
UNIVERSIDADE FEDERAL DE OURO PRETO

ANDRÉ LUÍS BARROSO ALMEIDA

A high performance Java middleware for general
purpose computing and capacity planning

Ouro Preto

2016

UNIVERSIDADE FEDERAL DE OURO PRETO

ANDRÉ LUÍS BARROSO ALMEIDA

A high performance Java middleware for general
purpose computing and capacity planning

Dissertação de Mestrado submetida ao Pro-
grama de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Ouro Preto como requisito parcial para a
obtenção do título de Mestre.

Orientador:
Joubert de Castro Lima

Ouro Preto

2016

Catalogação: www.sisbin.ufop.br

A447h Almeida, André Luís Barroso.
 A high performance Java middleware for general purpose computing and
capacity planning [manuscrito] / André Luís Barroso Almeida. - 2016.
 72f.: il.: color; grafs; tabs.

 Orientador: Prof. Dr. Joubert de Castro Lima.

 Dissertação (Mestrado) - Universidade Federal de Ouro Preto. Instituto de
Ciências Exatas e Biológicas. Departamento de Computação. em Ciência da
Computação.
 Área de Concentração: Ciência da Computação.

 1. Computação de alto desempenho. 2. Gerenciamento de memoria
(Computação) . 3. Interfaces (Computador) - Remote Method Invocation. 4.
Programas de computador - Middleware. 5. Java (Linguagem de programação de
computador). I. Lima, Joubert de Castro. II. Universidade Federal de Ouro
Preto. III. Titulo.

 CDU: 004.45

Resumo

Middlewares ou Frameworks são fundamentais no desenvolvimento de aplicações distribuí-
das devido a complexidade das mesmas. Muitas soluções foram propostas nas últimas três
décadas de melhorias e a linguagem Java faz parte destes esforços. A comunidade Java
é enorme e a linguagem oferece suporte para computação de alto desempenho (HPC),
assim como para plataformas de pequeno porte, tais como as adotadas para IoT. Os
middlewares Java para HPC implementam funcionalidades, tais como escalonamento de
processos, tolerância a falhas, portabilidade de código, instalação simplificada em grandes
clusters, desenvolvimento colaborativo na pilha de serviços em nuvem, execução de código
existente sem refatoração, suporte a estruturas de dados distribuídas e nativas, execução
de tarefas de forma assíncrona no cluster, suporte a criação de variáveis globais distribuí-
das, conceito de super-pares e muitas outras melhorias. Infelizmente, tais funcionalidades
nunca foram reunidas em uma API única de uma solução de middleware simples e ráp-
ida. Neste trabalho, é apresentado o Java Cá&Lá ou simplesmente JCL, um middleware
para desenvolvedores Java que adota computação reflexiva e possui modelo de progra-
mação baseado em endereçamento compartilhado e distribuído. O JCL reúne diversas
funcionalidades apresentadas separadamente nas últimas décadas, permitindo construir
aplicações paralelas ou distribuídas a partir de poucas instruções portáveis e sendo capaz
de ser executado sobre diferentes plataformas, incluindo as IoT. Este trabalho apresenta
as funcionalidades e a arquitetura do JCL, compara e contrasta JCL e seus concorrentes,
e apresenta resultados experimentais de aplicações JCL.

Keywords: Java, General Purpose Computing, Middleware, High Performance Com-
puting, Distributed Shared Memory, Remote Method Invocation.

Abstract

Middleware systems or frameworks are fundamental in the development of distributed
applications due to their complexity. Several solutions were proposed in the last three
decades of improvements and Java can be considered as part of these efforts. The Java
community is huge and the language supports several features designed for high perfor-
mance computing (HPC), but also for small platforms like the Internet of Things (IoT)
ones. The Java middlewares proposed for HPC implement several features, such as
scheduling, fault tolerance, code portability, simple deployment over large clusters, collab-
orative development in the cloud stack, execution of existing code without refactorings,
native support for distributed data structures, asynchronous task execution, support for
distributed global variables, super-peer concept and many others, but without integrating
them. Unfortunately, these features were not put together in a simple and fast middle-
ware solution. In this paper, we present Java Cá&Lá or just JCL, a distributed shared
memory lightweight middleware for Java developers that separates business logic from
distribution issues during the development process and gathers several features presented
separately in the last decades of middleware literature, allowing building distributed or
parallel applications with few portable instructions and capable to run over different plat-
forms, including small ones. This paper describes JCL’s features, compares and contrasts
JCL to other Java middleware systems, and reports performance measurements of JCL
applications in several distinct scenarios.

Keywords: Java, General Purpose Computing, Middleware, High Performance Com-
puting, Distributed Shared Memory, Remote Method Invocation.

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Features for HPC Middleware systems 4

3 Related work 8

4 JCL Architecture 14

4.1 Deployment . 15

4.2 Refactoring . 16

4.3 Scheduler . 19

4.4 Distributed Hash Map . 22

4.5 Collaboration . 23

4.6 Portability . 24

4.7 Super-peer . 25

4.8 Task cost . 27

5 Sorting Use Case 30

6 Experimental Evaluation 35

6.1 Throughput Experiments . 35

6.2 Multi-core speedup experiments . 41

Contents v

6.3 Super-peer component overhead . 41

6.4 CBC solver experiments . 44

6.5 Experiments with a solution for the problem of minimizing the number of

tool switches . 48

7 Conclusion 54

Bibliography 56

List of Figures

4.1 JCL architectures . 15

4.2 JCL multi-computer deployment view . 16

4.3 JCL multi-computer deployment view . 17

4.4 JCL multi-computer deployment view . 17

4.5 Business logic - Hello World. 18

4.6 Distribution logic - Hello World. 18

4.7 User component . 19

4.8 Host Component . 20

4.9 JCL HashMap . 23

4.10 Developer one. 24

4.11 Developer two. 24

4.12 Super-peer topology . 26

4.13 Super-peer component . 27

5.1 Main class - how to generate pseudo-random numbers in JCL cluster. . . . 31

5.2 Main class - how to mount the global chunk schema to partition the cluster

workload. 32

5.3 Sorting class - how to deliver chunks to other Host threads. 33

6.1 Task execution experiments . 36

6.2 Global variable experiments . 37

6.3 Global variable experiments . 39

6.4 JCLMap experiments . 39

6.5 Variable names with autoincrement . 40

List of Figures vii

6.6 Bag of words . 40

6.7 Super-peer overhead in managing Hosts . 42

6.8 Super-peer overhead topology 2 . 44

6.9 Task execution experiments . 46

6.10 Tasks difference in terms of opened branches 47

6.11 Task runtimes distribution . 47

6.12 Non-deterministic task execution experiments 48

6.13 Iterated Local Search applied to the MTSP 240 instances experiment. . . . 51

6.14 Iterated Local Search applied to the MTSP run rounds (1 - 64 Tasks) . . . 52

6.15 Iterated Local Search applied to the MTSP run rounds (96 - 160 Tasks) . . 52

List of Tables

1.1 Fundamental features for HPC Middleware systems 2

3.1 JCL and its counterparts’ features - part 1 9

3.2 JCL and its counterparts’ features - part 2 10

6.1 Number of Hosts . 42

6.2 Super-peer overhead in different multi-cluster topologies 43

Chapter 1

Introduction

We live in a world where large amounts of data are stored and processed every day Han

et al. (2011). According to the last International Data Corporation (IDC) report, in 2013

the amount of data stored reached 4.5 trillion gigabytes and this number will grow by a

factor of 10, exceeding 40 trillion gigabytes in 2020 Turner et al. (2014). Despite the sig-

nificant increase in the performance of today’s computers, there are still problems that are

intractable by sequential computing approaches Kaminsky (2015). Big data Brynjolfsson

(2012), Internet of Things (IoT) Perera et al. (2014) and elastic cloud services Zhang et al.

(2010) are technologies that provide this new decentralized, dynamic and communication-

intensive society.

Many fundamental services and sectors such as electric power supply, scientific/tech-

nological research, security, entertainment, finance, telecommunications, weather fore-

casting and many others, use solutions that require high processing power. Thus, these

solutions, named high performance computing (HPC) applications, are executed over par-

allel and distributed computer architectures. HPC is based on the concurrence principle,

so high speedups are achievable, but the development process becomes complex when

concurrence is introduced. Therefore, middleware systems and frameworks are designed

to help reduce the complexity of such development. The challenging issue is how to

provide sufficient support and general high-level mechanisms using middleware for rapid

development of distributed and parallel applications.

Among various programming languages for middleware systems, the interest in Java

for High Performance Computing (HPC) is huge Taboada et al. (2013). This interest is

based on many features, such as built-in networking, multithreading support, platform

independence, reflection, portability, type safety, security, extensive Application Program-

ming Interface (API) and a wide community of developers Taboada et al. (2009).

1 Introduction 2

Besides programming models, language implementations and developers community

size, several architectural, conceptual and implementation features, presented in Table

1.1, are fundamental in the design and development of a modern middleware solution.

Table 1.1: Fundamental features for HPC Middleware systems

General purpose computing
(Shared memory, message passing, etc.) Distributed Data Structures

Refactorings Scheduling
Deployment Super-peer
Collaboration Task cost
Portability Fault tolerance

As observed, distributed applications introduce many challenges to the development

process, so middleware systems or frameworks become paramount. Features of the Table

1.1 were never put together in a middleware system, so the main goal of this paper is to

present a middleware called JavaCá&Lá or just JCL1 that fills most of this features, pre-

cisely: i) a simple deployment strategy and capacity to update internal modules during

runtime; ii) a service to execute existing sequential Java code over multiple HPC archi-

tectures; iii) a unique API for capacity planning, storage and processing; iv) the support

of super-peers for a multi-cluster topology; v) a distributed map that is a sub-type of

Java Map interface; vi) an API to operate different platforms, including cloud and small

ones like Raspberry Pi, Galileo, Cubieboard and many others Linux boards Upton and

Halfacree (2014); Intel (2016); Schinagl (2014); vii) a service to get total time, network

time, queue time, service time and the result retrieval time for each task submitted to the

cluster; viii) a scheduler to manage the workload of a JCL cluster in terms of distribut-

ed/parallel processing and a hash function to achieve a fair distributed storage; ix) col-

laborative development without explicit dependencies; and x) multi-core/multi-computer

portable code.

As a result of this paper, we have:

1. A middleware that gathers several features presented separately in the last decades

of middleware literature, enabling building distributed applications with few portable

instructions and capable to run over different platforms, including small ones;

2. A comparative study of market leaders and well established middleware standards

for the Java community. This paper emphasizes the importance of several features and
1Java Cá&Lá is available for download at http://www.joubertlima.com.br/jcl

1 Introduction 3

how JCL and its counterparts fulfill them;

3. A scalable middleware over multi-core and multi-computer architectures;

4. A feasible middleware alternative to fast prototype portable Java HPC applications

that separate business logic from distribution issues during the development process.

The paper is organized as follows. Chapter 2 discusses all important features required

for the design and development of a modern middleware solution. Chapter 3 presents

works that are similar to the proposed middleware, pointing out their benefits and limita-

tions. Chapter 4 details how JCL middleware implements most of the features presented

in Section 2. Chapter 6 presents our experimental evaluation and discusses the results.

Chapter 5 describes a user case application. In chapter 7, we conclude our work and point

out future improvements of JCL.

Chapter 2

Features for HPC Middleware systems

The design and development processes of a middleware system requires attempting sev-

eral features, including implementation, architectural and conceptual ones. The features

detailed in this chapter define a representative set of fundamental requirements for HPC

middlewares and frameworks, so we evaluate JCL and the most similar literature accord-

ing to them.

Refactorings: Usually, distributed shared memory middleware systems introduce some

dependencies to HPC applications. Consequently, an ordinary Java or C++ object 1

must implement several middleware classes or interfaces to become distributed. There

are many middleware examples with such dependencies, including standards and market

leaders like Java RMI Pitt and McNiff (2001), JBoss Watson et al. (2005) and Map-reduce

based solutions Hindman et al. (2011); Zaharia et al. (2010).

As a consequence of these dependencies, two problems emerge: i) the developer cannot

separate business logic from distribution issues during the development process and; ii)

existing and well tested sequential applications cannot be executed over HPC architectures

without refactorings. Single Instruction Multiple Data (SIMD) applications are examples

where sequential algorithms are replicated and executed over different data partitions. A

zero-dependency middleware is necessary to solve this problems.

Deployment: Deployment can be a time consuming task in large clusters, i.e., any

live update of an application module or class often interrupts the execution of all services

running in the cluster. Some middleware systems adopt third-party solutions to distribute

and update modules in a cluster Henning and Spruiell (2006); Nester et al. (1999); Veentjer
1“An object is a self-contained entity consisting of data and procedures to manipulate data” Egan

(2005)

2 Features for HPC Middleware systems 5

(2013); Pitt and McNiff (2001), but sometimes updating during application runtime and

without stopping is a requirement. This way, middleware systems capable of deploying

a distributed application transparently, as well as updating its modules during runtime

and programmatically, are very useful to reduce maintenance costs caused by several

unnecessary interruptions.

Collaboration: Cloud computing introduces opportunities, since it allows collaborative

development or development as a service in cloud stack. A middleware providing a multi-

developer environment, where applications can access methods and variables from each

other without explicit references, is fundamental to introduce development as a service or

just to transform a cluster into a collaborative development environment. Sometimes the

collaborative environment requires access credentials to avoid prohibitive computations.

Portable Code: Portable multi-core/multi-computer code is an important aspect to

consider during the development process, since in many institutions, such as research labs,

there can be huge multi-core machines and several beowulf computer clusters Becker et al.

(2002) to solve a handful of problems. This way, code portability is very useful to test

algorithms and data structures in different computer architectures without refactorings.

A second justification for offering at least two releases in a middleware is that clusters

are nowadays multi-core, so middleware systems must implement multi-core architectural

designs in conjunction with multi-computer ones.

