 7→ ȳ).

Finally, suppose that (x̄, ȳ) ∈ En−2 and rng(x̄x), rng(ȳy) are cliques in M .
So the map (x̄ 7→ ȳ) is well-defined and n-elementary. Let

ā = (x, x0, x1, . . . , xn−3, x0)
ā′ = (x0, x0, x1, . . . , xn−3, x0)
b̄′ = (y0, y0, y1, . . . , yn−3, y0)
b̄ = (y0, y0, y1, . . . , yn−3, y).

These lie in Cn(M). For each ϕ ∈ Ln(A) such that M |=C ϕ(ā), we have M |=C

∃x0ϕ(ā′), so (by n-elementarity) M |=C ∃x0ϕ(b̄′) and M |=C ∃xn−1∃x0ϕ(b̄). By
n-flatness, M |=C ∃x0∃xn−1ϕ(b̄), for all such ϕ. So using ω-saturation twice, we
can find b̄ ≡0 c̄ ≡n−1 d̄ in Cn(M) with M |= ϕ(d̄) for all these ϕ. So

c̄ = (z, y0, y1, . . . , yn−3, y)
d̄ = (z, y0, y1, . . . , yn−3, y0),

for some z ∈ M . (We have dn−1 = d1 because M |=C (xn−1 = x1)(ā).) Then
rng(ȳyz) = rng(c̄) is a clique. Further, (ā 7→ d̄) = (x̄x 7→ ȳz) is a well-defined
n-elementary map. So (x̄x, ȳz) ∈ En−1, as required. 2

The following two theorems show (4) ⇒ (2) of theorem 1, by applying theorem 46 to A+.

Theorem 45 If A has an n-smooth relativised representation then A+ has a complete n-
smooth relativised representation.

Cf. Monk’s theorem (reported in [McK66], theorem 2.12) that if a relation algebra A is
representable then its canonical extension A+ has a complete representation.

Proof [sketch]:

To say thatA has an n-smooth relativised representation is to say that the first-
order theory Smn, defined in definition 41 part 3, is consistent. Let M be an ω-
saturated model of Smn. The proof of [HH97d, theorem 22] or [HH97c, lemma 26]
shows how to check that M is a complete, n-square relativised representation of
A+. Since M |= Smn, it follows that M is n-smooth. 2

Theorem 46 If the atomic relation algebra A has a complete n-smooth relativised represen-
tation then A has an n-dimensional hyper-basis.

Proof:

Let M be a complete n-smooth relativised representation of A. For m ≤
n, Em is an equivalence relation on Cm(M). So the union E =

⋃
0<m≤nE

m is
an equivalence relation on

⋃
0<m≤nC

m(M). Let Λ be the set of E-equivalence
classes. For any n-dimensional Λ-hyper-network N over A and map ν : n → M ,
we say that ν is an embedding of N into M if (i) for r ∈ At(A) and i, j < n, we
have N(i, j) = r iff M |= r(ν(i), ν(j)), and (ii) for any ā ∈ ≤nn with |ā| 6= 2, ν(ā)
is a member of the equivalence class N(ā) ∈ Λ.
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We let H be the set of all n-dimensional Λ-hyper-networks over A that embed
into M , and check that H is a hyper-basis. The first two properties of hyper-bases
are easy to verify, using n-squareness. We check the ‘amalgamation’ condition for
H. So take P,Q ∈ H and distinct i, j < n with P ≡ij Q. We seek a hyper-network
R ∈ H with P ≡i R ≡j Q.

Let b̄ be any (n − 2)-tuple enumerating n \ {i, j}. Since P,Q ∈ H, there are
embeddings π : P → M and ψ : Q → M . Since P ≡ij Q, we know that P (b̄) =
Q(b̄) ∈ Λ, so that (π(b̄), ψ(b̄)) ∈ E. Now rng(π|n\{i}) and rng(ψ|n\{j}) are both
cliques, so sinceM is n-smooth, there is a point z ∈M such that rng(ψ|n\{j})∪{z}
is a clique and ((π(j), π(b0), . . . , π(bn−3)), (z, ψ(b0), . . . , ψ(bn−3))) ∈ E. Let ρ :
n → M be defined by: ρ(k) = ψ(k) for k 6= j, and ρ(j) = z. By the first part of
the definition of n-smooth, for any ā ∈ ≤n(n \ {i}) we have (π(ā), ρ(ā)) ∈ E.

We use ρ to define the required hyper-network R ∈ H in the obvious way: for
k, l < n, R(k, l) is the atom α of A satisfying M |= α(ρ(k), ρ(l)), and for ā ∈ ≤nn
of length 6= 2, R(ā) is the E-class of ρ(ā). Since ψ and ρ agree on all points except
perhaps j, it follows that R ≡j Q. For any ā ∈ ≤n(n \ {i}), because E(π(ā), ρ(ā)),
we have P (ā) = R(ā). Hence R ≡i P , as required. 2

Now we have proved the equivalence of parts (1) to (4) of theorem 1.

