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« Stretching vibrations of hydroxyl
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The molecular structure of the copper-lead silicate mineral luddenite has been analysed using vibrational
spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman
band at 978 cm ™' is assigned to the v; (A;4) symmetric stretching vibration of SisO;4 units. Raman bands
at 1122, 1148 and 1160 cm ™! are attributed to the v3 SiO4 antisymmetric stretching vibrations. The bands
in the 678-799 cm™! are assigned to 0SiO bending modes of the (SiOs), chains. Raman bands at 3317 and
3329 cm ™! are attributed to water stretching bands. Bands at 3595 and 3629 cm™! are associated with
the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of

Copper silicate luddenite.

Raman spectroscopy
Infrared spectroscopy
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Introduction

The mineral luddenite is a hydrated silicate mineral of lead and
copper of formula Cu,Pb,SisO;4-4H,0 [1]. It is one of several cop-
per silicates [2]. There are a significant number of silicate minerals
which have copper as one of the main cations. These include kino-
ite C32CUZSi3010(OH)4 [3], Chrysocolla (Cu,Al)2H25i205(0H)4-nH20
[4,5], dioptase CuSiO3-H,0 [6], planchéite CugSigO,,(OH)4-H,0 [7],
shattuckite Cus(SiO3)4(OH), [8], whelanite CasCuy(OH),COs3,

* Corresponding author. Tel.: +61 7 3138 2407; fax: +61 7 3138 1804.
E-mail address: r.frost@qut.edu.au (R.L. Frost).

http://dx.doi.org/10.1016/j.saa.2014.08.026
1386-1425/© 2014 Elsevier B.V. All rights reserved.

Sig017-4H,0 [9], ajoite (K,Na)Cu;AlSigO,4(OH)s-3H,0 [10], apachite
CugSi19029-11H,0 [10], papagoite CaCuAlSiOg(OH); [11]. Apart
from chrysocolla which appears as a normally amorphous mineral,
all of these copper silicate minerals are crystalline; however the
crystallinity may vary between the minerals. All of the minerals
contain either hydroxy units or water units or both. These water
and OH units are important for the stability of the minerals. All
these minerals are of various shades of blue. This study of the min-
eral luddenite adds to our knowledge of silicate minerals contain-
ing copper.

Luddenite is a rare secondary mineral that forms from the
oxidation of other secondary copper minerals in copper-rich
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base-metal deposits in massive fracture coatings, in vein fillings,
and in vugs. It is related to other copper silicate minerals such as
shattuckite. Luddenite was first found at Artillery Peak, Mohave
County, Arizona, USA. Despites the type locality, only few
occurrences were described in literature [12].

Luddenite is monoclinic with a=7.85A, b=20.06A,
c=14.72 A, with $=90.78° and Z=6 [1]. The mineral is light
green in colour, sometimes said to be nickel green, and may
be associated with alamosite PbSiOs; [13,14] and wickenburgite
PbsAl[CaAlSi;g0,7(H;0)3]-H,0. The mineral is found in totally
oxidised Pb-Cu sulphide ores.

The aim of this paper is to report the Raman spectra of well-
defined natural luddenite mineral, and to relate the spectra of this
molecule to the crystal structure. This paper follows the systematic
research of the large group of oxyanion containing minerals, and
especially their molecular structure using vibrational
spectroscopy.

Experimental
Samples description and preparation

The luddenite sample studied in this work forms part of the col-
lection of the Geology Department of the Federal University of
Ouro Preto, Minas Gerais, Brazil, with sample code SAC-001. The
mineral originated from Artillery Peak, Mohave County, Arizona,
USA. The studied sample occurs in association with wickenburgite
and the separation of different minerals was done with a stereomi-
croscope Zeiss model Stemi DV4 from the Museu de Ciéncia e Téc-
nica, School of Mines of the Federal University of Ouro Preto.