Distributed Data Structures: User typed object storage is implemented by many mid-

dleware systems, but few implement distributed data structures as part of a unified API

Veentjer (2013); Watson et al. (2005); Team (2016). Usually, developers implement dis-

tributed storage using a specific framework or middleware, like HBase George (2011),

Cassandra Cassandra (2013), Apache Pig Gates and Dai (2016), ScyllaDB Team (2015)

and MongoDB Chodorow (2013). Often, third-party distributed storage solutions are

focused on transaction aspects, i.e. database ACID (Atomicity, Consistency, Isolation,

Durability) demands, so they are designed for applications with specific needs. Our focus

is on local and sequential global variables adopted on every code. JCL and a few others

extend Java collections standard APIs, such as Map, Set and List, which are part of Java

since its beginning. Thus, little refactorings may occur when sequential global variables

must be replaced with distributed ones.

Scheduling: HPC applications, in most of the cases, can be modeled as a SIMD

solution, so the workload depends on data partition Boneti et al. (2008). Other problems

can be modeled as a pipeline solution, where each pipe step can execute a different set of

2 Features for HPC Middleware systems 6

instructions or a method, so pipeline steps normally have different workloads (multiple

instruction and single data - MISD). Unfortunately, the load balancing problem emerges

from both solutions, as Boneti et al. (2008) highlighted.

To reduce load balancing problems, we adopt scheduling algorithms Murata et al.

(2006). Such algorithms goal is to reduce the workload difference from overloaded ma-

chines or cores by moving part of the load to underutilized ones Balasangameshwara and

Raju (2012). Middleware systems like the Java Parallel Processing Framework (JPPF) Co-

hen (2015) and Gridgain GridGain Systems (2011) implement different scheduling tech-

niques, but others, such as Java RMI Pitt and McNiff (2001) and MPI Forum (1994) ,

delegate scheduling issues to developers.

Super-peers: A super-peer is a node in a peer-to-peer network that both operates as

a server to a set of clients and as an equal in a network of super-peers Yang and Garcia-

Molina (2003). They take advantage of the heterogeneity of capabilities (e.g., bandwidth,

processing power) across peers, but they also enable sub-networks with invalid IPs to be

interconnected in a grid.

Furthermore, the super-peer concept turns possible the creation of multiple clusters,

being each cluster organized according to developer needs (Ex. sensors clustered in a

specific room of a house). In summary, the benefits of a super-peer extrapolates network

infrastructure advantages. The hierarchical topology of super-peers is useful, as surveys

pointed out Lua et al. (2005); SalemAlzboon et al., but all Java middleware systems found

in literature just do not consider the advantages of it.

Fault tolerance: Fault tolerance in distributed computing is a very important feature

that prevents data lost and corruption, but also processing malfunctioning. Middleware

systems like HazelcastVeentjer (2013), Gridgain Team (2016) and Oracle CoherenceSeovic

et al. (2010) implement fault tolerance for storage processes, performing double copies of

distributed global variables. In terms of processing fault tolerance, JPPF resubmits the

task when timeouts occur.

None of Java HPC middleware systems consider Byzantine fault tolerance ?, where a

process is not only not responding, but producing incorrect results for many reasons. This

hard problem is solved by a communication intensive protocol ?, requiring 2k+1 correct

processes for k corrupted ones.

General purpose computing: Middleware systems normally support a programming

model based on shared memory, message passing or event Ghosh (2014). The shared

2 Features for HPC Middleware systems 7

memory programming model considers global and local variables, but also the execution

of tasks or procedures or methods as key abstractions. Event based and message passing

programming models support other key abstractions, such as messages and events. The

solutions capable to offer those abstractions are named general purpose solutions.

Middleware systems can be adopted for general purpose computing, such as Message

Passing Interface (MPI) Forum (1994), Java Remote Method Invocation (RMI) Pitt and

McNiff (2001), Hazelcast Veentjer (2013), JBoss Watson et al. (2005) and many others,

but they can also be designed for a specific purpose, like gaming, mobile computing and

real-time computing, for instance Murphy et al. (2006); Gokhale et al. (2008); Tariq et al.

(2014).

Task cost: Middlewares systems like JPPFCohen (2015) and HazelcastVeentjer (2013)

enable the user to monitor the health of every cluster member in terms of RAM, disk and

CPU usage. Dashboards are implemented to visualize the cluster health, but for capacity

planning it is fundamental to collect each task storage and processing costs, i.e. its

different times and storage in each cluster member. The global variables sizes can also be

monitored for better storage allocations.

These costs are fundamental to build scheduling algorithms or supervisory systems,

adopted to delineate capacity planning of decentralized systems. A high standard devia-

tion of the cluster queue time can indicate that the cluster cores are not enough and new

members need be connected. The inverse can guarantee energy saving. Unfortunately, no

related work implements such a detailed task cost model.

Chapter 3

Related work

In this chapter, we describe the most promising middleware systems in various stages of

development. We evaluated each work in terms of: i) requirement for low/medium/high

refactorings, ii) implementation of simple deploy, iii) support for collaborative develop-

ment, iv) implementation of both multi-core and multi-computer portable code, v) the

cost of a task in terms of processing and storage, vi) super-peer concept, vii) implemen-

tation of distributed data structures, viii) scheduling support.

Other analyses were made to verify if the middleware has available support, and if

it is fault tolerant in terms of storage and processing. Both academic and commercial

solutions are considered and their limitations/improvements are highlighted in Tables 3.1

and 3.2. Middleware systems that present high similarities with JCL are described in

detail in this chapter. The remaining related work is only briefly considered in Tables 3.1

and 3.2.

Infinispan by JBoss/RedHat Marchioni and Surtani (2012) is a popular open source

distributed in-memory key-value data store solution Di Sanzo et al. (2014) which enables

two ways to access the cluster: i) the first way uses an API available in a Java library; ii)

the second way uses several protocols, such as HotRod, REST, Memcached and WebSock-

ets Hickson (2011), making Infinispan a language independent solution. Besides storage

services, the middleware can execute tasks remotely and asynchronously, but developers

must implement Runnable or Callable interfaces. Furthermore, it is necessary to register

these tasks in the Java virtual machine (JVM) classpath of each cluster node, as Infin-

ispan does not have the dynamic loading class feature, which can delay the deployment

process.

Java Parallel Processing Framework JPPF is an open source grid computing frame-

3 Related work 9

Table 3.1: JCL and its counterparts’ features - part 1

Tool
Feature Fault

Tolerant
Refactoring
required

Simple
Deploy Collaborative Portable

Code
JCL No No Yes Yes Yes

Infinispan
(Marchioni and Surtani, 2012) Yes Low No Yes Yes

JPPF
(Cohen, 2015) Yes No Yes No No

Hazelcast
(Veentjer, 2013) Yes Low No Yes No

Oracle Coherence
(Seovic et al., 2010) Yes Medium Yes Yes NF 1

RAFDA
(Walker et al., 2003) No No Yes Yes No

PJ
(Kaminsky, 2007) No Yes Yes No Yes

FlexRMI
(Taveira et al., 2003) No Medium No No No

RMI
(Pitt and McNiff, 2001) No Medium No No No

Gridgain
(GridGain Systems, 2011) Yes Low No Yes No

ICE
(Henning et al., 2013) Yes High No No No

MPJ Express
(Shafi et al., 2009) No Medium No No Yes

Jessica
(Zhu et al., 2002) NF 1 No Yes No Yes

ProActive
(Baduel et al., 2005) Yes NF 1 NF 1 NF 1 No

F-MPJ
(Taboada et al., 2012) No NF 1 No No No

P2P-MPI
(Genaud and Rattanapoka, 2007) Yes High No No No

KaRMI
(Philippsen et al., 1999) No NF 1 No No NF 1

RMIX
(Kurzyniec et al., 2003) No NF 1 No No No

open-mpi
(Gabriel et al., 2004) Yes High No No No

MPJava
(Pugh and Spacco, 2003) No NF 1 No No No

1 - NF: Not found

3 Related work 10

Table 3.2: JCL and its counterparts’ features - part 2

Tool
Feature Task

cost Super-Peer Distributed
Data Structures Scheduler Support

Available
JCL Yes Yes Yes Yes Yes

Infinispan
(Marchioni and Surtani, 2012) NF 1 NF 1 Yes Yes NF 1

JPPF
(Cohen, 2015) No Yes No Yes Yes

Hazelcast
(Veentjer, 2013) NF 1 NF 1 Yes Yes Yes

Oracle Coherence
(Seovic et al., 2010) NF 1 NF 1 Yes Yes NF 1

RAFDA
(Walker et al., 2003) No Yes No No No

PJ
(Kaminsky, 2007) No No No Yes Yes

FlexRMI
(Taveira et al., 2003) No No No No No

RMI
(Pitt and McNiff, 2001) No No No Yes No

Gridgain
(GridGain Systems, 2011) No Yes Yes Yes Yes

ICE
(Henning et al., 2013) No NF 1 No Yes NF 1

MPJ Express
(Shafi et al., 2009) No No No Yes NF 1

Jessica
(Zhu et al., 2002) No No No Yes NF 1

ProActive
(Baduel et al., 2005) NF 1 Yes No Yes Yes

F-MPJ
(Taboada et al., 2012) No No No No No

P2P-MPI
(Genaud and Rattanapoka, 2007) No No No Yes Yes

KaRMI
(Philippsen et al., 1999) No No No No NF 1

RMIX
(Kurzyniec et al., 2003) No No No No No

open-mpi
(Gabriel et al., 2004) No No No Yes No

MPJava
(Pugh and Spacco, 2003) No No No No No

1 - NF: Not found

3 Related work 11

work based on the Java language Xiong et al. (2010), which simplifies the process of

parallelizing applications that demand high processing power, allowing developers to fo-

cus on their core software development Cohen (2015). It implements the dynamic loading

class feature in cluster nodes, but it does not support collaborative development, i.e.,

methods and variables cannot be shared among different JPPF applications. JPPF has

four predefined scheduler algorithms and they can be customized. Other features, such as

fault tolerance and the possibility of interconnecting distinct networks, make JPPF one

of the most complete solutions found in the literature.

Hazelcast Veentjer (2013) is a well-established middleware in the industry. It offers

the concept of functions, locks and semaphores. “Hazelcast provides a distributed lock

implementation and makes it possible to create a critical section within a cluster of JVM;

so only a single thread from one of the JVMs in the cluster is allowed to acquire that

lock.” Veentjer (2013). Besides an API for asynchronous remote method invocations,

Hazelcast has a simple API to store objects in a computer grid. Hazelcast does not

separate business logic from distribution issues, so flexibility and dynamism are reduced.

Hazelcast cannot instantiate a global variable remotely, i.e., it always maintains double

copies of each variable at each instantiation, one local in the machine where the main

code is executed and a second remote copy in a cluster node.

Hazelcast has the advantage of a manual scheduling alternative for global variables

and executions, so the developer can opt to select the cluster machine to store or run an

algorithm. It does not implement automatic deployment, so it is necessary to manually

deploy each developer class, i.e., the JVM classpath must be manually changed before

starting each middleware node, so deployment can become a time consuming activity.

List, set and queue data structures are fault tolerant, but not distributed, since only map

is a distributed and fault tolerant data structure in Hazelcast.

Oracle Coherence is an in-memory data grid commercial middleware that offers database

caching, HTTP session management, grid agent invocation and distributed queries Seovic

et al. (2010). Coherence provides an API for all services, including cache services and

others. It enables an agent deployment mechanism, so there is the dynamic loading class

feature in cluster nodes, but such agents must implement the EntryProcessor interface,

thus refactorings are necessary. Boards with Linux support, like Raspberry Pi, Galileo,

Cubieboard and others can be adopted for general purpose computing, but Oracle HPC

products normally are not designed for small platforms.

ProActive Baduel et al. (2005) “ is Remote Method Invocation (RMI) based middle-

3 Related work 12

ware for parallel, multithreaded and distributed computing focused on Grid applications”

Taboada et al. (2009). It offers an API for clusters or grids Amedro et al. (2009). In gen-

eral, the use of RMI as its default transport layer adds significant overhead to Proactive

operation. Proactive is fault tolerant and implements mobility and security transparen-

cies.

RAFDA Walker et al. (2003) is a reflective middleware. “It permits arbitrary objects

in an application to be dynamically exposed for remote access, allowing applications to

be written without concern for distribution” Walker et al. (2003). RAFDA objects are ex-

posed as Web services to provide distributed access to ordinary Java classes. Applications

call RAFDA functionalities using infrastructure objects named RAFDA runtime (RRT).

Each RRT provides two interfaces to application programmers: one for local RRT access

and the other for remote RRT access. As we can see, RAFDA introduces dependencies

and, consequently, refactorings. RRT has peer-to-peer communication, so it is possible

to execute a task in a specific cluster node, but if the developer needs to submit several

tasks to more than one remote RRT, a scheduler must be implemented from the scratch.

RAFDA has no portable multi-core and multi-computer versions.

The solution Parallel Java (PJ) Kaminsky (2007) has implemented several high-level

programming abstractions, such as ParallelRegion (code to be executed in parallel), Par-

allelTeam (group of threads that execute a ParallelRegion) and ParallelForLoop (work

parallelization among threads), allowing an easy thread-based shared memory program-

ming model. Moreover, PJ is designed for hybrid shared/distributed memory systems

such as multi-core clusters. It implements a message passing programming model for dis-

tributed computing, so the transparency of multi-core shared memory access is eliminated

due to communication particularities. The middleware implements the concept of tuple

space Murphy et al. (2006), but not in a distributed way. It has an API for Graphical

Processing Unit (GPU) devices, offering Cuda Nvidia Corporation (2008) transparent

services.

In the beginning of the 2000s, a middleware, named FlexRMI, was proposed by Taveira

et al. (2003) to enable asynchronous remote method invocation using the standard Java

RMI API. “FlexRMI is a hybrid model that allows both asynchronous or synchronous

remote method invocations. There are no restrictions in the ways a method is invoked in a

program. The same method can be called asynchronously at one point and synchronously

at another point in the same application. It is the programmer’s responsibility to decide

on how the method call is to be made.” Taveira et al. (2003)

3 Related work 13

FlexRMI changes Java RMI stub and skeleton compilers to achieve high transparency.