Remark 47 Adjustments to the equivalence relations Em yield rather different classes of
algebras. So at one extreme, if for each m ≤ n we make Em as small as possible (subject to
being an equivalence relation) we get the identity relation (x̄, ȳ) ∈ Em ⇔ x̄ = ȳ. From this,
if M expanded by the Em is n-smooth, we can show that {(x, y) : M |= 1(x, y)} is transitive.
So this gives a classical representation and thus we obtain the class RRA. This would be too
strong a requirement to characterise SRaCAn.

At the other extreme, suppose that each Em is as big as possible (subject to preserving
all edge relations). That is, Em(x̄, ȳ) holds iff (x̄ 7→ ȳ) is a well-defined local isomorphism of
M . Under this condition, an n-smooth relativised representation becomes n-homogenous. To
explain what this is, we first define a local isomorphism of a relativised representation M to
be a partial, finite map ι : M → M such that dom(ι), rng(ι) are cliques and if x, y ∈ dom(ι)
then M |= a(x, y) ⇐⇒ M |= a(ι(x), ι(y)), for all a ∈ A. We now say that M is an n-
homogeneous relativised representation iff for all local isomorphisms ι with 0 < |ι| ≤ n − 2
and for all x, y ∈ M with {x} ∪ dom(ι) and {y} ∪ rng(ι) both cliques, there is z ∈ M such
that ι ∪ {(x, z)} is a local isomorphism and {y, z} ∪ rng(ι) is a clique (cf. remark 42). Then
we can show, in much the same way as earlier, that for any relation algebra A:

1. if A has an n-flat relativised representation with quantifier elimination with respect to
the semantics |=C , then it has an n-homogeneous relativised representation;

2. if A has an n-homogeneous relativised representation M , then M ‘is’ a complete n-
homogeneous relativised representation of the atomic relation algebra B ⊇ A consisting
of unions of isomorphism types of elements of 1M .

3. if cA is atomic, then it has a complete n-homogeneous relativised representation iff it
has an n-dimensional cylindric basis (also cf. theorem 60 below).

Again, these conditions are too strong for SRaCAn, but in a different direction (see theo-
rem 57).
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6 Axiomatising SRaCAn

We can use theorem 1 to construct a recursive axiomatisation of SRaCAn by defining a game
to determine whether a relation algebra has an n-smooth relativised representation. This
method was used in [HH97d, section 9] to axiomatise the representable relation algebras fol-
lowing earlier axiomatisations in [Lyn56, Mon69, HMT85]. A similar game-theoretic method
was outlined in [HH97c, section 4.3], to axiomatise the class RAn. A summary of various
game-theoretic axiomatisations appeared in [HH97a]. In [HMV99] it will be shown how to
axiomatise the class of complex algebras over any given variety; and in another forthcoming
paper it will be shown how to obtain an explicit universal axiomatisation of any PC ′

∆ class
that is closed under subalgebras. As these methods have been used before and will be made
available in a general form soon, it does not seem necessary to go through the axiomatisation
in detail here. Instead, we only sketch an outline of the method.

We can define a two-player game Gnω(A) over a relation algebra A, and show, for count-
able A, that a winning strategy for the second player (‘∃’) is equivalent to the existence of an
n-smooth relativised representation of A. This game has countably many rounds played over
finite structures that are intended to provide better and better approximations to a genuine
n-smooth relativized representation. The first player, ‘∀’, picks defects in the current approx-
imation, and the second player, ∃, tries to repair the defect by refining the approximation.

These approximations are finite structures (X,h,E) where X is a finite set, h is a partial
labelling h : ≤nX → A such that dom(h) ∩ (X ×X) is reflexive and symmetric, and E is an
equivalence relation over {x̄ ∈ ≤nX : (xi, xj) ∈ dom(h), i, j < |x̄|} satisfying, if we may speak
loosely, all the universal conditions for an n-smooth relativised representation. So, (i) for x ∈
X we have h(x, x) ≤ 1′, (ii) if (x, y), (y, z), (x, z) ∈ dom(h) then h(x, y) ;h(y, z) · h(x, z) 6= 0,
(iii) for (x̄, ȳ) ∈ E if |x̄| = |ȳ| = l, say, and θ : l → m (some m ≤ n) then (x̄ ◦ θ, ȳ ◦ θ) ∈ E,
and (iv), for (x̄, ȳ) ∈ E and i, j < l we have h(xi, xj) = h(yi, yj).

An approximation (X,h,E) determines a structure M = M(X,h,E) with domain X and
defined by M |= a(x, y) iff h(x, y) ≤ a, for x, y ∈ X and a ∈ A. M may fail to be an n-smooth
relativised representation for four reasons.

1. There could be a non-zero a ∈ A but no edge (x, y) ∈ dom(h) with h(x, y) ≤ a.

2. The approximation might not carry enough information: there could be an edge (x, y) ∈
dom(h) and an element a ∈ A such that h(x, y) 6≤ a and h(x, y) 6≤ (−a). In a genuine
n-smooth relativised representation, for any a ∈ A and for any labelled edge in the
relativised representation, we know that either a or −a holds on that pair.