Raman microprobe spectroscopy

Crystals of luddenite were placed on a polished metal surface on
the stage of an Olympus BHSM microscope, which is equipped with
10x, 20x, and 50x objectives. The microscope is part of a Reni-
shaw 1000 Raman microscope system, which also includes a
monochromator, a filter system and a CCD detector (1024 pixels).
The Raman spectra were excited by a Spectra-Physics model 127
He-Ne laser producing highly polarised light at 633 nm and col-
lected at a nominal resolution of 2cm™! and a precision of
+1 cm™ ! in the range between 200 and 4000 cm ™. Repeated acqui-
sitions on the crystals using the highest magnification (50x) were
accumulated to improve the signal to noise ratio of the spectra.
Raman Spectra were calibrated using the 520.5 cm™! line of a sili-
con wafer. Clearly the crystals of luddenite are readily observed,
with gem quality, making the Raman spectroscopic measurements
readily obtainable.

Infrared spectroscopy

Infrared spectra were obtained using a Nicolet Nexus 870 FTIR
spectrometer with a smart endurance single bounce diamond
ATR cell. Spectra over the 4000-525cm™' range were obtained
by the co-addition of 128 scans with a resolution of 4cm~! and a
mirror velocity of 0.6329 cm/s. Spectra were co-added to improve
the signal to noise ratio.

Spectral manipulation such as baseline correction/adjustment
and smoothing were performed using the Spectracalc software
package GRAMS (Galactic Industries Corporation, NH, USA). Band
component analysis was undertaken using the Jandel ‘Peakfit’ soft-
ware package that enabled the type of fitting function to be
selected and allows specific parameters to be fixed or varied
accordingly. Band fitting was done using a Lorentzian-Gaussian
cross-product function with the minimum number of component

bands used for the fitting process. The Gaussian-Lorentzian ratio
was maintained at values greater than 0.7 and fitting was under-
taken until reproducible results were obtained with squared corre-
lations of r? greater than 0.995.

Results and discussion

Vibrational spectroscopy

The Raman spectrum of luddenite over the 100-4000 cm™!
spectral; range is reported in Fig. 1a. This figure shows the position
and relative intensity of the Raman bands. It is noted that there
some very low intensity bands in the OH stretching region. In order
to closely identify and assign the Raman peaks, the spectrum is
subdivided into sections based upon the type of vibration being
analysed. The infrared spectrum of luddenite over the 500-
4000 cm ™! spectral range is reported in Fig. 1b. This spectrum dis-
plays the position and relative intensity of the infrared bands. A
comparison may be made between the Raman and infrared spec-
tra. It is note that there is significantly more intensity in the OH
stretching region in the infrared spectrum. The infrared spectrum
may be subdivided into subsections based upon the type of vibra-
tion being studied.

The Raman spectrum of luddenite over the 750-1200 cm™
spectral range is illustrated in Fig. 2a. The spectrum may be subdi-
vided into three sections (a) Raman bands centred around
800 cm™!, (b) the Raman band at 978 cm™! and (c) the series of
bands at around 1150cm~'. The intense Raman band at
978 cm ™' is assigned to the v; (A1) symmetric stretching vibration
of SisO14 units. Dowty showed that the -SiOs units had a unique
band position of 980 cm™~! [15] (see Figs. 2 and 4 of this reference).
Dowty calculated the position of infrared bands for silicate
structures and also showed measured spectra of the equivalent
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Fig. 1. (a) Raman spectrum of Luddenite (upper spectrum) and (b) infrared
spectrum of Luddenite (lower spectrum).
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Fig. 2. (a) Raman spectrum of Luddenite (upper spectrum) in the 750-1200 cm ™!
spectral range and (b) infrared spectrum of Luddenite (lower spectrum) in the 650-
1250 cm™! spectral range.
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Fig. 4. (a) Raman spectrum of Luddenite (upper spectrum) in the 3200-3450 cm ™!

spectral range and (b) infrared spectrum of Luddenite (lower spectrum) in the
2800-3800 cm ™! spectral range.
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Fig. 3. (a) Raman spectrum of Luddenite (upper spectrum) in the 300-750 cm™"

spectral range and (b) Raman spectrum of Luddenite (lower spectrum) in the 100-
300 cm ! spectral range.

theoretical system. The bands in the 678-799 cm™! are assigned to
0SiO bending modes of the (SiOs), chains. The infrared spectra as
displayed by Dowty show considerable width in the peaks.