As with standard RMI, FlexRMI does not have a multi-core version to achieve portability,

for instance. Furthermore, it requires at least “java.rmi.Remote′′ and “java.rmi.server.

UnicastRemoteObject′′ extensions to produce a RMI application. Since it does not im-

plement the dynamic loading class feature, all classes and interfaces must be stored in

nodes before a RMI (and also FlexRMI) application starts, making deployment a time-

consuming effort. No scheduler strategy is implemented.

Jessica Zhu et al. (2002) improves JVM to support distributed shared space for Java

ordinary objects and threads, so Jessica enables thread migration. Java developers that

are familiar with Java thread programming can easily develop applications with Jessica.

Legacy Java thread applications can use Jessica transparently. JCL and the remaining

related works are built on top of a JVM standard for a single machine, so we mention

Jessica due to its high level of transparency, i.e., it requires no new instructions to develop

an asynchronous distributed thread based application. Jessica supports distributed shared

objects, but it does not implement distributed data structures in the same way JCL and

many of its counterparts do.

In Taboada et al. (2013), the authors present a survey on Java for HPC. The sur-

vey is a catalog of Middleware systems and libraries classified as shared memory, socket,

RMI, and message-passing solutions. The Middleware systems were tested in two shared

memory environments and two InfiniBand multi-core clusters using NAS Parallel Bench-

marks (NPB) Bailey et al. (1991). The results showed that the Java language reached

performance similar to natively compiled languages for both sequential applications and

parallel applications, demystifying the concept that Java does not work for HPC.

Programming GPU clusters with a distributed shared memory abstraction offered by

a middleware layer is a promising solution for some specific problems, i.e., SIMD ones.

In Karantasis and Polychronopoulos (2011), an extension of Pleiad middleware Karantasis

and Polychronopoulos (2009) is implemented, enabling Java developers to work with a

local GPU abstraction over several machines with one/four GPU devices each.

Chapter 4

JCL Architecture

This section details the architecture of the proposed middleware and how it implements

most of the features present in Table 1.1. The implementation adopts the reflective ca-

pability of Java programming language, so it incorporates an elegant way for middleware

systems to introduce low coupling between distribution and business logic, as well as to

simplify the deployment process and to introduce cloud-based multi-developer environ-

ments. Thus, reflection is the basis for many JCL features.

JCL has two versions: multi-computer and multi-core. Figure 4.1 illustrates how JCL

multi-core and multi-computer architectures are designed. The multi-computer version,

named "Pacu", stores objects and executes tasks over a cluster or multiple clusters, where

all communications are done over IP version 4 (TCP and UDP communications, precisely).

This version adopts a hybrid distributed architecture, i.e., it adopts a client-server behav-

ior to provide location and registration services, but it also adopts a peer-to-peer (P2P)

architecture style to provide processing and storage.

On the other hand, the multi-core version, named "Lambari", also present in the

multi-computer version, turns the User component into a local Host component without

the overhead of TCP/UDP communications. All objects and tasks are, respectively, stored

and executed locally on the developer machine. All JCL applications are portable for both

versions.

The architecture of JCL "Pacu" is composed of four main components (User, Server,

Super-peer, and Host) and "Lambari" by only two (User and Host). The User component

is designed to expose the middleware services in a unique API, as well as to provide

scheduling and automatic version selection based on developer configurations. The Server

component is responsible for managing the JCL clusters. The Host component is where

4.1 Deployment 15

the objects are stored and the registered methods are invoked. JCL key-value pairs of

a map are also stored in the Host component. The second phase of the JCL scheduling

solution is solved in the Host component. Finally, the Super-peer component is responsible

for the routing process and to partition a cluster according to logical entities of a specific

domain. As an example, we can consider a smart house cluster that can be partitioned

into several other clusters, one for the rooms, one for the swimming pool and many more,

so all the machines of the house can be reorganized. The room cluster can have invalid

IPs, so the Super-peer can also work as a bridge.

JCL User

sequential code
or

multithread code
or

other JCL code

End-user application

User

Host

Standard JVM

sequential code
or

multithread code
or

other JCL code

End-user application

Standard JVM Standard JVM

Host

JCL multi-computer architectureJCL multi-core architecture

Server

Standard JVM

Super-peer

Figure 4.1: JCL architectures

In the following sub-sections, we present how JCL addresses most of the features

illustrated in Table 1.1, precisely: deployment, refactoring, scheduling, distributed data

structure, collaboration, portability, the super-peer concept and how to trace a task cost.

4.1 Deployment

The deployment process is a time consuming activity in most of the middleware systems.

In some cases, its necessarily to reboot the system to make the deployment of a new ap-

plication. To reduce the time consuming of this process, JCL adopts a simple deployment

process base on Java reflective capacity.

The JCL simple deployment process is illustrated in Figures 4.2, 4.3 and 4.4. There

is just one Server per JCL installation and it must be deployed first, since it registers and

manages the remaining components (Figure 4.2-A). The Host components deployment

4.2 Refactoring 16

must occur after the Server in order to guarantee correct registrations, i.e., registrations

in the same Server network. JCL supports one or many Hosts per cluster (Figure 4.2-B).

 Step 1

Switch

JCL Server

Switch

JCL Server

JCL Host JCL Host

..............

Switch

JCL Server

JCL Host JCL Host

..............

 Step 5....................

JCL User
Existing Code

JCL User
Existing Code

(A) (B)

(D)

Switch

JCL Server

JCL Host

JCL Host

..............

(C)

Router Router

JCL Host JCL Host

..............

JCL Super Peer

JCL Host JCL Host

..............

 Step 1

 Step 2

JCL Super Peer

 Step 1

St

ep
 2

 Step 3

..............

 Step 4

 Step 1

 Step 2

Figure 4.2: JCL multi-computer deployment view

Steps 3 and 4 of Figure 4.3 are optional, i.e., they are only adopted when we need to

interconnect different data networks or when we want to create logical entities according to

specific needs, such as a group of Hosts to attempt machine learning services or to collect

sensing data from a garden of a smart house. The Super-peer component deployment

occurs in a network gateway (Figure 4.3) or in the same network to create logical groups

of Hosts.

In Figure 4.4, several User components are deployed on different machine types, pre-

cisely desktop and laptop ones. We assume each machine with a different developer

application.

Following this procedure, the developer can deploy an application without reboot all

JCL cluster. If is necessary to update a previously registered module, JCL only requires a

new registration to perform all new deploys in the cluster, so even in live update scenarios

the middleware does not stop its execution. To avoid register modules in the entire cluster

all the time, there is a selective registration approach where only Hosts that will execute

the developer application register it before the first execution.

4.2 Refactoring

One goal of JCL is to separate business logic from distribution issues. Normally, existing

middleware solutions force their developers to implement several interfaces to guarantee

distributed storage or asynchronous distributed executions. In JCL, there is no interface

4.2 Refactoring 17

 Step 1

Switch

JCL Server

Switch

JCL Server

JCL Host JCL Host

..............

Switch

JCL Server

JCL Host JCL Host

..............

 Step 5....................

JCL User
Existing Code

JCL User
Existing Code

(A) (B)

(D)

Switch

JCL Server

JCL Host

JCL Host

..............

(C)

Router Router

JCL Host JCL Host

..............

JCL Super Peer

JCL Host JCL Host

..............

 Step 1

 Step 2

JCL Super Peer

 Step 1

St

ep
 2

 Step 3

..............

 Step 4

 Step 1

 Step 2

Figure 4.3: JCL multi-computer deployment view

 Step 1

Switch

JCL Server

Switch

JCL Server

JCL Host JCL Host

..............

Switch

JCL Server

JCL Host JCL Host

..............

 Step 5....................

JCL User
Existing Code

JCL User
Existing Code

(A) (B)

(D)

Switch

JCL Server

JCL Host

JCL Host

..............

(C)

Router Router

JCL Host JCL Host

..............

JCL Super Peer

JCL Host JCL Host

..............

 Step 1

 Step 2

JCL Super Peer

 Step 1

St

ep
 2

 Step 3

..............

 Step 4

 Step 1

 Step 2

Figure 4.4: JCL multi-computer deployment view

to be implemented, since we adopt the reflective capability of Java language to avoid

refactorings of existing and well tested methods, variables or algorithms.

To explain this feature, we use a well know application, the “Hello World”. Figure

4.5 illustrates a class with a sequential method named “print”. It represents the business

logic of a developer. In our example, the method just print the sentence “Hello World!”,

but the idea works for any other developer demand.

4.2 Refactoring 18

1 public class HelloWorld {
2
3 public void pr in t () {
4 // Pr in t s " He l lo World ! " in the conso l e .
5 System . out . p r i n t l n (" He l lo World ! ") ;
6 }
7 }

Figure 4.5: Business logic - Hello World.

Figure 4.6 illustrates how JCL introduces distribution to an existing sequential code.

At line four, the developer gets an instance of the JCL and at line five the class HelloWorld

is registered, so it becomes visible to the entire JCL cluster. At line six, the developer

requests a single execution of the method “print” of the registered class. JCL “execute”

method requires the class nickname “Hello”, the method to be executed “print” and the

arguments of such a method or null if no arguments are required.

1 public class JCLHelloWorld {
2
3 public stat ic void main (String [] a rgs) {
4 JCL_facade j c l = JCL_FacadeImpl . g e t In s tance () ;
5 j c l . r e g i s t e r (HelloWorld . class , " He l l o ") ;
6 String t i c k e t = j c l . execute (" He l lo " , " p r i n t " , null) ;
7 // do any other task , i n c l ud ing new JCL c a l l s
8 j c l . ge tResu l tB lock ing (t i c k e t) ;
9 }

10 }

Figure 4.6: Distribution logic - Hello World.

In JCL, there are several ways to execute a task, including multiple executions of the

same task on each Host or on each Host core, with or without the same task arguments.

Furthermore, JCL enables the execution of complex applications with several dependen-

cies. For that, it adopts Jar files as wrappers. In summary, the same principles explained

for the “HelloWorld” example are maintained, so for better understanding we present the

example as simple as possible. Finally, at line eight, the developer gets the result with a

blocking call, i.e. the “JCLHelloWorld” class waits until the result is ready and returned

to the machine where the “jcl.execute” was called.

The concept of ticket is adopted to implement the asynchronous mechanism in JCL.

The same idea is adopted to store an existing and well tested object in JCL cluster, i.e.

a registration is required and a JCL call is proceeded to instantiate an object remotely

4.3 Scheduler 19

or just to store a previously instantiated object in the cluster. Complex objects must

be wrapped in Jar files, as explained before, and objects requiring arguments on their

constructors are also possible.

4.3 Scheduler

JCL adopts different strategies to schedule task and global variable calls in the multi-

computer version. The same assumptions to store ordinary global variable in JCL are

used to store key-value pairs of distributed maps.

To schedule tasks, the User component allocates Hosts to handle them according to

the number of cores available in the cluster. For instance, lets assume forty JCL calls in

a cluster with ten quadcore machines. In this scenario, ORB Pacu (Figure 4.7) submits

chunks of tasks to the first machine, where each chunk size must be multiple of four, since

it is a quadcore processor. Internally, an ORB Lambari (Figure 4.7) allocates a pool of

threads, also with size multiple of four, to consume such processing calls.

After the first chunk, ORB Pacu sends the second, the third and so on. After ten sub-

missions, ORB Pacu starts submitting to the first machine again if needed. The circular

list behavior continues as long as there are processing calls to be executed. Heterogeneous

clusters are possible, since JCL automatically allocates a number of chunks proportional

to the number of cores of each machine.

End-User Application

JCL CodeMultithread CodeSequential Code

St
an

d
ar

d
 J

V
M

U
se

r
C

o
m

p
o

n
e

n
t

ORB Pacu

ORB Lambari La
m

b
ar

i

Facade

Java Map API Facade

Figure 4.7: User component

To deal with applications where the number of processing calls is not proportional to

the chunk size, JCL implements a watchdog. A watchdog is a thread that is started every

100 milliseconds and at each run it flushes the chunk, regardless the number of processing

calls on it. The thread submits each task call to a specific Host, avoiding the idea to

4.3 Scheduler 20

submit chunks, since the watchdog timeout indicates that the application does not have

many tasks to be executed by JCL.

There is a second scheduling phase, where the ORB of the Host components (Figure

4.8) collaborate to each other to turn JCL cluster workload more balanced. Each Host

Worker thread, after executing its last task, tries to obtain and execute a new task from

other threads in the JCL cluster. Just one task is obtained per time to avoid new redistri-

butions in the JCL cluster. This collaborative behavior makes the cluster more balanced

in terms of workload per Host thread, since it mitigates problems caused by the circular

list scheduler, implemented in User.

H
o

st
 C

o
m

p
o

n
en

t

St
an

d
ar

d
 J

V
M

La
m

b
ar

i
ORB Host

Super Peer
Connector

Worker

Facade

ORB Lambari

Server
Connector

Figure 4.8: Host Component

A scenario where one Host receives the most CPU-bound tasks is possible to be

achieved with a circular list scheduling technique, but the second phase redistributes

these tasks with all other Host threads. A Host thread that handles a task from other

Host must notify the User component to update its control data, since it contains each

task metadata and the Host executing it. The Server component is not notified after the

Host scheduler decisions to avoid architectural bottlenecks.

This technique for load balancing is classified in Patel et. al. (2016) as a Neighbor

Based approach. It is a dynamic load balancing technique where the nodes transfer tasks

among their neighbors, so after a number of iterations the whole system is balanced with-

out introducing a global coordinator. The survey Patel et al. (2016) lists three algorithms

that adopt such a strategy.

The first scheduling technique is PD_MinRC Balasangameshwara and Raju (2013),

4.3 Scheduler 21

a fusion of a neighbor based solution with MinRC, a fault tolerance scheme. The second

is the AlgHybrid_LB Balasangameshwara and Raju (2012) technique, which is a hybrid

load balancing algorithm that, initially, collects different control data from the cluster,

i.e. the historical runtimes of tasks, the amount of free working memory in a node, the

CPU utilization and many others. The third algorithm, named OP Balasangameshwara

and Raju (2010), proposes that the interaction among nodes are fulfilled in pairs, which

means that two nodes, the overload and the underload ones, try to transfer tasks to each

other.