3. There might be an edge (x, y) ∈ dom(h) with x, y ∈ C for some clique C of the approx-
imation with |C| < n and r, s ∈ A such that h(x, y) ≤ r; s. This is a defect if there is
no witness z in the approximation such that {z} ∪ C is a clique, (x, z), (z, y) ∈ dom(h)
and h(x, z) ≤ r, h(z, y) ≤ s.

4. Finally there are ‘hyper-defects’. A hyper-defect is a pair x̄, ȳ ∈ ≤n−2X with (x̄, ȳ) ∈ E
and two points x, y ∈ X such that rng(x̄x), rng(ȳy) are cliques but there is no witness
z ∈ X such that rng(ȳyz) is a clique of h and (x̄x, ȳz) ∈ E.

We can define a game played on approximations in which the first player (‘∀’) will pick
inaccuracies of these four types in the current approximation, and player ∃ will try to repair
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them by refining it to a better one. If she suceeds in finding the required approximation in
every round of the game, ∃ wins; if not, ∀ wins.

Crucially, for each type of defect, ∃ can narrow her set of possible responses to a finite
number and still win the game, if she has a winning strategy at all.

The first kind of defect, ‘lack of faithfulness’, is dealt with in the initial round of the
game. In this round, ∀ is allowed to pick any non-zero a ∈ A, and ∃ must respond with an
approximation (X,h,E) containing a labelled edge (x, y) such that h(x, y) ≤ a. If such an
approximation exists then there is a unique approximation that she can play which gives the
least possible information and we assume that she plays this.

For case 2, when presented with a labelled edge (x, y) ∈ dom(h) and a ∈ A, ∃ either
‘accepts’ by resetting the label on (x, y) to h(x, y) · a in the new approximation, or she
‘rejects’ by resetting the label on (x, y) to h(x, y) · (−a); in either case other labels and the
relation E are unaltered. These two responses repair the inaccuracy in the approximation
but give no more information than is required.

Given a defect ((x, y), C, r, s) of type 3, ∃ chooses a set C ′ ⊆ X containing C, adds a new
point z to X, labels all edges (z, c), (c, z) : c ∈ C ′ with 1 except that (x, z), (z, y) are labelled
by r, s respectively, labels (z, z) with 1′, and leaves other labels unaltered. She also chooses
one of the finitely many ways of exending E to an equivalence relation over ≤n(X ∪ {z}).

Finally, if presented with a hyper-defect (x̄, ȳ, x, y), ∃ adds a new point z to X, extends
the domain of h so that rng(ȳyz) is a clique, leaving old labels unchanged and labelling new
edges with 1, and chooses an extension of E containing the tuple (x̄x, ȳz).

These games, which have countably many rounds, are designed to test membership of
SRaCAn in that the algebra belongs to SRaCAn if and only if it has an n-smooth relativised
representation which is equivalent, at least for countable algebras, to the existence of a winning
strategy in the game for ∃. We can define approximations to the class SRaCAn by curtailing
the games to finitely many rounds. We write Gnk(A) for the game with k rounds. As before,
if ∃ successfully plays the required refinement in each of the k rounds she wins, otherwise ∀
wins.

We now summarise the main results on these games. Recall that a relation algebra is
simple iff 1 ; r ; 1 = 1 for all non-zero elements r of the algebra.

Proposition 48

1. For any relation algebra A, ∃ has a winning strategy in Gnk(A) (for all k < ω) if and
only if she has a winning strategy in Gnω(A).

2. There is a universal first-order sentence σnk , effectively constructible from k, n, such that
for any relation algebra A, A |= σnk if and only if ∃ has a winning strategy in Gnk(A).

3. A countable simple relation algebra A has an n-smooth relativised representation if and
only if ∃ has a winning strategy in Gnω(A).

The first part, which uses a version of König’s tree lemma, depends on the fact that ∃ has only
finitely many choices for her moves. The sentences in the second part are universal because
∃ is never required to choose an element of the algebra. In the third part, if ∃ has a winning
strategy then, as A is countable, there is a play of the game in which ∀ picks all possible
defects. The ‘limit’ of such a play will determine an n-smooth relativised representation of
A, if A is simple.
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Thus, for countable simple A, we have A ∈ SRaCAn ⇐⇒ A |= {σnk : k < ω}.
The final step is to replace the universal axioms σnk by equations and to remove the

assumptions of countability and simplicity. This is a fairly standard argument. The analogue
of the following lemma for neat reducts of cylindric algebras was proved by Monk [Mon61].

Proposition 49 For n ≥ 4, SRaCAn is a variety contained in RA.