The Raman bands at 1122, 1148 and 1160 cm™! are attributed
to the v3 SiO4 antisymmetric stretching vibrations. The splitting
of the v3 vibrational mode offers support to the concept that the
Si0, tetrahedrons in luddenite are strongly distorted. The Raman
band centred upon 801 cm™! is ascribed to water librational bands.
The infrared spectrum (Fig. 2b) is dominated by a very broad band
at 1000 cm™'. Shoulder bands of this peak are found at 925, 1077
and 1180 cm™~!. In addition, some low intensity infrared bands
are found at 748, 769, 795 and 833 cm™'. In harmony with the
assignment of the Raman bands in this spectral region, the bands
are attributed to water librational modes.

The Raman spectra of luddenite over the 300-750 and the 100-
300 cm ! spectral range are reported in Fig. 3. Strong Raman bands
are noted at 167, 174, 201, 213 and 263 cm™'. These bands are
attributed to external vibrations. A strong Raman band at
464 cm~! with shoulder bands at 449, 473 and 501 cm™' are
assigned to the SiO4 v, bending mode. For a perfectly symmetric
SiO,4 tetrahedron, only a single band at 608 cm™! (A,.) should be
observed. The Raman band observed at 676 cm~! with additional
bands at 648 and 696 cm™! is assigned to the SiO4 v, bending
mode. Vedanand et al. [16] reported the v, and v, modes for strin-
ghamite at 510 and 660 cm™".

The Raman spectrum of luddenite over the 3200-3450 cm™
spectral range is reported in Fig. 4a. This spectrum suffers from a
lack of signal; nevertheless Raman bands may be resolved at
3317 and 3329cm!. A shoulder band is also found at
3284 cm~ . These bands are attributed to water stretching bands.
The infrared spectrum of luddenite over the 2800-3800 cm™! spec-
tral range is reported in Fig. 4b. The spectral profile is broad and
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Fig. 5. (a) Raman spectrum of luddenite (upper spectrum) in the 1200-1750 cm ™!

spectral range (b) infrared spectrum of luddenite (lower spectrum) in the 1500~
1800 cm™! spectral range.

infrared bands may be resolved at 3255, 3430, 3542, 3595 and
3629 cm~!. These bands are assigned to water stretching vibra-
tions. However, the positions of the two bands at 3595 and
3629 cm ™! suggest that these two bands may be associated with
the stretching vibrations of hydroxyl units. The two low intensity
infrared bands at 2928 and 2963 cm™! are ascribed to organic com-
pounds and are due to CH stretching vibrations.

The Raman spectrum of luddenite over the 1200-1800 cm™
spectral range is shown in Fig. 5a. The two Raman bands observed
at 1603 and 1658 cm™! are assigned to the water bending modes.
Other Raman bands are identified at 1276, 1301, 1346 and
1368 cm™! and are attributed to the antisymmetric stretching
modes of siloxane units (SisO14). Two other Raman bands are noted
at 1455 and 1482 cm™'. The Raman spectrum in this spectral
region shows significantly more bands than the infrared spectrum
as shown in Fig. 5b. Infrared bands are observed at 1631, 1664 and
1707 cm™! with a long tail centred at 1583 cm™'. These bands are
assigned to water bending modes. The observation of the three
bands provides support for water existing in different molecular
environments subject to different hydrogen bond strengths. The

1

infrared band at 1631 cm™! is assigned to the water bending mode
of weakly hydrogen bonded water. The infrared band at 1664 cm™!
is ascribed to water involved in strongly hydrogen bonding;
whereas the band at 1707 cm™! is attributed to very highly
strongly bonded water.

Conclusions

The mineral luddenite is a rare mineral noted for its colour var-
iation including an emerald green colour. The mineral has been
analysed by using a combination of scanning electron microscopy
with energy dispersive analysis and Raman and infrared spectros-
copy. The mineral is fundamentally a silicate mineral of Cu and Pb.

Raman spectroscopy identifies stretching and bending vibra-
tions of the Si;Os and Si,0 units. Raman bands attributable to tri-
gonal boron are observed. Infrared spectra show much greater
complexity making their assignment more difficult. Two Raman
bands at 3547 and 3612 cm™! are assigned to OH stretching bands.
Bands associated with water stretching vibrations are observed in
the spectra of luddenite. Vibrational spectroscopy enables aspects
of the molecular structure of luddenite to be ascertained.
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