In JCL, we opt to reduce task retention in the first scheduling stage, so a circular list

is faster than a sophisticated storage/processing collecting mechanism. Our assumption

is that the second phase with a collaborative behavior mitigates efficiently any initial allo-

cation drawback, so task retention becomes the hardest challenge for the first scheduling

phase of a Neighbor Based approach.

To schedule global variable, the ORB at User component calculates a function F to

determine in which Host the global variable will be stored. The equation 4.1 is responsible

for a fair distribution, where hash(vn) is the global variable name hashcode, nh is the

number of JCL Hosts and F is the remainder of the division that correspond to the node

position. JCL adopts the default Java hash code for string and primitive types, but user

typed object requires a hashcode implementation.

Experiments with incremental global variable names like “p_ij” or “p_i”, where i

and j are incremented for each variable and p is any prefix, showed that F achieves an

almost uniform distribution for global variable storage over a cluster in several scenarios

with different variable name combinations, however there is no guarantee of a uniform

distribution for all scenarios. For this reason, the User component introduces a delta (d)

property that normally ranges from 0 − 10% of nh. Delta property relaxes function F

result, enabling two or more Hosts as alternatives to store a global variable.

F = Remainder(
|hash(vn)|

nh
) (4.1)

A drawback introduced by d is that JCL must check (2 ∗ d) + 1 machines to search

for a global variable, i.e., if d is equal to 2, JCL must check five machines (two machines

before and two after the machine identified by function F in the logical ring).

The same F with d is adopted by the ORB of the User component to define where

4.4 Distributed Hash Map 22

each key-value pair of a distributed map is placed and also each map metadata. F is

applied to each key and each map name, respectively, so maps become distributed with

small overhead, since F calculus is fast.

The F function introduce a problem to the scheduler when a new Host was added to

the cluster. In this scenario, the location of the global variable previously stored changes.

To avoid storage replacements when a Host enters or exits the cluster, which can become

a time consuming task, the Server and the User components maintain all previous cluster

sizes after the first object instantiation in JCL (a global variable or a map instantiation,

precisely), so F can be applied to each cluster configuration when data must be retrieved

from the JCL cluster. All communications to obtain a certain global variable or a key-

value pair are performed in parallel to reduce overhead.

4.4 Distributed Hash Map

JCL has a distributed implementation of the Java Map interface, allowing the developer

to use a data structure that is familiar to the Java community. Its adoption requires

minimal refactorings of existing Java code that considers the Java Map interface. In

general, the developer just replaces a Map sub-type object (Ex. Tree Map, Hash Map,

etc.) with a JCL Hash Map, so the storage, which before was done locally, is now done

in a distributive manner over a cluster of multi-processor machines.

Internally, when the developer stores or requests a key-value pair of map objects, using

for this the put(key, value) and get(key) methods, respectively, the hash of the object key

is calculated and the location of the object is discovered using function F , described in

section 4.3, which indicates the Host where the value is stored (Figure 4.9).

Each variable of the JCL Hash Map type has a single identifier provided by the

developer at its creation. With such an identifier, any JCL application can have access to

the map previously created in the cluster. Multiple JCL maps can have identical keys in

the JCL cluster, however, different maps should have distinct identifiers to avoid overlaps

in the cluster. In order to enable the efficient implementation of some methods of the Map

interface, such as, clear(), containsKey(Objectkey) and containsV alue(Objectvalue), a

list of all keys is stored in a Host.

To traverse the map items, the JCL Hash Map provides a new iterator implementation

which, in order to optimize data transfer, initially identifies and gathers in bins all the keys

of a map belonging to a single Host. Then, the first bin is sent to the User component,

4.5 Collaboration 23

End-User
Application

User
Component

Host
Component

put(key, value)
get(key)

the previous
value

associated with
key, or null

Stores

Scheduler

Figure 4.9: JCL HashMap

and after reading 40% of the key-value pairs already obtained by the User, the next bin

is submitted until there are no more bins. The 40% value was obtained empirically after

numerous tests with various types of objects for the key-value pairs. The anticipated load

of bins is of fundamental importance to guarantee that massive maps can be traversed

without stopping due to the communication between the User and the Host components.

Distributed mutual exclusion is also implemented at the level of individual keys, i.e.,

the developer calls the getLock(key) method, which guarantees safe and exclusive access to

the value that represents the key. While the value is being manipulated by an application

thread, another thread cannot write in this object. To unlock and release the access

to other JCL cluster threads, it’s necessary to call the putUnlock(key, value) method.

The put(key, value) method of the Java Map Class is always thread-safe in the JCL

implementation, yet the get(key) method just returns a value without blocking it.

4.5 Collaboration

JCL applications can share methods and global variables without explicit references, so

a developer in a machine can access an object instantiated by another application using

only its nickname. Using this features, developers around the world can share their

algorithms and data structures with others and also share the computational power of

multiple clusters.

4.6 Portability 24

The same collaborative development occurs with JCL maps. In summary, the devel-

oper just registers their Java classes to make it public to the remaining developers. In case

of a hash map variable, the developer just calls JCL to create a map with a specific name,

making it public and accessible to other applications over the cluster or the multi-cluster

environment. For example, the developer one start a JCLMap named “Test” at line one

of Figure 4.10 and put two key-value pairs, line two and three. The developer two can

recover the Map named “Test” at line one and print the values of key “1” and “2” at line

two and three of Figure 4.11.

1 Map<Integer , Integer> JCLMap = JCL_FacadeImpl . GetHashMap("Test ") ;
2 JCLMap. put (0 , 1) ;
3 JCLMap. put (1 , 10) ;

Figure 4.10: Developer one.

1 Map<Integer , Integer> JCLMap = JCL_FacadeImpl . GetHashMap("Test ") ;
2 System . out . p r i n t l n (JCLMap. get (0)) ;
3 System . out . p r i n t l n (JCLMap. get (1)) ;

Figure 4.11: Developer two.

If we consider a cloud environment with a JCL deployment (Server, multiple Hosts and

Super-peers), multiple User components, deployed on different platforms of each developer

machine, can code their JCL applications using a private/public cloud with the following

services: register, storage, processing and task cost monitoring.

4.6 Portability

JCL was built with Java language, so it is portable to any Java Virtual Machine (JVM)

that attempts Oracle specifications, thus JCL runs over massive multi-core machines, but

also over small platforms, like Raspberry Pi, Galileo, Cubieborad and many other Linux

boards with Java support. A big sorting distributed application, detailed in chapter 5,

runs over a Raspberry pi cluster, demonstrating that JCL is small and light enough for

new IoT demands.

JCL introduces its portability, so any JCL application can adopt “Pacu” or “Lambari”

versions without changes. Different ways to instantiate a JCL Map, as well as different

ways to execute a JCL task and different ways to instantiate/store an object are full

compatible with both versions.

4.7 Super-peer 25

To achieve such a requirement, a single access point to both JCL versions (multi-

computer and multi-core) is mandatory and the User component is responsible for that.

It represents a unified API where asynchronous remote task invocations, their costs and

global variables storage take place, as well as distributed Java maps.

The developer selects which JCL version to start via a property file or via API by

calling static methods to get “Pacu” or “Lambari” versions. In the multi-core version,

User component avoids network protocols, performing shared memory communications

with Host. In the multi-computer version, IP version 4 protocols are adopted (TCP and

UDP, respectively), thus marshalling/unmarshalling, location, naming and several other

components are introduced. These components are fundamental to distributed systems

and are explained in details in Coulouris et al. (2013).

4.7 Super-peer

In order to make the interface among networks and to add the capacity to partition the

cluster into logical entities, JCL introduces the concept of Super-peer. This component

was designed with two internal components. The first one behaves as a JCL Server

component (referred to as Super-peer server) for a given network, and the second behaves

as a JCL Host component (referred to as Super-peer host) for the network where the JCL

Server or another Super-peer is installed.

The Super-peer server component receives requests from Hosts or from other Super-

peers. As a server of a particular JCL cluster, it stores all the information that is under its

domain. When the Super-peer host receives a storage request, it redirects to the Super-

peer server component, which calculates function F , taking into consideration only the

machines under its control. It is possible to locate an object in a multi-cluster environment

with two calculations of F , the first being made in the User to know which Host to be

selected and if such Host is a Super-peer, a second calculation of F is made to find where

the object is really stored. The same idea is adopted by JCL to store key-value pairs of

a map over multiple clusters.

When the Super-peer host receives a request to execute a task, it selects a Host from

its domain to perform such a demand. Thus, the Super-peer adopts the same two-phase

scheduling mechanism to find a Host. The second phase of the JCL task scheduling

technique does not migrate tasks between networks administrated by different Super-

peers, therefore the collaboration occurs only among Hosts of the same sub-network.

4.7 Super-peer 26

JCL Server

JCL SUPER PEER JCL HOST JCL HOST

JCL HOST JCL HOST JCL SUPER PEER

JCL HOST JCL HOST

NETWORK 1

NETWORK 2

NETWORK 3

Figure 4.12: Super-peer topology

By adding Super-peers, the topology of the JCL cluster becomes hierarchical, i.e., it

forms a tree data structure. The highest level, referred to as root node, represents a JCL

Server component, having only one instance in the cluster. Below the root node we can

add leaf nodes, i.e., JCL Host components, but also intermediary nodes, represented by

JCL Super-peer components. The intermediary nodes branch out into new networks, so

below these we can add leaf nodes, i.e, new JCL Host components (Figure 4.12).

One of the great challenges of the Super-peer is to provide the interconnection of

different networks transparently, i.e., without any additional configuration. In order to

overcome such a challenge, the Super-peer establishes a set, defined by the developer,

of connections with the JCL Server or other JCL Super-peers. Such connections form

tunnels of data between networks, and all messages that require be transmitted between

different networks mandatorily need to adopt the tunnels.

The internal components of the Super-peer are managed by the ORB Super-peer (Fig-

ure 4.13), being the Super-peer host component responsible for maintaining the tunnels,

4.8 Task cost 27

as well as to bypass messages to the worker threads. The Worker component calls the

Super-peer server to distribute the storage or processing tasks among Hosts maintained

by the Super-peer.

ORB Super Peer

Super peer Server

WorkerSuper peer Host

Su
p

er
 P

ee
r

C
o

m
p

o
n

en
t

St
an

d
ar

d
 J

V
M

-

Figure 4.13: Super-peer component

4.8 Task cost

JCL has the possibility of collecting all the times involved in the execution of a specific

task. To achieve this, the developer needs only the ticket obtained from a submitted task.

After retrieving the result of the task, the developer may, via API, obtain such times with

the getTaskT imes(ticket) method.

JCL returns a list containing six or eight time readings. The six time readings compose

the timeline of a task that has not changed its Host due to the phase two of the scheduler,

where the Hosts cooperate between each other. Each time reading is collected at the

following time:

1st) It is collected immediately before the User component sends the task to the

destination Host.

2nd) It is collected when the task reaches the Host.

3rd) It is collected when the execution of the task starts.

4th) It is collected when the execution of the task finishes.

5th) It is collected when the result leaves the Host.

4.8 Task cost 28

6th) It is collected when the result arrives in the User component.

By the analysis of the timeline of six positions it is possible to calculate different

times, such as network time, queue time, permanence time in the Host, among others.

These times can be calculated as follows:

Total time = timeline(6)− timeline(1) (4.2)

Queue time = timeline(3)− timeline(2) (4.3)

Execution time = timeline(4)− timeline(3) (4.4)

Result retrieval time = timeline(5)− timeline(4) (4.5)

Time that a result remains in the Host = timeline(5)− timeline(2) (4.6)

Network time = ((timeline(6)− timeline(1))− (timeline(5)− timeline(2))) (4.7)

The list that the JCL returns can contain eight times. This addition of two times

to the timeline of the task is due to the collaborative scheduler, where a task can be

transferred once to the Host that will process it. When there is task replacement, the

times are collected as follows:

1st) It is collected immediately before the User component sends the task to the

destination Host.

2nd) It is collected when the task reaches the first Host.

3rd) It is collected when the task leaves the first Host.

4th) It is collected when the task reaches the second Host.

5th) It is collected when the execution of the task starts.

6th) It is collected when the execution of the task finishes.

7th) It is collected when the result leaves the second Host.

8th) It is collected when when the result arrives in the User component.

The analysis of the timeline when there is a second Host is a little different, since the

elapsed time in the first Host is added. In order to produce different times, the equations

are:

4.8 Task cost 29

Total time = timeline(8)− timeline(1) (4.8)

Queue time = (timeline(3)− timeline(2)) + (timeline(5)− timeline(4)) (4.9)

Execution time = timeline(6)− timeline(5) (4.10)

Result retrieval time = timeline(7)− timeline(6) (4.11)

Time that the task remains in the F irst Host = timeline(3)− timeline(2) (4.12)

Time that the task remains in the Second Host = timeline(7)− timeline(4) (4.13)

Network time = ((timeline(6)− timeline(1))− (timeline(5)− timeline(2))) (4.14)

The overhead introduced by the task cost concept is about 320 microseconds, therefore

it is worth using such a feature. These different and complementary times are fundamen-

tal to build reports of supervisory systems, adopted to delineate capacity planning of

decentralized systems. A high standard deviation of the cluster queue time can indicate

that the CPU clusters are not enough and new Hosts need be connected, for example.

The inverse can guarantee energy saving.

These six or eight times can be adopted to evaluate which Host to submit a task,

therefore new techniques for load balancing can be constructed. It is possible to build

adjacent systems that monitor core systems, providing CPU and RAM on demand, as

elasticity can be a requirement. It is important to reinforce that none of the middleware

systems found in the literature implement this feature.

Chapter 5

Sorting Use Case

This chapter aims to evaluate JCL in terms of the implementation of fundamental com-

puter science algorithms, such as sorting. The JCL BIG sorting application represents a

solution with intensive communication, processing and I/O.