Proof:

We show that HSPRaCAn ⊆ SRaCAn. Evidently, if Bi ∈ CAn, i ∈ I, then∏
i∈I RaBi = Ra

∏
i∈I Bi ∈ RaCAn. So PRaCAn ⊆ SRaCAn, and it suffices

to check that SRaCAn is closed under homomorphic images. Let A ⊆ RaB for
B ∈ CAn, and let I be an ideal of A. Plainly, I is a subset of B. Let J be
the ideal of B generated by I. By [HMT71, theorem 2.3.8], J = {b ∈ B : b ≤
ci0 . . . cil(x0 + · · ·+xk−1) for some i0, . . . , il < n and x0, . . . , xk−1 ∈ I}. Now since
I is an ideal of A, it is closed under +. Further, if x ∈ I then 1 ;x ∈ I. By
[HMT71, 1.5.9(i),1.5.8(i)] and the fact that x is 2-dimensional, that is:

1 ;x = c2(s121 · s02x) = c2(1 · s02c2x) = c2s
0
2c2x = c0s

2
0c2x = c0c2x = c0x ∈ I.

Similarly, c1x ∈ I. So the above expression simplifies to J = {b ∈ B : b ≤ x for
some x ∈ I}. It follows that J ∩ A = I.

Now define a homomorphism from A/I into Ra(B/J) by a/I 7→ a/J (for
a ∈ A). As J ∩ A = I, this map is one-one. Since B/J ∈ CAn, we have A/I ∈
SRa{B/J} ⊆ SRaCAn.

So SRaCAn is closed under H, S, and P. By Birkhoff’s theorem, this shows
that SRaCAn is a variety and can be equationally axiomatised. It is known (see
proposition 58) that RA = SRaCA4 ⊇ SRaCA5 ⊇ · · ·, which completes the proof.
2

Lemma 50 Let ψ(x̄) be any quantifier-free formula of the language of relation algebras. Then
there is an equation, of the form s = 0 for some relation algebra term s(x̄), that is equivalent
in any simple relation algebra to ψ and which can be obtained effectively from ψ.

Proof:

By induction on ψ. The equation t = u is equivalent in any relation algebra
to (t · −u) + (u · −t) = 0. Assume inductively that ψ is equivalent to t = 0, and χ
to u = 0. Then ¬ψ is equivalent to ¬(t = 0) and so (in simple relation algebras)
to 1 ; t ; 1 = 1, and so to −(1 ; t ; 1) = 0. Clearly, ψ∧χ is equivalent in any relation
algebra to t+ u = 0. 2

Each universal sentence σnk (k < ω) from proposition 48 can be put in prenex form in an
effective manner. It then follows from lemma 50 that each σnk is equivalent in simple relation
algebras to an equation εnk which can be obtained effectively from k.

We can now prove the final part of theorem 1, which provides a recursive axiomatisation
of SRaCAn.

Theorem 51 For n ≥ 5, the variety SRaCAn is axiomatised by the equations defining RA
together with the equations εnk for k < ω.
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Proof:

It suffices to show that a relation algebra A is in SRaCAn iff A |= εnk for
each k. As SRaCAn is elementary (by proposition 49), we may suppose that A
is countable. Now by [JT52, theorem 4.15], A is embeddable in a direct product
of simple algebras Ai (i ∈ I), where each Ai is a homomorphic image of A.
The Ai are clearly countable also. Since SRaCAn is a variety (proposition 49),
A ∈ SRaCAn iff Ai ∈ SRaCAn for all i ∈ I; and since the εnk are equations, A |= εnk
(all k < ω) iff Ai |= εnk (all k) for each i ∈ I. So we may further assume that A is
a simple relation algebra. But now, A |= {εnk : k < ω} iff A |= {σnk : k < ω}, iff A
has an n-smooth relativised representation (by proposition 48), iff A ∈ SRaCAn
(by the equivalence of parts (1) and (4) of theorem 1). 2

The proof of theorem 1 is now complete.

7 Remarks on the theorem

Here, we present some observations and questions.

Remark 52 Theorem 1 also holds degenerately for n = 4 — all five parts are true for any
relation algebra in this case. For part 1, it is well-known that SRaCA4 = RA [HMT85,
theorems 5.3.8, 5.3.17]. Maddux shows in [Mad83] that the set of all 4-dimensional atomic
networks, for any atomic relation algebra, is a 4-dimensional ‘relational basis’, and in dimen-
sion 4, such a basis is essentially a Λ-hyper-basis for |Λ| = 1 (the ‘hyper-labels’ carry no
information). Since RA is a canonical variety, it follows that if A ∈ RA then A+ ∈ RA and
hence that A+ has a 4-dimensional hyper-basis. As shown in [HH97c], any relation algebra
has a ‘4-square’ relativised representation, and the notions of 4-square and 4-flat coincide;
or one may simply apply theorem 39. So parts 2 and 3 also hold for any relation algebra.
Part 4 holds, by proposition 44. Since SRaCA4 = RA, by proposition 48 we obtain that
every countable relation algebra satisfies {σ4

k : k < ω} and hence an arbitrary relation algebra
satisfies {ε4k : k < ω}, proving part 5. Of course, we are not very interested in obtaining a
recursive axiomatisation of RA.