It is a sorting solution where data are partitioned to be sorted in every core of the JCL

cluster, i.e., there is no centralized sorting mechanism. Data are generated and stored

in a binary file by each Host thread, performing parallel I/O on each Host component.

Data are integers between −109 and +109. The final sorting contains one million different

numbers and their frequencies distributed over a cluster, but the original input data were

generated from two billion possibilities.

The application is a simple and elegant sorting solution based on item frequencies.

The frequency of each number of each input data partition is obtained locally by each

Host thread and a chunk strategy builds a local data partition for the entire JCL cluster,

i.e. each thread knows how many JCL threads are alive, so all number frequencies (nf)

divided by the number of cluster threads (nct) create a constant C, so C = nf/nct. Each

different number in an input data partition is retrieved and its frequency is aggregated

in a global frequency (GF). When GF reaches C value, a new chunk is created, so C

is fundamental to produce chunks with similar number frequencies without storing the

same number multiple times. When JCL avoids equal number values it also reduces

communication costs, since numbers stored in one Host thread must be sent to other

threads in the cluster to perform a fair distributed sorting solution.

The sorting is composed of three phases, besides the data generation and a validation

phase to guarantee that all numbers from all input data partitions are retrieved and

checked against JCL sorting distributed structure. The sorting has approximately 350

5 Sorting Use Case 31

lines of code, three classes and only the main class must be a JCL class, i.e., inherit JCL

behavior.

The pseudo-aleatory number generation phase illustrates how JCL executes existing

sequential Java classes on each Host thread with few instructions (Figure 5.1). Lines 24,

26 and 28 of the main class illustrate how to instantiate JCL, obtain the JCL cluster

number of cores and register a class named “Random_Number” in JCL, respectively. Lines

31-35 represent all arguments of all “Create1GB” method calls, so in our example we

have “numJCLClusterCores” method arguments and each of them is a string labeled

“output_suffix”, where the suffix varies from 0 to “numJCLClusterCores” variable

values.

24 JCL_facade j c l = JCL_FacadeImpl . g e t In s tance () ;
25
26 int numJCLclusterCores = j c l . ge tC lus te rCore s () ;
27 // r e g i s t e r i n g
28 j c l . r e g i s t e r (Random_Number . class , "Random_Number") ;
29
30 // bu i l d s the input data , p a r t i t i o n ed over JCL c l u s t e r
31 Object [] [] a rgs = new Object [numJCLclusterCores] [] ;
32 for (int i =0; i<numJCLclusterCores ; i++) {
33 Object [] oneArg = {sementes , " output"+i } ;
34 args [i]= oneArg ;
35 }
36 List<String> t i c k e t s = j c l . executeAl lCores ("Random_Number" , ←↩

"Create1GB" , args) ;
37 j c l . g e tA l lResu l tB lock ing (t i c k e t s) ;
38 for (String aTicket : t i c k e t s) j c l . removeResult (aTicket) ;
39 t i c k e t s . c l e a r () ;
40 t i c k e t s=null ;
41 System . e r r . p r i n t l n ("Time to c r e a t e input (s ec) : " + ←↩

(System . nanoTime ()−time) /1000000000) ;

Figure 5.1: Main class - how to generate pseudo-random numbers in JCL cluster.

Line 36 represents a list of tickets, adopted to store all JCL identifiers for all method

calls, since JCL is by default asynchronous. The JCL method “executeAllCores” exe-

cutes the same method “Create1GB” in all Host threads with unique arguments on each

method call. Line 37 is a synchronization barrier, where BIG sorting main class waits until

some tasks, identified by “tickets” variable, have finished. From lines 38-40 objects are

destroyed locally and remotely (line 38), and finally, in line 41, there is the time elapsed

to generate pseudo-random numbers over a cluster of multi-core machines and in parallel.

The “Random_Number” class is a sequential Java class and method “Create1GB” adopts

5 Sorting Use Case 32

Java Random math class to generate 1GB numbers on each input data partition binary

file.

Phases one, two and three are similar to Figure 5.1, i.e., they are inside the main

class and they behave basically by splitting method calls over the cluster threads and

then waiting for all computations to finish. Precisely, at phase one JCL reads the input

and produces the set of chunks, as well as each chunk frequency or the frequencies of its

numbers. C is calculated locally in phase one, i.e., for a single input data partition, so

in C equation nf represents how many numbers an input data partition contains and

nct represents the number of JCL Host threads. Phase one finishes its execution after

storing all number frequencies locally in a JCL Host to avoid a second file scan. It is

possible to note that phase one does not split the numbers across the local chunks, since

the algorithm must ensure a global chunk decision for that.

After phase one, the main class constructs a global sorting schema with fair workload.

Figure 5.2 illustrates how the main class produces chunks with similar number frequencies.

Each result of phase one contains a schema to partition the cluster workload, so a global

schema decision must consider all numbers inside all chunks of phase one.

169 long load =0; int b ; String r e s u l t = "" ;
170 for (Integer ac : s o r t ed) {
171 load+=map . get (ac) ;
172 i f (load >(tota lF /(numOfJCLThreads))) {
173 b=ac ;
174 r e s u l t+=b+ " : " ;
175 load =0;
176 }
177 }

Figure 5.2: Main class - how to mount the global chunk schema to partition the cluster
workload.

The main class calculates the total frequency of the entire cluster, since each thread

in phase one also returns the chunk frequency. Variable “totalF” represents such a value.

Lines 169 to 177 represent how JCL sorting produces similar chunks with a constant C as

a threshold. The global schema is submitted to JCL Host threads and phase two starts.

Phase two starts JCL Host threads and each thread can obtain the map of numbers

and their frequencies, generated and stored in phase one. The algorithm merely scans all

numbers and inserts them into specific chunks according to the global schema received

previously. Phase two ends after inserting all numbers and their frequencies into the JCL

5 Sorting Use Case 33

cluster to enable any JCL Host thread to access them transparently.

Figure 5.3 illustrates the JCL global variable concept, where Java object lifecycles

are transparently managed by JCL over a cluster. The sorting class obtains a global

JCL map labelled “h” (Figure 5.3). Each JCL map ranges from 0 to the number of JCL

threads in the cluster (line 97), so each thread manages a map with its numbers and

frequencies, where each map entry is a chunk of another JCL Host thread, i.e., each JCL

Host thread has several chunks created from the remaining threads. Line 99 of Figure

5.3 represents a single entry in a global map “h”, where “id” represents the current JCL

Host thread identification and the “final” variable represents the numbers/frequencies

of such a chunk. Phase three of the sorting application merges all chunks into a unique

chunk per JCL Host thread. This way, JCL guarantees that all numbers are sorted, but

not centralized in a Server or Host component, for instance.

97 for (int r =0; r<numJCLThreads ; r++) {
98 JCLMap<Integer , Map<Integer , Long>> h = new JCLHashMap<Integer , ←↩

Map<Integer ,Long>>(String . valueOf (r)) ;
99 h . put (id , f ina l [r]) ;

Figure 5.3: Sorting class - how to deliver chunks to other Host threads.

Our sorting experiments were conducted with JCL multi-computer version. The first

set of experiments evaluated JCL in a desktop cluster composed of 15 machines, where 5

machines were equipped with Intel I7-3770 3.4GHz processors (4 physical cores and 8 cores

with hyper-threading technology) and 16GB of of DDR RAM 1333Mhz, and the other

10 machines were equipped with Intel I3-2120 3.3GHz processors (2 physical cores and 4

cores with hyper-threading technology) and 8GB of DDR RAM 1333Mhz. The Operating

System was a Ubuntu 14.04.1 LTS 64 bits kernel 3.13.0-39-generic and all experiments

could fit in RAM memory. Each experiment was repeated five times and both higher and

lower runtimes were removed. An average time was calculated from the three remaining

runtime values. JCL distributed BIG Sorting Application version sorted 1 TB in 2015

seconds and the OpenMPI version took 2121 seconds, being JCL 106 seconds faster. Both

distributed BIG sorting applications (JCL and MPI) implement the same algorithm and

are available at JCL website.

The second experiments evaluated JCL in an embedded cluster composed of two

Raspberry Pi devices, each one with an Arm ARM1176JZF-S processor, 512MB of RAM

and 8GB of external memory, and one Raspberry Pi 2 with a quadcore processor operating

at 900MHz, 1GB of RAM and 8GB of external memory. The Operating System was

5 Sorting Use Case 34

Raspbian Wheezy and all experiments could fit in RAM memory. Each experiment was

repeated five times and both higher and lower runtimes were removed. An average time

was calculated from the three remaining runtime values.

The JCL distributed BIG sorting was modified to enable devices with low disk capacity

to also sort a large amounts of data. Basically, the new sorting version does not store

the pseudo-random numbers in external memory. It combines the number generation

phase with the phase where number frequencies are calculated. Differently from other

IoT middleware systems Perera et al. (2014), where small devices, such as Raspberry Pi,

are adopted only for sensing, JCL introduces the possibility to implement general purpose

applications and not only sensing ones. Furthermore, JCL sorting can run on large or

small clusters, as well as massive muti-core machines or over a cloud environment with a

unique portable code. The small Raspberry Pi cluster sorted 60GB of data in 2, 7 hours.

Chapter 6

Experimental Evaluation

The objective of this chapter is to evaluate the middleware in several distinct scenarios. In

the first scenario the middleware is stressed and its throughput is measured when different

JCL API methods are called. We measured in different execution rounds the methods: i)

execute four type of task, void, sort, CPU bound and user typed argument, ii) instantiate

a global variable, iii) instantiate a map, iv) iterate over a distributed map, v) put items

in a map and vi) get a value from a map. JCL multi-computer version was adopted in

the first experimental scenario.

In the second scenario, JCL multi-core speedup is compared with a Java thread imple-

mentation provided by Oracle. In the third scenario, JCL super-peer component overhead

is discussed. In the fourth scenario we tested JCL executing an optimization solver, where

the goal is to find promising input data for specific optimal results. In the fifth scenario,

experiments with a non-deterministic solver for a real-world combinatorial problem were

made to evaluate how JCL schedules non-deterministic tasks.

6.1 Throughput Experiments

This set of experiments were conducted with the Java Cá&Lá (JCL) multi-computer

version. Initially, the JCL middleware was evaluated in a desktop cluster composed of

15 machines, where all machines were equipped with Intel(R) Core(TM) i5-2500 3.3GHz

processors (4 physical cores) and 4GB of DDR3 1333Mhz RAM. The Operating System

was Ubuntu 16.04 LTS 64 bits kernel 4.4 and all experiments fit in RAM memory. Each

experiment was repeated five times. An average time was calculated. The middleware

was evaluated in terms of throughput, i.e., the number of JCL operations processed per

second. The goal of these experiments is to stress JCL, measuring how many executions

6.1 Throughput Experiments 36

it supports per second and also how uniform function F , presented in Equation 4.1, can

be when both incremented global variable names and random names are adopted.

In the first round of experiments, we tested the JCL asynchronous remote method

invocation (Figure 6.1). For each test we fixed the number of remote method invocations

to ten thousand executions. The experiments were composed of four different methods:

the first one is a method without argument (Figure 6.1 A); the second one is a method

with an integer as an argument and the task is the generation and sorting of one million

integers (Figure 6.1 B); the third method takes an array of strings and two integer values

as arguments which are adopted to execute Levenshtein distance algorithm, Fibonacci

series and prime numbers algorithms(Figure 6.1 C); and the fourth one is a void method

with a book as argument, where a book is a user typed object composed of authors,

editors, edition, pages and year attributes. In the book constructor, a list of objects is

created to form the references (Figure 6.1 D). We measured the throughput per second

of each cluster configuration, composed of 5, 10 and 15 machines.

200

250

300

350

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Method VoidA

100

140

180

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Method SortB

50

100

150

200

250

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Method Cpu boundC

150

175

200

225

250

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Method With book as ArgumentD

Figure 6.1: Task execution experiments

The results demonstrate that, for CPU bound tasks, JCL’s throughput rises when

cluster size increases (Figure 6.1 B and C). The first and fourth tests represent non CPU-

bound executions, so it is clear that network overhead is greater than task processing

6.1 Throughput Experiments 37

(Figure 6.1 A and D), indicating that these type of tasks must be submitted to the

cluster in more coarse groups to increase task processing.

In the second round of experiments (Figure 6.2), we fixed the number of instantiated

global variables to ten thousand instantiations. We tested the above-mentioned book class

in four distinct ways. In the first, the instance of an object is created in the User and

sent to the Host synchronously. In the second, the instance is created directly in the Host

synchronously (Figure 6.2 A). In the third, the book object is created in the User and

sent to the Host asynchronously and, finally, in the fourth experiment, the book object is

created in the Host asynchronously (Figure 6.2 B).

70

80

90

100

110

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Create GV on Host

Create GV on User

Create GV Book SyncA

200

240

280

320

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Create GV Asy on Host

Create GV Asy on User

Create GV Book AsyB

100

150

200

250

300

350

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Δ = 0

Δ = 1

Δ = 2

Recover GV BookC

100

150

200

250

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Create GV on Host

Create GV on User

Create GV Crawler SyncD

Figure 6.2: Global variable experiments

If we compare the synchronous forms to instantiate global variables, we can conclude

that the alternative to instantiate in the User has greater throughput than the one in-

stantiated in the Host. This behavior is due to the fact that when sending the variable

to be instantiated in the Host, we must send both the arguments of the class constructor

and the classes (including their dependencies) through the network, which ends up reduc-

ing the throughput. When we compare the asynchronous options, this behavior reverses

itself, being the obtained throughput grater when we instantiate the variable in the Host.

This behavior is warranted because the cost of creating the book object is not under the

6.1 Throughput Experiments 38

responsibility of the User, but rather under the responsibility of the Host, which adopts

a parallel solution.

In Figure 6.2 C, the getV alue(Objectkey) method was used to recover a book variable

previously instantiated in the User and sent to the cluster with different delta values that

was explained in section 4.3. Although additional requests introduced by a delta different

from zero are parallel, an overhead is introduced, so when the delta value duplicates, the

throughput is reduced in 50%.