Remark 53 We saw in proposition 49 that SRaCAn is a variety, for n ≥ 4. We remark
at this point that it is a canonical variety (closed under the map A 7→ A+). This is clear
for n = 4, as SRaCA4 = RA. Let n ≥ 5, and let A ∈ SRaCAn. By theorem 1, A+ has an
n-dimensional hyper-basis. By theorem 39, A+ has an n-flat relativised representation. By
theorem 1 again, A+ ∈ SRaCAn.

Remark 54 In [HH99b] it was shown that the problem of whether a finite relation algebra
is representable is undecidable. The same techniques will show that for finite n ≥ 5, it is
undecidable whether a finite relation algebra is in SRaCAn. The set of isomorphism types of
finite algebras in SRaCAn is co-r.e., since we have a recursive axiomatisation of it. So if A
is a finite relation algebra in SRaCAn, it does not follow that A has a finite n-dimensional
hyper-basis or a finite n-flat relativised representation, nor that A ⊆ RaC for a finite C ∈ CAn,
as if any of these implications held, it would mean that the set of isomorphism types of finite
algebras in SRaCAn would be r.e. and hence recursive, a contradiction.
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By modifying the definition of n-flat relativised representation so that the unit Cn(M) is
replaced by a n-ary relation contained in it, it can be shown that a finite relation algebra is a
subalgebra of RaC for a finite n-dimensional cylindric algebra C iff it has a finite (modified)
n-flat relativised representation. The proof uses techniques of [AHN98].

Remark 55 In [Mad89, §6], a discussion of n-variable proof theory is given. Using n-dimen-
sional cylindric bases, an algebraic semantics for n-variable formulas is introduced; it is shown
that each axiom of a Hilbert system for n-variable first-order logic taken from [TG87] is valid
in this semantics, and that the proof rules preserve validity. We note that n-flat relativised
representations form an alternative to this algebraic semantics, with the advantage of being
quite close to classical Tarskian semantics for first-order logic. One may hope to prove a
soundness and completeness theorem for n-flat relativised representations with respect to n-
variable proof theory, but a full treatment would involve cylindric algebras and we do not
pursue it further here.

8 Hyper-bases, cylindric bases, and relational bases

Hyper-bases are related to the relational and cylindric bases of Maddux. In this section we
investigate the connections.

Let A be an atomic relation algebra, and fix n ≥ 4. An n-dimensional (atomic) network
over A is similar to a n-dimensional hyper-network N over A, except that N(ā) is only defined
if |ā| = 2. The same information is carried by an Λ-hyper-network N over A if we insist that
|Λ| = 1.

• An n-dimensional relational basis is then a set of n-dimensional networks over A, sat-
isfying conditions 1 and 2 of definition 14.

• An n-dimensional cylindric basis is a set of n-dimensional networks over A, satisfying
all three conditions of definition 14.

The first definition is the same as that of Maddux [Mad83], and the second is equivalent
to Maddux’s definition [Mad89].

8.1 Direct connections between bases

Proposition 56 Let A be an atomic relation algebra, with an n-dimensional Λ-hyper-basis
for some set Λ and some n ≥ 4. Then A has a n-dimensional relational basis.

Proof:

Let H be an n-dimensional Λ-hyper-basis for A. If N ∈ H, write N † for the
n-dimensional network over A obtained by throwing away the labels N(ā) for any
ā of length not equal to 2. We may regard N † as a reduct of N . Write H† for
{N † : N ∈ H}.

We claim that H† is an n-dimensional relational basis for A. We check the two
properties required.

1. Let r ∈ A be non-zero. As H is a hyper-basis, we may choose N ∈ H with
N(0, 1) ≤ r. Then certainly, N †(0, 1) ≤ r, also.

32



2. Let N † ∈ H†, let i, j, k < n with k 6= i, j, let r, s ∈ A with N †(i, j) ≤ r ; s.
Then N(i, j) ≤ r ; s, so there is M ∈ H with N ≡k M , M(i, k) ≤ r, and
M(k, j) ≤ s. Clearly, M † ∈ H†, N † ≡k M †, M †(i, k) ≤ r, and M †(k, j) ≤ s,
as required.

2

H† in the proof need not be an n-dimensional cylindric basis for A. Indeed, we will now
see that A may not have such a basis.

Take p to be a whole number, at least 2. The Lyndon algebra Ap is finite, with p + 2
atoms, say 1′, a0, . . . , ap. It is defined by:

• ai ; ai = ai + 1′ if p ≥ 3, and ai; ai = 1′ if p = 2.

• ai ; aj =
∑

k 6=i,j ak if i 6= j,

• (necessarily) ăi = ai,

where i, j, k ≤ p. On arbitrary elements of A, ‘;’ can be calculated from this using distribu-
tivity over +. So can ‘^’: we have r̆ = r for all r ∈ Ap.

It can be shown that any given Lyndon algebra Ap is representable iff there is a projective
plane of order p. In particular, infinitely many Ap are representable [Lyn61, theorem 1].

Theorem 57 There exists a (finite) relation algebra with an n-dimensional hyper-basis for
all finite n ≥ 5, but with no 5-dimensional cylindric basis.

Proof:

Choose p ≥ 4 such that Ap is representable. By [HMT85, theorem 5.3.16],
Ap ∈ SRaCAn for all finite n. By theorem 1, A+

p has an n-dimensional hyper-
basis for all finite n ≥ 5. Since Ap is finite, Ap = A+

p , so the same holds for
Ap.

It remains to show that Ap does not have a 5-dimensional cylindric basis.
Assume for contradiction that M is such a basis. For convenience, let a, b, c, d, e
be distinct diversity atoms ( 6= 1′) ofAp. By property 1 of the definition of cylindric
basis, there is a network N0 ∈ M with N0(0, 1) = a. Now N0(0, 1) ≤ b ; c, so by
property 2 there are N3, N4 ∈M with

• N3 ≡3 N0, N3(0, 3) = b, and N3(3, 1) = c, and
• N4 ≡4 N0, N4(0, 4) = b, and N4(4, 1) = c.

As c ≤ d ; a and c ≤ e ; a, there are N ′
3, N

′
4 ∈M with

• N ′
3 ≡2 N3, N ′

3(3, 2) = d, and N ′
3(2, 1) = a, and

• N ′
4 ≡2 N4, N ′

4(4, 2) = e, and N ′
4(2, 1) = a.

Notice thatN ′
3(0, 2) ≤ (N ′

3(0, 1) ;N ′
3(1, 2))·(N ′

3(0, 3) ;N ′
3(3, 2)) = (a ; a)·(b ; d) = a,

so N ′
3(0, 2) = a. Similarly, N ′

4(0, 2) = a. See figure 2.
Thus, N ′

3 ≡34 N ′
4. By property 3 of the definition of cylindric basis, there

is P ∈ M with N ′
3 ≡4 P ≡3 N ′

4. But now, P (3, 4) ≤ P (3, 0) ;P (0, 4) =
N ′

3(3, 0) ;N ′
4(0, 4) = b ; b. Similarly, using 1 and 2 instead of 0, we obtain P (3, 4) ≤

c ; c and P (3, 4) ≤ d ; e. So P (3, 4) ≤ b ; b · c ; c · d ; e = 0, a contradiction. 2

So theorem 1 fails if we replace ‘hyper-basis’ by ‘cylindric basis’: for all n ≥ 5, Ap ∈ SRaCAn
but A+

p = Ap has no n-dimensional cylindric basis.
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8.2 Varieties generated by bases

However, better results may be expected if we close under taking subalgebras. Recall from
[Mad89] that RAn is the class of all relation-type algebras that embed into a (complete) atomic
algebra with an n-dimensional relational basis. The paper [HH97c] studied these varieties.
Also define CBn analogously, but using cylindric bases instead of relational bases.

Proposition 58

1. CB4 = SRaCA4 = RA4 = RA.

2. For n ≥ 4, we have CBn ⊆ SRaCAn ⊆ RAn.

3.
⋂
n<ω CBn =

⋂
n<ω SRaCAn =

⋂
n<ω RAn = RRA.

Proof:

1. As Maddux proved that RA4 = RA, (1) follows from (2) if we show that
RA4 ⊆ CB4. But it is easily verified that any 4-dimensional relational basis
is also a cylindric basis.

2. From any cylindric basis M we may obtain a {0}-hyper-basis, by letting
N(ā) = 0 for all ā ∈ ≤nn of length 6= 2 and all N ∈ M. So by theorem 1,
CBn ⊆ SRaCAn.
By proposition 56, SRaCAn ⊆ RAn.

3. By [Mad83, theorems 6, 10],
⋂
n<ω RAn = RRA. So using the second part,

we only need verify that RRA ⊆ CBn for all n. Let A ∈ RRA, and let
h : A → ℘(X × X) be a representation of A. Then h is an embedding of
A into the proper relation algebra B with domain ℘(h(1)). For any n, let
Φ be the set of all n-tuples ā = (a0, . . . , an−1) of elements of X such that
(ai, aj) ∈ h(1) for each i, j < n. For each ā ∈ Φ, define a network Nā by
Nā(i, j) = {(ai, aj)} ∈ AtB. It can be checked that {Nā : ā ∈ Φ} is an
n-dimensional cylindric basis for B.

2

Hence, Ap as in theorem 57 is a subalgebra of a (finite) relation algebra with a 5-dimen-
sional cylindric basis. Indeed, any representable relation algebra has this property. This
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shows an important distinction between RAn and CBn. It is known that A ∈ RAn iff the
canonical extension A+ has an n-dimensional relational basis. But the algebra Ap of the
theorem belongs to CBn yet its canonical extension A+

p
∼= Ap has no n-dimensional cylindric

basis. We do not know if the inclusion CBn ⊆ SRaCAn is proper. An example in [HHM98]
shows that SRaCAn ⊂ RAn for all finite n ≥ 5.