In Figure 6.2 D, the Crawler object, was substituted for the Book object simulating

scan on 1000 web pages. The created object stores the visited pages, the pages to visit

and the pages where a keyword was found. When we work with variables where the

cost of sending the object via network is greater than the cost of sending the constructor

parameters, the strategy of creating the variables in the Host has a greater throughput

because the copy in the User and its transfer to the Host is avoided (Figure 6.2 D).

In the third round of experiments (Figure 6.3), the same number of instantiated global

variables of the second round was used. We tested smaller objects like an integer value

(Figure 6.3 A), a double value (figure 6.3 B), a string with 10 characters (figure 6.3 C) and

an array of 20270 bytes (figure 6.3 D). As the cluster enlarges, the number of connections

and other issues also become time-consuming, thus a reduction in throughput should be

expected. Another important observation is the synchronous behavior of the JCL shared

memory services, which is another bottleneck when the cluster becomes larger. JCL

asynchronous calls are, on average, three times faster than their synchronous counterpart.

The positive aspect to the cluster become bigger is the fact that the storage capacity

increases, so there is a fundamental reason to grow up.

In the fourth round of experiments, we tested the JCL distributed map implemen-

tation. We inserted 10 thousand books in a map. Put, PutAll (Figure 6.4 A), Get and

iterator methods were evaluated (Figure 6.4 B). The Put and PutAll methods have a

huge throughput difference, as Figure 6.4 A illustrates. We assume that the optimization

introduced by JCL is responsible for such a big difference, i.e., buffering key-value pairs

with identical f +d results is fundamental in reducing network communications. Another

huge throughput difference occurs when a value is retrieved individually versus when it is

obtained via iterator (Figure 6.4 B). The iterator method optimizes key-value retrieval

by requesting chunks of data stored in a Host. The Get method requests one key-value

pair per time, so it is more efficient to adopt the iterator method instead of get method

to traverse a distributed JCL map.

6.1 Throughput Experiments 39

300

350

400

450

500

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)
IntegerA

250

300

350

400

450

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

DoubleB

300

350

400

450

500

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

StringC

200

250

300

350

400

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Array of ByteD

Figure 6.3: Global variable experiments

0

2000

4000

6000

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Map.putAll(Map)

Map.put(key,value)

Map put and PutAllA

2000

4000

6000

5 Hosts 10 Hosts 15 Hosts
Number of Hosts

Th
ro

ug
hp

ut
 (s

)

Map get(key)

Map Iterator

Map Get and Map InteratorB

Figure 6.4: JCLMap experiments

In the fifth round of experiments, we evaluated the uniformity of function F presented

in Equation 4.1 with different deltas value d. The experiment instantiated 40 thousand

variable names. We tested different prefix variable names and also auto-increment suffixes,

i.e., variable names like “p_i” and “p_ij”, where p is a prefix and i and j are auto-

6.1 Throughput Experiments 40

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Δ = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.5: Variable names with autoincrement

increment values. We also tested function F +d distribution for an arbitrary bag of words

of the Christian Bible text to verify how the JCL data partition performs. The results

are illustrated in Figure 6.5 and 6.6, where ∆ is the delta size of the equation F + d used

to scheduler the global variables. Usually, JCL achieves an almost uniform distribution

using delta between zero and two.

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

HostID

F
re
qu
en
cy

0.
00

0.
04

0.
08

0.
12

Δ = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 6.6: Bag of words

6.2 Multi-core speedup experiments 41

The result of the bag of arbitrary words becomes more uniform as delta increases, so

even when the developer decides to adopt arbitrary variable key name in the code, JCL

can achieve an almost fair data partition. We also tested the JCL overhead when the

content of a variable is retrieved using delta equal to zero, one and two. Data partition

uniformity is reduced as delta tends to zero, as can be seen in Figure 6.6. Several project

management decisions will opt to reduce uniformity of the variables in each JCL Host and

increases access throughput, but the opposite must be considered for storage reasons.

6.2 Multi-core speedup experiments

We evaluated the JCL multi-core version against a Java thread implementation provided

by Oracle. An Intel I7-3770 3.4GHz processor with 8 cores, including hyper threading

technology and 16GB of RAM, was used in the experiment. We implemented a sequential

version for a CPU-bound task composed of existing Java sequential algorithms for cal-

culating Levenshtein distance, Fibonacci series and prime numbers. We calculated JCL

and Java thread speedups and the results demonstrated similar speedups. JCL achieved

a speedup of 5.61 and Oracle Java threads a speedup of 5.77.

6.3 Super-peer component overhead

In this section, we evaluated the overheard of the Super-peer component with two different

applications. We tested JCL with communication intensive sorting tasks and COIN-OR

branch-and-cut (CBC) CPU bound tasks. Both applications were tested in the same

environment with 20 machines, where all machines were equipped with Intel(R) Core(TM)

i5-2500, 3.3GHz processors (4 physical cores) and 4GB of RAM DDR3 1333Mhz. The

operating system was Ubuntu 14.04.1 LTS 64 bits kernel 3.13.0-39-generic. In the CBC

experiments, 77 tasks were randomly selected among the 4221 non-deterministic tasks

presented in section 6.4. In the sorting experiments, 50000 tasks were submitted. The

sorting tasks are explained in Section 6.1.

We tested both applications in two scenarios. First, we configured the 20 machines in

two different networks, one with a Server component and another with both Server and

Super-peer components. The number of Hosts in the Super-peer network increased by 5

per round of tests, varying from 0 to 20. In contrast, the number of Hosts in the Server

network decreased by 5 per round of tests, varying from 20 to 0. Table 6.1 illustrates

6.3 Super-peer component overhead 42

both networks in terms of number of Hosts.

Table 6.1: Number of Hosts

Network
Round 1 2 3 4 5

Super-peer Network
192.168.0.0/24 0 5 10 15 20

Sever Network
10.10.10.0/24 20 15 10 5 0

Each one of the rounds of tests was repeated five times and the total average time

of the two applications were calculated. The results illustrate that when the tasks are

CPU bound, there is no significant overhead when the number of Hosts in each network

alternates (Figure 6.7 B). When the tasks are communication intensive and not CPU

bound, there is an overhead introduced by the Super-peer to manage different numbers

of Hosts, as Figure 6.7 A illustrates. If we consider as a baseline the total time of the

first round, where all the 20 Hosts are managed by the Server, the second round was 74%

slower than the first, the third was 66% slower than the second, the fourth was 54% slower

than the third and, finally, the fifth was 63% slower than the fourth.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Number of rounds

S
ec

on
ds

Sort ApplicationA

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Number of rounds

S
ec

on
ds

CBC applicationB

Figure 6.7: Super-peer overhead in managing Hosts

In general, there was an increase of 10% with the introduction of each Host. The

largest overheard occurred in the second round of the sorting application, because in the

second round there was the creation of a new Super-peer. In the other rounds the same

Super-peer is adopted, having only an increase in the number of Hosts. In the case of the

sorting application, the overhead is unacceptable, therefore one alternative is to group the

50000 tasks in, for example, 5000 tasks. Such an alternative has less communication and

6.3 Super-peer component overhead 43

consequently less overhead. CBC and sorting experimental results represent two extreme

scenarios, reinforcing that JCL can introduce significant overhead if tasks are not CPU

bound.

In the second scenario, we evaluated both applications as new Super-peers were being

introduced, varying from 0 up to 4. Five rounds were executed, performing five network

configurations with a different number of Super-peers (zero Super-peer, one, two, three

and four Super-peers, respectively). In the fifth round, for instance, there are five networks

and four Super-peers, where each Super-peer component manages five Hosts. The Server

network had no Host in such a round, as Table 6.2 illustrates.

Table 6.2: Super-peer overhead in different multi-cluster topologies

Network
Round 1 2 3 4 5

Sever Network
10.10.10.0/24 20 15 10 5 0

Super-peer Network 1
192.168.0.0/24 0 5 5 5 5

Super-peer Network 2
192.168.1.0/24 0 0 5 5 5

Super-peer Network 3
192.168.2.0/24 0 0 0 5 5

Super-peer Network 4
192.168.3.0/24 0 0 0 0 5

Each round was repeated five times, similar to the first scenario explained previously.

The results illustrate, as in the first scenario, that the overhead increases as the commu-

nication exceeds tasks processing costs (Figure 6.8). In order to calculate the overhead of

the Super-peer, we consider round 0 as a baseline, i.e., we measured the remaining rounds

and compared them with round zero. The following values were obtained: 2nd round 74%

slower; 3rd round 154% slower; 4th round 236% slower and 5th round 294% slower. The

impact of adding new Super-peers is superior to that of adding new Hosts, as expected.

In the case of the sorting application, the overhead is unacceptable, therefore more coarse

grained sorting tasks should be modeled.

The Super-peers create tunnels with the Server, therefore each communication be-

tween User and Host components must be intercepted by Server and redirected by a

Super-peer component. The Super-peer enables JCL to communicate with sub-networks

with invalid IPs, a common scenario to several clusters in academic institutions, business

6.4 CBC solver experiments 44

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Number of rounds

S
ec

on
ds

Sort ApplicationA

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5
Number of rounds

S
ec

on
ds

CBC applicationB

Figure 6.8: Super-peer overhead topology 2

companies and in our houses. However, the overhead can be enormous or unrealistic if we

do not take care of the granularity of the tasks. New configurations for the Super-peer

must be added to the JCL, because the Super-peer does not always have only invalid IPs.

There are many cases where the Super-peer can be installed in a machine with two net-

work cards, therefore the Super-peer is accessible to both Server and Users components,

i.e., it has Internet access, as well as manages Hosts from a second data network, com-

posed of machines with invalid IPs. Other future improvements are presented in chapter

7.

6.4 CBC solver experiments

In this section, the objective of the experiment is to evaluate JCL scheduling for de-

terministic and non-deterministic optimization problems. The solver, named COIN-OR

branch-and-cut (CBC) Forrest and Lougee-Heimer (2005), is executed several times to

calibrate input parameters for specific optimal results. The main goal is to find the best

parameters that find the optimal solutions in shorter runtime or opening fewer branches.

Note that, these CBC executions to calibrate parameters become a new combinatorial

optimization problem.

The CBC solver is an open-source tool for many combinatorial optimization problems

modeled as mixed integer linear programming solutions. CBC was written in C++, so

these experiments also show that JCL can execute other language compiled modules.

The CBC method consists of a combination of a cutting plane method with a branch-

and-bound algorithm Mitchell (2002), thus adopted for solving a huge number of integer

programming problems Mitchell (2002). JCL managed all tasks executions, i.e., thousands

6.4 CBC solver experiments 45

of CBC executions to find the best parameters for a selected input.

The experiments were divided into two rounds. In both rounds, the developed appli-

cation was the same: to evaluate 21 sets of parameters with each one of the 201 instances,

generating at the end 4221 tasks (21 × 201). Some tasks can take more time than an

acceptable solution for a specific computational resource. In order to solve such a limita-

tion, a maximum execution limit was added to each task and this limit is calculated by

the Benchmark ITC3-Linux-x86-64 1 in each Host. The benchmark collects some machine

configurations to stipulate a limit. A time limit of one hour, normalized with the standard

CPU used in the benchmark, was stipulated.

The test environment used was composed of 20 machines, where all machines were

equipped with Intel(R) Core(TM) i5-2500, 3.3GHz processors (4 physical cores) and 4GB

of RAM DDR3 1333Mhz. The Operating System was Ubuntu 14.04.1 LTS 64 bits, kernel

3.13.0-39-generic, and all experiments could fit in RAM memory. An average time was

calculated from five executions, i.e., we submitted 4221 tasks five times and adopted a

confidence interval of 95%. The middleware was evaluated in terms of runtime in seconds.

In the first round of experiments the 4221 tasks were submitted five times to the cluster

with phase 2 of the JCL scheduler enabled and five times with phase 2 disabled. Different

running times for each task were collected using the getTaskT imes(ticket) method ex-

plained in section 4.8. A deterministic execution of CBC was repeated five times. Figures

6.9 A-D illustrate total time, queue time, execution time and network time results. The

total time (Figure 6.9 A) decreased by 50% when the collaborative scheduler behavior is

turned on. Figure 6.9 B illustrates that the queue time was slightly greater in tests 1, 2,

3 and 5 and significantly greater in test 4 when the scheduler was disabled. This result

occurred because with scheduler phase 2 disabled the tasks mandatorily get more queue

time while waiting for CPU. The running execution times measured in the five rounds are

similar, since the tasks are deterministic (Figure 6.9 C). The network time (Figure 6.9

D) demonstrates that the overhead introduced by the data exchange between Hosts was

minimal.

Before illustrating the different times of the non-deterministic CBC executions, we

present topological differences of each execution, i.e, how many non-deterministic tasks

are different from deterministic ones in terms of branches opened to solve the same prob-

lems. In Figure 6.10, the X axis has seven time classes. We classify the tasks with total

time between 0 and 600 seconds, between 601 and 1200 seconds, between 1201 and 1800

1Benchmark_ITC3-Linux-x86-64 is available for download at https://www.utwente.nl/ctit/hstt/itc2011/benchmarking/

6.4 CBC solver experiments 46

90000

120000

150000

180000

210000

1 2 3 4 5
Number of rounds

S
ec

on
ds Phase 2 OFF

Phase 2 ON

Total TimeA

40000

42500

45000

47500

50000

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Queue TimeB

1000

1500

2000

1 2 3 4 5
Number of rounds

S
ec

on
ds Phase 2 OFF

Phase 2 ON

Execution TimeC

0.0

0.2

0.4

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Network TimeD

Figure 6.9: Task execution experiments

seconds, between 1801 and 2400 seconds, between 2401 and 3000 seconds, between 3001

and 3600 seconds and the tasks between 3601 and 4200 seconds. The Y axis illustrates

the percentage of tasks in a specific time class that are different from their deterministic

counterparts.