Problem 1 For each finite n ≥ 5, is the inclusion CBn ⊆ SRaCAn proper? That is, does
any algebra A ∈ SRaCAn embed in a relation algebra with an n-dimensional cylindric basis?

For each n < ω, is there an m < ω such that RAm ⊆ SRaCAn?
For each n < ω, is there an m < ω such that SRaCAm ⊆ CBn?

8.3 Cylindric bases and homogeneous representations

A (classical) representation of a relation algebraA can be equivalently regarded as a relativised
representation of A in the sense of definition 3 with the property that 1M is an equivalence
relation on M . Such a representation is said to be homogeneous if it is ‘ultra-homogeneous’
in the model-theoretic sense: every partial isomorphism of M with finite domain is induced
by a full automorphism of M .

For finite relation algebras, an argument in the style of [Fra54] shows that cylindric bases
and homogeneous representations ‘coincide’. The n-dimensional analogue was discussed in
remark 47.

Lemma 59 If Mn is an n-dimensional cylindric basis for A then the set M+
n = {Nσ : N ∈

Mn, σ : n→ n} is also an n-dimensional cylindric basis.

Proof:

Copy the proof of lemma 38. 2

Theorem 60 Let A be a finite relation algebra. Then A has an n-dimensional cylindric basis
for all finite n, iff A has a homogeneous representation.

Proof [sketch]:

(Cf. theorem 39.) IfM is a homogeneous representation ofA, then consider the
set of all atomic networks of dimension n that embed in M , as in proposition 58.3.
This is an n-dimensional cylindric basis for A.

To prove the converse to the theorem, suppose that A has a n-dimensional
cylindric basis Mn for all finite n. For m < n, write Mn|m for the set {N |m : N ∈
Mn} of m-dimensional networks, where for a network N ∈Mn, N |m denotes the
m-dimensional network obtained by restricting N to indices < m. Then it can be
checked that Mn|m is an m-dimensional cylindric basis for A.

Now there are only finitely many m-dimensional networks over A, for any
m < ω. So by König’s tree lemma, we may suppose without loss of generality
that Mn|m = Mm for all m < n < ω. By lemma 59 we may suppose that Mn is
symmetric (closed under permutations), for each n < ω.

We are going to build a homogeneous representation of A by a game. The
following lemma will be used to show that it is homogeneous. First, a definition.
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Definition 61 Let q ≤ p < ω, P ∈Mp, and Q ∈Mq. Let θ : q → p be a one-one
map. We say that θ is an embedding from Q to P if Q(i, j) = P (θ(i), θ(j)) for all
i, j < q.

Lemma 62 Let p, q < ω, P ∈ Mp, Q ∈ Mq+1, and let θ : Q|q → P be an
embedding. Then there is P+ ∈ Mp+1 with P+|p = P , and an embedding θ+ :
Q→ P+ extending θ.

Proof:

Clearly, p ≥ q. The proof is by induction on p − q. If this is zero,
extend θ to a permutation θ+ of q+ 1 in the unique way. By lemma 59
and our assumption that ourMq+1 is symmetric, Qθ

+ ∈Mq+1. Clearly,
θ+ : Q → Qθ

+
is an embedding, and Qθ

+ |p = P . So we may take
P+ = Qθ

+
.

Let p−q ≥ 1 and assume the result for smaller p−q. Take P,Q, θ as
in the lemma. By lemma 59, we may suppose that p−1 /∈ rng(θ), so that
θ is an embedding : Q → P |p−1. By the inductive hypothesis, there is
P ′ ∈Mp with P ′|p−1 = P |p−1, and an embedding θ′ : Q→ P ′ extending
θ. So also, there is R ∈ Mp+1 with R|p−1 = P |p−1, and an embedding
ρ : Q → R extending θ (e.g., any R ∈ Mp+1 with R|p = P ′). Now, by
lemma 59 again, we can assume that ρ(q) = p. Clearly, P ∗ ≡p−1,p R
in Mp+1. Let S ∈ Mp+1 with P ∗ ≡p S ≡p−1 R. So S|p = P , and
ρ : Q→ S is an embedding extending θ. 2

Two players, ∀ (male) and ∃ (female), now play a game to build a representa-
tion of A. The game has ω rounds, numbered 1, 2, . . . , t, . . . (2 ≤ t < ω). In round
1, ∀ picks non-zero r ∈ A, and ∃ responds with some N2 ∈M2 with N2(0, 1) ≤ r;
she can find such a network because M2 is a cylindric basis. In each subsequent
round t ≥ 2, if the current network is Nt ∈Mt, then ∀ can make one of two types
of move:

Triangle move: he chooses i, j < t and r, s ∈ A with Nt(i, j) ≤ r ; s. ∃ must
respond with some Nt+1 ∈Mt+1 such that Nt+1(i, t) ≤ r and Nt+1(t, j) ≤ s.
She can do so because there is N ′ ∈ Mt+1 with N ′|t = Nt, so as Mt+1 is a
cylindric basis, there is Nt+1 ∈ Mt+1 with Nt+1 ≡t N ′, Nt+1(i, t) ≤ r and
Nt+1(t, j) ≤ s.

Amalgamation move: he chooses Q ∈Mq+1 for some q ≤ t, and an embedding
θ : Q|q → Nt. ∃ must respond with Nt+1 ∈ Mt+1 such that θ extends to an
embedding θ+ : Q→ Nt+1. Lemma 62 shows that she can do this.

Consider a play N2, N3, . . . of the game in which ∀ plays r0 ∈ A\{0} and then
makes every possible move in some round. That is, if Nt(i, j) ≤ r ; s for some
t, i, j, r, s, then he plays a triangle move i, j, r, s in some round u ≥ t; and if t ≥ 1,
q ≤ t, Q ∈ Mq+1, and θ : Q|q → Nt is an embedding, then ∀ plays Q, θ in some
round u ≥ t (note that θ : Q → Nu will also be an embedding). He can do all
this because A and each Mn are countable, and he makes countably many moves
during the game. Since Nu|t = Nt for each t ≤ u < ω, the play has a well-defined
limit Nω, a network of dimension ω, where for each i, j < ω, Nω(i, j) = Nk(i, j)
for any k > i, j. Nω has the following properties:
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1. Nω(0, 1) ≤ r0 (by ∀’s first move).

2. Nω is a network: Nω(i, i) ≤ 1′ and N(i, k) ≤ N(i, j) ;N(j, k) for all i, j, k < ω
(because Nω is the ‘limit’ of networks).

3. If Nω(i, j) ≤ r ; s for some i, j < ω and r, s ∈ A, there is k < ω with
Nω(i, k) ≤ r and Nω(k, j) ≤ s. (Take k > i, j such that ∀ played the triangle
move i, j, r, s in round k.)

A partial isomorphism of Nω is a partial one-one map θ : ω → ω with finite
domain, such that Nω(i, j) = Nω(θ(i), θ(j)) for all i, j ∈ dom(θ).

4. If φ : Nω → Nω is a partial isomorphism, and i < ω, then φ extends to a
partial isomorphism defined on i.
We may suppose i /∈ dom(φ). Let u < ω be such that {i}∪dom(φ)∪rng(φ) ⊆
u. Let |φ| = q, and choose θ : q+1 → u with rng(θ|q) = dom(φ) and θ(q) = i.
Then there is Q ∈ Mq+1 such that θ : Q → Nu is an embedding. (Using
lemma 59, take Q = ((Nu)ψ)|q+1 ∈ Mq+1, where ψ is a permutation of u
extending θ−1.) Clearly, φ ◦ θ : Q|q → Nt is also an embedding, for all t ≥ u.
We may choose t ≥ u such that ∀ made the amalgamation move Q,φ ◦ θ.
So there is an embedding χ : Q → Nt+1 extending φ ◦ θ. Then χ ◦ θ−1 is a
partial isomorphism of Mω extending φ and defined on i.

5. Any partial isomorphism of Nω is induced by a partial isomorphism that
is actually a permutation of ω. (As Nω is countable, repeated ‘smooth’
application of property 4 shows this.)

Define a binary relation ∼ on ω by i ∼ j iff Nω(i, j) ≤ 1′. It is easily checked
that ∼ is an equivalence relation, and indeed a congruence, in that if i ∼ i′ and
j ∼ j′ then Nω(i, j) = Nω(i′, j′). Write ω/∼ for the set of equivalence classes, and
i∼ for the equivalence class of i (i < ω). Let Mr0 be the structure for the language
of the theory SA defining relativised representations, with domain ω/∼, given by

Mr0 |= r(i∼, j∼) iff Nω(i, j) ≤ r,

for r ∈ A. (We make explicit the dependence on ∀’s first move r0 here.) There is
such a structure Mr0 for each non-zero r0 ∈ A. Property 5 ensures that each Mr0

is homogeneous.
Let r ≈ s in AtA iff r ≤ 1 ; s ; 1. Then ≈ is an equivalence relation on AtA, and,

as can be checked, r ≈ s iff Mr |= ∃xy s(x, y), for all atoms r, s. Take a set E of
representatives for the ≈-classes, and let M be the disjoint union of the structures
Me for e ∈ E. Then M |= ∃xy r(x, y) for all non-zero r ∈ A. It can be checked
routinely that M is a representation of A; see [HH97d] for more details. Moreover,
if θ is any finite partial isomorphism of M , then take x ∈ dom(θ) ∩Me. There
is a ∈ AtA such that M |= a(x, x). If θ(x) ∈ Me′ , then since M |= a(θ(x), θ(x)),
then e ≈ a ≈ e′, so e = e′. So θ is a union of partial isomorphisms of the Me.
Each one extends to an automorphism of Me, and their union is an extension of
θ to an automorphism of M . So M is homogeneous. 2
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