Close to 70% of the tasks adopted different tree branches in CBC when they were

compared to the same tasks in the deterministic executions. There is about a 94%− 99%

difference in the results classified between 601 and 1200 seconds. In the other 5 classes with

times greater than 1200 seconds the difference varied between 81% − 98% of difference.

Thus, the hypothesis presented in Fischetti and Monaci (2014) that is possible to create

a non-deterministic behavior in a branch-and-cut algorithm is confirmed by Figure 6.10.

In terms of running time, the 4221 tasks have differences. Figure 6.11 illustrates in

the X axis the percentage of difference in terms of running time, so there are 58%− 64%

of the 4221 tasks with 0 to 20% difference in running time and 18% to 22% of the tasks

with 20% to 40% difference in running time. The percentage of tasks with high running

time differences, i.e., above 50%, varies from 4% to 8% of the 4221 tasks.

In Figure 6.12, the total time was reduced by around 2 to 3.5 times when phase two

of the scheduler was enable. The behavior when phase two is off is more aleatory, being

6.4 CBC solver experiments 47

0.6

0.7

0.8

0.9

1.0

0 - 600 601 - 1200 1201 - 1800 1801 - 2400 2401 - 3000 3001 - 3600 3601 - 4200
Distribution (%)

P
er

ce
nt

 o
f t

ot
al

(%
)

1 Round

2 Round

3 Round

4 Round

5 Round

Task Difference

st

th

nd

rd

th

Figure 6.10: Tasks difference in terms of opened branches

0.0

0.2

0.4

0.6

0% - 20% 21% - 40% 41% - 60% 61% - 80% 81% - 100 >100%
Ditribution (%)

P
er

ce
nt

 o
f t

ot
al

(%
)

1 Round

2 Round

3 Round

4 Round

5 Round

Task Time Difference

th

6
st

nd

rd

th

Figure 6.11: Task runtimes distribution

higher in the fifth round of Figure 6.12 A. The queue time is also aleatory, so when queue

time increases phase two of the scheduler works more to balance the system. The number

of task that move to other Host varies from 250 to 350 tasks, so we can argue that few

scheduling interventions (4 − 8% of the tasks) accelerates the application by 3.5 times.

Since there are few tasks with huge running time differences, the average execution time

becomes similar (Figure 6.12 C). The network time is aleatory, depending on the number

of scheduler interventions to replace tasks.

The sequential time to execute 4221 tasks was calculated by summing up the total

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 48

100000

150000

200000

250000

300000

350000

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Total TimeA

40000

42500

45000

47500

50000

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Queue TimeB

1000

1500

2000

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Execution TimeC

0.0

0.2

0.4

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Network TimeD

Figure 6.12: Non-deterministic task execution experiments

times. The result is 82 days. The average execution time of the same set of tasks with

JCL was 25 hours with the phase 2 scheduler enabled, characterizing reduction of com-

putational resources at about 78× with adoption of JCL. Thus, compatible with the 80

cores of the cluster used in the experiments in order to accelerate finding best inputs for

specific instances of a combinatorial problem.

6.5 Experiments with a solution for the problem of
minimizing the number of tool switches

In the previous section, the workload difference was small in terms of percentage of the

total tasks that were scheduled by JCL. Less than 10% of the CBC tasks were replaced

in the cluster. To increase task replacements, we evaluated an optimization algorithm to

solve a combinatorial real world problem with application in the industrial production

context.

The Minimization of Tool Switches Problem (MTSP) is an NP-Hard problem Crama

et al. (1994), meaning there is no known efficient algorithm that solves it. According

to Crama et al. (1994), the problem is stated as follows: “A batch of jobs has to be

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 49

successively processed on a single flexible machine. Each job requires a subset of tools,

which have to be placed in the tool magazine of the machine before the job can be

processed. The tool magazine has a limited capacity, and, in general, the number of tools

needed to produce all the jobs exceeds this capacity. Hence, it is sometimes necessary to

change tools between two jobs in a sequence. The problem is then to determine a job

sequence and an associated sequence of loadings for the tool magazine, such that the total

number of tool switches is minimized.”.

The method chosen for this experiment was recently proposed by Paiva and Car-

valho (2016). Currently, this is the state-of-the-art method for solving the MTSP. This

method generates an initial solution using a new constructive heuristic based on graph

search. After the initial solution is obtained, it is improved by an implementation of the

traditional Iterated Local Search Lourenço et al. (2003) metaheuristic, “which consists

of repeatedly applying local search methods and randomly modifying a solution until it

reaches a stopping condition” Paiva and Carvalho (2016). The stopping condition adopted

was 200 iterations of the metaheuristic method. Additionaly, the local search methods

implemented were the new 1-blocks grouping Paiva and Carvalho (2016) and the classical

2-swap, which exchanges the positions of two elements of a permutation. Given n ele-

ments in a solution, the 2-swap algorithm may require all possible pairs of elements to

exchange positions, thus, asymptotically it may perform up to n! operations. Because it

is not feasible to perform this number of operations, the Iterated Local Search performs

a limited search of 30% of the search space (i.e., up to 0.3 × n operations), where each

pair of elements considered is randomly selected.

The tests were conducted for two purposes: i) to accelerate the Iterated Local Search

runs for multiple MTSP instances, similarly to the experiments conducted with the CBC;

and ii) to parallelize the 2-swap algorithm runs in order to improve the accuracy of the

MTSP solutions. However, in this work the focus is not on discussing improvements of

accuracy, but rather the quality of the JCL scheduler.

In the experiments, 240 instances were used, 160 proposed by Crama et al. (1994) and

80 proposed by Catanzaro et al. (2015). The JCL, “Pacu” version, was used to distribute

the sequential algorithm, written in C++, in the cluster of 20 machines and 80 cores,

identical to the CBC environment. The Iterated Local Search has a parallel local search

phase (the 2-swap algorithm), i.e., it is possible to explore multiple different ranges of

30% of the search space simultaneously. For this, the multicore “Lambari” version of JCL

is used, this being responsible for managing from 4 to 16 2-swap tasks concurrently. The

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 50

parallelism of the 2-swap illustrates a scenario where a C++ application executes the

JCL, i. e., the opposite of JCL scheduling the Iterated Local Search over the cluster.

Thus, the JCL Iterated Local Search application confirms the simplicity of interoperating

JCL with C++ in two complementary ways.

The test environment used to run the Iterated Local Search was composed of 20

machines, where all machines were equipped with Intel(R) Core(TM) i5-2500, 3.3GHz

processors (4 physical cores) and 4GB of RAM DDR3 1333Mhz, summing up 80 cores in

the cluster. The Operating System was an Ubuntu 14.04.1 LTS 64 bits kernel 3.13.0-39-

generic and all experiments could fit in RAM memory. An average time was calculated

from five executions and a confidence interval of 95% was adopted.

The results demonstrate that around 20% of 240 tasks submitted to JCL cluster

were replaced, what implies an increase of more than 100% if compared to the CBC

experiments, which replaced less than 10% of all tasks. Other results are illustrated

in Figure 6.13. Each value in Figure 6.13 represents the average times of an execution

round, i.e., the execution of all 240 instances and their parallel 2-swap runs, summing up

more than 240×4 tasks for each execution round. In terms of total time, when the two-

phase scheduler is active the running time reduction was about 20% to 30% on average

if compared with JCL without the two-phase scheduler. If compared to the CBC, the

Iterated Local Search applied to the MTSP achieves fewer benefits from parallelization,

since its tasks are less CPU bound, so the HPC benefits tend to be reduced.

In Figures 6.13 B and D the times are similar, thus sometimes more than 20% of task

replacement does not affect both network and queue times. The explanation is because

the Iterated Local Search tasks are small and their initial arguments are also small, so

network transfer drawbacks are avoided. The non-determinism is illustrated by Figure

6.13 C, where sometimes running times with the scheduler active is worse than with

the scheduler inactive in JCL. This behavior also produces a reduction in total time,

but sometimes tasks are more CPU bound in some experiment rounds due to the non-

determinism, so the scheduler impact increases when task times are worse, because the

total time indicates 20% to 30% of improvement.

A second alternative to parallelize the Iterated Local Search applied to the MTSP was

evaluated. One of the largest instance of the 240 available was selected and the 2-swap

method was parallelized via the JCL “Pacu” multi-computer version over the 80 cores.

The 2-swap method run concurrently by 1 to 160 tasks in each iteration. The scheduler

is always active in these experiments. Each value in Figures 6.14 and 6.15 represents the

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 51

3000

3500

4000

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Total TimeA

25

50

75

100

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Queue TimeB

275

300

325

350

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Execution TimeC

0.0

0.2

0.4

1 2 3 4 5
Number of rounds

S
ec

on
ds

Phase 2 OFF

Phase 2 ON

Network TimeD

Figure 6.13: Iterated Local Search applied to the MTSP 240 instances experiment.

average times of 1 to 160 tasks in each execution round.

In Figure 6.14, JCL was tested with 1, 32 and 64 tasks to perform the 2-swap method

in parallel, and in Figure 6.15, JCL was tested managing 96, 128 and 160 parallel tasks,

therefore, more tasks than the 80 cores available in the cluster.

As shown in Figure 6.14 A, the parallelization introduces nearly 80% of overhead, as

the difference of 1 task from, for instance, 32 tasks illustrates. However, if we consider that

the parallel runs perform 32 or 64 more 2-swap method calls, the improvement is evident.

Figures 6.14 C and 6.15 D reinforce the non-deterministic behavior of the Iterated Local

Search applied to the MTSP. In Figure 6.15 A, the total times did not increase, what

can be explained by scheduler opportune interventions. On average, 40% of overhead is

introduced in total times if we compare rounds with 32 or 64 tasks to rounds with 96

or 128 tasks, and 80% if we compared with 160 tasks. Nonetheless, the JCL scheduler

was effective, considering that 2-swap runs increased by more than 300%. Figure 6.15

B, illustrates a queue time outlier when there are 160 tasks to be scheduled, then we

can conclude that less than 128 tasks in parallel did not cause retention in the cluster,

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 52

0.4

0.5

0.6

0.7

1 2 3 4 5
Number of rounds

S
ec

on
ds

1 Task

32 Tasks

64 Tasks

Total TimeA

0e+00

1e-04

2e-04

1 2 3 4 5
Number of rounds

S
ec

on
ds

1 Task

32 Tasks

64 Tasks

Queue TimeB

0.38

0.39

0.40

0.41

1 2 3 4 5
Number of rounds

S
ec

on
ds

1 Task

32 Tasks

64 Tasks

Execution TimeC

0.0

0.2

0.4

1 2 3 4 5
Number of rounds

S
ec

on
ds

1 Task

32 Tasks

64 Tasks

Network TimeD

Figure 6.14: Iterated Local Search applied to the MTSP run rounds (1 - 64 Tasks)

0.7

1.2

1.7

2.2

2.7

3.2

3.7

4.2

4.7

5.2

5.7

1 2 3 4 5
Number of rounds

S
ec

on
ds

128 Tasks

160 Tasks

96 Tasks

Total TimeA

0.00

0.02

0.04

0.06

1 2 3 4 5
Number of rounds

S
ec

on
ds

128 Tasks

160 Tasks

96 Tasks

Queue TimeB

0.36

0.37

0.38

0.39

1 2 3 4 5
Number of rounds

S
ec

on
ds

128 Tasks

160 Tasks

96 Tasks

Execution TimeC

0.0

0.2

0.4

1 2 3 4 5
Number of rounds

S
ec

on
ds

128 Tasks

160 Tasks

96 Tasks

Network TimeD

Figure 6.15: Iterated Local Search applied to the MTSP run rounds (96 - 160 Tasks)

6.5 Experiments with a solution for the problem of minimizing the number of tool switches 53

indicating an important threshold for capacity planning. Around 20% of the 160 tasks

were moved to a second Host.

Chapter 7

Conclusion

In this work, we present a novel middleware for capacity planning, storage and process-

ing that can be operated in different platforms, including cloud platforms and boards

with Linux support, such as Raspberry Pi, Galileo, Cubieboard and many others. The

middleware solution is able to invoke tasks asynchronously, manage Java objects lifecy-

cle over a cluster of JVMs and retrieve some useful times from a task execution. It is

designed for multi-core, multi-computer and hybrid computer architectures. Develop-

ers write portable JCL applications, where global variables are also multi-developer, so

different applications can transparently share resources without explicit references over a

computer cluster. Reflection capabilities of Java enable JCL to separate distribution from

business logic, enabling both existing sequential code executions over many high perfor-

mance computer architectures with zero refactorings and multiple distribution strategies

for a single sequential algorithm according to a hardware specification.

JCL also implements the concept of Super-peer and therefore a JCL Server can man-

age, for instance, a cluster of JCL Hosts with invalid IPs. JCL implements a native

distributed map that is a sub-type of Java Map interface, so with low refactorings the

developer can change from local to distributed storage. All storage and processing are

efficiently managed by JCL, i.e., from a storage perspective a hash function is adopted

to find a JCL Host to store key-value pairs or Java objects. From a processing perspec-

tive, a collaborative two-phase scheduler achieves fair load balancing for deterministic and

non-deterministic tasks.

Experiments demonstrated that JCL is a promising solution for general purpose com-

puting. JCL was tested for building an elegant distributed sorting implementation that

outperforms a similar version in MPI. A second battery of tests was conducted with the

open source Mixed-Integer programming named CBC. The results with CBC demon-

7 Conclusion 55

strated that the JCL scheduler introduced few tasks replacement, but it reduced the

runtime by 50% to 150%. If we consider a sequential execution of CBC, JCL reduced the

execution of 4221 tasks from 82 days to 25 hours. Throughput experiments demonstrated

that JCL scales well when the cluster enlarges. Those experiments reaffirmed that pro-

cessing must compensate data network delays. The last set of experiments evaluated a

solution for MTSP problem. The results demonstrated that JCL scales well even when

there are many non-deterministic tasks to be replaced.

There are many improvements to be done. JCL should be fault tolerant in storage

and processing. A new strategy for JCL Super-peer components to interconnect different

networks must be implemented. The current method is based on two network routers,

one for the Server network and another for Super-peer networks. This concept causes

significant network overhead when the application is communication intensive, but in

contrast it transparently enables the connection of two networks, so even networks with

invalid IPs can be integrated to JCL. A new alternative, where a Super-peer has two

network interface card (NIC), is an important improvement to the current Super-peer

solution. The Super-peer must avoid message decoding in the router component, i.e., the

router can re-transmit all messages directly to the destinations without opening them.

GPU execution abstractions, where location and copies are transparent to developers,

are very useful to JCL. New options for the first phase of JCL scheduler should be incor-

porated to better allocate tasks initially. IoT features, such as interoperability, context

awareness, privacy and security must be part of JCL. The Cross-platform Host compo-

nent, including platforms without JVM, with JVMs that are not compatible with JSR

901 (Java Language Specification) or platforms without Operating Systems, are manda-

tory to IoT. A supervisor application to manage the JCL cluster resources (maps, global

variables, tasks, sensors, devices, etc.) must be implemented.

Bibliography

Brian Amedro, Denis Caromel, Fabrice Huet, Vladimir Bodnartchouk, Christian Delbé,

and Guillermo L Taboada. Proactive: using a java middleware for hpc design, imple-

mentation and benchmarks. International journal of Computers and Communications,

3(3):49–57, 2009.

Leurent Baduel, Françoise Baude, and Denis Caromel. Object-oriented spmd. In Clus-

ter Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on,

volume 2, pages 824–831. IEEE, 2005.

David H Bailey, Eric Barszcz, John T Barton, David S Browning, Russell L Carter,

Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S

Schreiber, et al. The nas parallel benchmarks. International Journal of High Perfor-

mance Computing Applications, 5(3):63–73, 1991.

Jasma Balasangameshwara and Nedunchezhian Raju. A decentralized recent neighbour

load balancing algorithm for computational grid. Int. J. of ACM Jordan, 1(3):128–133,

2010.

Jasma Balasangameshwara and Nedunchezhian Raju. A hybrid policy for fault tolerant

load balancing in grid computing environments. Journal of Network and computer

Applications, 35(1):412–422, 2012.

Jasma Balasangameshwara and Nedunchezhian Raju. Performance-driven load balancing

with a primary-backup approach for computational grids with low communication cost

and replication cost. IEEE Transactions on Computers, 62(5):990–1003, 2013.

Donald Becker, Phil Merkey, et al. The beowulf project. Online at: http://www. beowulf.

org, 2002.

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla, and Mateo Valero. A

dynamic scheduler for balancing hpc applications. In Proceedings of the

2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 41:1–41:12,

BIBLIOGRAPHY 57

Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9. URL

http://dl.acm.org/citation.cfm?id=1413370.1413412.

E. McAfee Brynjolfsson. Big data: The management revolu-

tion. Harvard Business Review, 90(10):60–66, 2012. URL

http://hbr.org/2012/10/big-data-the-management-revolution/ar.

Apache Cassandra. The apache software foundation. The Apache Cassandra project, 2013.

Daniele Catanzaro, Luis Gouveia, and Martine Labbé. Improved integer linear program-

ming formulations for the job sequencing and tool switching problem. European Journal

of Operational Research, 244(3):766–777, 2015.

Kristina Chodorow. MongoDB: the definitive guide. " O’Reilly Media, Inc.", 2013.

L. Cohen. Java Parallel Processing Framework, 2015. Available from:

<http://www.jppf.org/>.[15 Dezember 2015].

Yves Crama, Antoon W. J. Kolen, Alwin G. Oerlemans, and Frits C. R. Spieksma.

Minimizing the number of tool switches on a flexible machine. International Jour-

nal of Flexible Manufacturing Systems, 6(1):33–54, 1994. ISSN 1572-9370. doi:

10.1007/BF01324874. URL http://dx.doi.org/10.1007/BF01324874.

Pierangelo Di Sanzo, Francesco Quaglia, Bruno Ciciani, Alessandro Pellegrini, Diego Di-

dona, Paolo Romano, Roberto Palmieri, and Sebastiano Peluso. A flexible framework

for accurate simulation of cloud in-memory data stores. arXiv preprint arXiv:1411.7910,

2014.

Sean Egan. Open Source Messaging Application Development: Building and Extending

Gaim. Apress, 2005.

Matteo Fischetti and Michele Monaci. Exploiting erraticism in search. Operations Re-

search, 62(1):114–122, 2014.

John Forrest and Robin Lougee-Heimer. Cbc user guide. INFORMS Tutorials in Opera-

tions Research, pages 257–277, 2005.

Message P Forum. Mpi: A message-passing interface standard. Technical report,

Knoxville, TN, USA, 1994.

BIBLIOGRAPHY 58

Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jef-

frey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-

daine, et al. Open mpi: Goals, concept, and design of a next generation mpi implemen-

tation. In European Parallel Virtual Machine/Message Passing Interface Users’ Group

Meeting, pages 97–104. Springer, 2004.

A. Gates and D. Dai. Programming Pig. O’Reilly Media, Incorporated, 2016. ISBN

9781491937099.

Stéphane Genaud and Choopan Rattanapoka. P2p-mpi: A peer-to-peer framework for

robust execution of message passing parallel programs on grids. Journal of Grid Com-

puting, 5(1):27–42, 2007.

Lars George. HBase: the definitive guide. " O’Reilly Media, Inc.", 2011.

Sukumar Ghosh. Distributed systems: an algorithmic approach. CRC press, 2014.

Aniruddha Gokhale, Krishnakumar Balasubramanian, Arvind S Krishna, Jaiganesh Bal-

asubramanian, George Edwards, Gan Deng, Emre Turkay, Jeffrey Parsons, and Dou-

glas C Schmidt. Model driven middleware: A new paradigm for developing distributed

real-time and embedded systems. Science of Computer programming, 73(1):39–58, 2008.

GridGain Systems. Gridgain 3.0 – high performance cloud computing whitepaper, 2011.

Technical Report.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011. ISBN

0123814790, 9780123814791.

M Henning, M Spruiell, et al. Distributed programming with ice; zeroc. Inc.: Jupiter,

FL, USA, 2013.

Michi Henning and Mark Spruiell. Distributed programming with ice reading, 2006.

Ian Hickson. The websocket api. W3C Working Draft WD-websockets-20110929, Septem-

ber, 2011.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph,

Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource

sharing in the data center. In Proceedings of the USENIX Conference on Networked

Systems Design and Implementation (NSDI 2011), pages 295–308, 2011.

BIBLIOGRAPHY 59

R Intel. galileo gen 2 development board, 2016.

Alan Kaminsky. Parallel java: A unified api for shared memory and cluster parallel pro-

gramming in 100% java. In Proceedings of IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2007), pages 1–8, 2007.

Alan Kaminsky. Big CPU, Big Data: Solving the World’s Toughest Computational

Problems with Parallel Computing. Unpublished manuscript, 2015. Retrieved from

http://www.cs.rit.edu/~ark/bcbd.

K.I. Karantasis and E.D. Polychronopoulos. Programming gpu clusters with shared mem-

ory abstraction in software. In Proceedings of Euromicro International Conference on

Parallel, Distributed and Network-Based Processing (PDP 2011), pages 223–230, 2011.

Konstantinos I. Karantasis and Eleftherios D. Polychronopoulos. Pleiad: A cross-

environment middleware providing efficient multithreading on clusters. In Proceedings

of ACM Conference on Computing Frontiers (CF 2009), pages 109–116, 2009.

Dawid Kurzyniec, Tomasz Wrzosek, Vaidy Sunderam, and Aleksander Slominski. Rmix:

A multiprotocol rmi framework for java. In Parallel and Distributed Processing Sym-

posium, 2003. Proceedings. International, pages 6–pp. IEEE, 2003.

Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search. In

Handbook of metaheuristics, pages 320–353. Springer, 2003.

Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ritu Sharma, and Sharon Lim. A survey

and comparison of peer-to-peer overlay network schemes. Communications Surveys &

Tutorials, IEEE, 7(2):72–93, 2005.

Francesco Marchioni and Manik Surtani. Infinispan data grid platform. Packt Publishing

Ltd, 2012.

John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems.

Handbook of applied optimization, pages 65–77, 2002.

Yoshitomo Murata, Tsutomu Inaba, Hiroyuki Takizawa, and Hiroaki Kobayashi. A dis-

tributed and cooperative load balancing mechanism for large-scale p2p systems. In

Applications and the Internet Workshops, 2006. SAINT Workshops 2006. International

Symposium on, pages 4–pp. IEEE, 2006.

BIBLIOGRAPHY 60

Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A coor-

dination model and middleware supporting mobility of hosts and agents. ACM

Trans. Softw. Eng. Methodol., 15(3):279–328, July 2006. ISSN 1049-331X. doi:

10.1145/1151695.1151698. URL http://doi.acm.org/10.1145/1151695.1151698.

Christian Nester, Michael Philippsen, and Bernhard Haumacher. A more efficient rmi

for java. In Proceedings of the ACM 1999 conference on Java Grande, pages 152–159.

ACM, 1999.

Nvidia Corporation. Compute unified device architecture programming guide, 2008.

Gustavo Silva Paiva and Marco Antonio Moreira Carvalho. Um método para planejamento

da produção em sistemas de manufatura flexível. In Simpósio Brasileiro de Pesquisa

Operacional, 2016.

Deepak Kumar Patel, Devashree Tripathy, and CR Tripathy. Survey of load balancing

techniques for grid. Journal of Network and Computer Applications, 65:103–119, 2016.

Charith Perera, Chi Harold Liu, Srimal Jayawardena, and Min Chen. A survey on internet

of things from industrial market perspective. Access, IEEE, 2:1660–1679, 2014.

Michael Philippsen, Bernhard Haumacher, and Christian Nester. More efficient serializa-

tion and rmi for java. To appear in: Concurrency: Practice & Experience, 11, 1999.

Esmond Pitt and Kathy McNiff. Java.Rmi: The Remote Method Invocation Guide.

Addison-Wesley Longman Publishing Co., Inc., 2001. ISBN 0201700433.

William Pugh and Jaime Spacco. Mpjava: High-performance message passing in java

using java. nio. In International Workshop on Languages and Compilers for Parallel

Computing, pages 323–339. Springer, 2003.

Mowafaq SalemAlzboon, Suki Arif, M Mahmuddin, and Omar Dakkak. Peer to peer

resource discovery mechanisms in grid computing: A critical review.

Olliver M Schinagl. Getting Started with Cubieboard. Packt Publishing Ltd, 2014.

Aleksandar Seovic, Mark Falco, and Patrick Peralta. Oracle Coherence 3.5. Packt Pub-

lishing Ltd, 2010.

Aamir Shafi, Bryan Carpenter, and Mark Baker. Nested parallelism for multi-core

{HPC} systems using java. Journal of Parallel and Distributed Computing, 69(6):532

BIBLIOGRAPHY 61

– 545, 2009. ISSN 0743-7315. doi: http://dx.doi.org/10.1016/j.jpdc.2009.02.006. URL

http://www.sciencedirect.com/science/article/pii/S0743731509000252.

Guillermo L Taboada, Juan Touriño, and Ramón Doallo. Java for high performance

computing: assessment of current research and practice. In Proceedings of the 7th

International Conference on Principles and Practice of Programming in Java, pages

30–39. ACM, 2009.

Guillermo L Taboada, Juan Touriño, and Ramón Doallo. F-mpj: scalable java message-

passing communications on parallel systems. The Journal of Supercomputing, 60(1):

117–140, 2012.

Guillermo L Taboada, Sabela Ramos, Roberto R Expósito, Juan Touriño, and Ramón

Doallo. Java in the high performance computing arena: Research, practice and experi-

ence. Science of Computer Programming, 78(5):425–444, 2013.

Muhammad Adnan Tariq, Boris Koldehofe, Sukanya Bhowmik, and Kurt Rothermel.

Pleroma: a sdn-based high performance publish/subscribe middleware. In Proceedings

of the 15th International Middleware Conference, pages 217–228. ACM, 2014.

Wendell Figueiredo Taveira, Marco Tulio de Oliveira Valente, Mariza Andrade

da Silva Bigonha, and Roberto da Silva Bigonha. Asynchronous remote method in-

vocation in java. Journal of Universal Computer Science, 9(8):761–775, 2003.

GridGain Team. Introducing the gridgain in-memory data fabric. Technical report, 2016.

ScyllaDB Team. ScyllaDB, 2015. Available from: <http://www.scylladb.com/>.[15

Dezember 2015].

Vernon Turner, John F Gantz, David Reinsel, and Stephen Minton. The digital universe of

opportunities: Rich data and the increasing value of the internet of things. International

Data Corporation, White Paper, IDC_1672, 2014.

Eben Upton and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons, 2014.

Peter Veentjer. Mastering Hazelcast. Hazelcast, 2013.

Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, and Andrew

McCarthy. Rafda: A policy-aware middleware supporting the flexible separation of

application logic from distribution. Technical report, University of St Andrews, 2003.

Technical Report CS/06/2.

BIBLIOGRAPHY 62

Richard T Watson, Donald Wynn, and Marie-Claude Boudreau. Jboss: The evolution of

professional open source software. MIS Quarterly Executive, 4(3):329–341, 2005.

Jing Xiong, Jianliang Wang, and Jianliang Xu. Research of distributed parallel informa-

tion retrieval based on jppf. In 2010 International Conference of Information Science

and Management Engineering, pages 109–111. IEEE, 2010.

Beverly Yang and Hector Garcia-Molina. Designing a super-peer network. In Data En-

gineering, 2003. Proceedings. 19th International Conference on, pages 49–60. IEEE,

2003.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Sto-

ica. Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, pages 10–10, 2010.

Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research

challenges. Journal of internet services and applications, 1(1):7–18, 2010.

Wenzhang Zhu, Cho-Li Wang, and F.C.M. Lau. Jessica2: a distributed java virtual ma-

chine with transparent thread migration support. In Proceedings of IEEE International

Conference on Cluster Computing (Cluster 2002), pages 381–388, 2002.

