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In this study, two important sensorial parameters of beer quality – bitterness and grain taste – were cor-
related with data obtained after headspace solid phase microextraction – gas chromatography with mass
spectrometric detection (HS-SPME–GC–MS) analysis. Sensorial descriptors of 32 samples of Pilsner beers
from different brands were previously estimated by conventional quantitative descriptive analyses
(QDA). Areas of 54 compounds systematically found in the HS-SPME-GC–MS chromatograms were used
as input data. Multivariate calibration models were established between the chromatographic areas and
the sensorial parameters. The peaks (compounds) relevant to build each multivariate calibration model
were determined by genetic algorithm (GA) and ordered predictors selection (OPS), tools for variable
selection. GA selected 11 and 15 chromatographic peak areas, for bitterness and grain taste, respectively;
while OPS selected 17 and 16 compounds for the same parameters. It could be noticed that seven vari-
ables were commonly pointed out by both variable selection methods to bitterness parameter and 10
variables were commonly selected to grain taste attribute. The peak areas most significant to the evalu-
ation of the parameters found by both variable selection methods fed to the PLS algorithm to find the
proper models. The obtained models estimated the sensorial descriptors with good accuracy and preci-
sion, showing that the utilised approaches were efficient in finding the evaluated correlations. Certainly,
the combination of proper chemometric methodologies and instrumental data can be used as a potential
tool for sensorial evaluation of foods and beverages, allowing for fast and secure replication of parameters
usually measured by trained panellists.

� 2012 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

In the literature, numerous investigations aimed at identifying
volatile compounds in different types of beer can be found and
many hundreds of constituents have been reported (Fritsch &
Schieberle, 2005). Beer is a very complex mixture and its constitu-
ents, including the volatile ones, vary widely in nature and in con-
centration levels and are derived from raw materials including
water, yeast, malt, and hops. Aroma substances are very important
in beer because they greatly contribute to quality of the final prod-
uct (Liu, Zeng, & Xiong, 2005).

Considering the nature and concentration of these chemical
species, gas chromatography (GC) is the conventional analytical
technique for aroma components. However, a proper isolation
and concentration technique should be applied before the
x: +55 019 35213023.
.
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chromatographic analysis itself since many beer components, such
as sugar, can cause serious damage to the chromatographic system.
A very suitable extraction–concentration method for GC analysis of
beer is headspace-solid phase microextraction (HS-SPME) (Paw-
liszyn, 1997). Due to the positive characteristics, some applications
(Jellen, Wlazly, Wasowicz, & Kaminski, 1998; Pinho, Ferreira, & San-
tos, 2006) can be found in the literature focusing on volatile beer
fraction composition analyses applying this sampling technique,
as well as for the analysis of beer off-flavours, such as sulphur com-
pounds (Hill & Smith, 2000; Scarlata & Ebeler, 1999), and carbonyl
compounds (Vesely, Lusk, Basarova, Seabrooks, & Ryder, 2003).

Among the many compounds that can be extracted from the
volatile beer fraction, specific ones can be pointed out as responsi-
ble or specifically related to quality parameters in beer. These
parameters can be defined by sensorial analysis, such as quantita-
tive descriptive analyses (QDA) (Stone, Sidel, Oliver, Woolsey, &
Singleton, 1974). However, these types of studies are very time-
consuming and susceptible to large sources of variation.

http://dx.doi.org/10.1016/j.foodchem.2012.03.080
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Assessing information about beer compounds by means of
instrumental measurements would be very beneficial because
the great possibility of getting repeatability and reproducibility,
besides the fact that instruments do not suffer from fatigue or
adaptation. Measurements can be performed at different stages
of consumption and on different types of sensory attributes (Meilg-
aard, 1982).

In this study the relationships between beer quality parameters,
specifically bitterness and grain taste obtained from sensorial anal-
ysis and instrumental measurements were investigated, as well as
their correlation with calibration models was evaluated.

Pilsner beer samples were analysed using gas chromatography
coupled to a mass spectrometric detector, with a sample prepara-
tion step applying HS-SPME. The correlation of chromatographic
peak areas and sensorial attributes of beer, quantified through
QDA, was carried out by applying a multivariate calibration meth-
od based on partial least squares (PLS) (Beebe, Pell, & Seasholtz,
1998) and variable selection approaches through genetic algorithm
(GA) (Lucasius & Kateman, 1993) and ordered predictors selection
(OPS) (Teófilo, Martins, & Ferreira, 2009).

The genetic algorithm for variable selection is a technique that
aids in identifying a variable subset that, for a given problem, cor-
responds to the most useful and informative one in obtaining an
accurate regression model. In the GA variable selection procedure
the binary code (0,1) is utilised to codify the problem. In this case,
each gene can assume the 1 or 0 value. When the position referring
to a determined variable is 1, this variable is selected. On the other
hand, if the position contains the value of 0 this is an indication
that this variable was not selected. A subset is generated with
the best and most reduced number of variables.

The variable selection realised by GA searches in the data set
the variables that present more sensitivity and linearity for the
compounds of interest. So, in this study, the intention is to evaluate
a strategy based on sensorial and chromatographic analysis and
multivariate calibration based on GA variable selection to be able
to infer about which volatile beer constituents present direct rela-
tionships with beer quality parameters.

In order to compare the results obtained through GA variable
selection a new procedure with high ability to enhance prediction
of multivariate calibration models with a small number of inter-
pretable variables was utilised, the ordered predictors selection
(OPS) method. The core of the ordered predictors selection is to
sort the variables from an informative vector, followed by a sys-
tematic investigation of PLS regression models with the aim of
finding the most relevant set of variables by comparing the
cross-validation parameters of the models obtained (Teófilo et al.,
2009). Many informative vectors can be used such as the regres-
sion vector, the correlation vector and the residual vector. Combi-
nations of the evaluated vectors can also be applied.

From the proposed study, it will be possible to point out the
main volatile compounds related to the two important beer quality
parameters, bitterness and grain taste. This study can be imple-
mented to be used in future for process monitoring and evaluation
of raw materials and final products.

2. Materials and methods

2.1. Samples and HS-SPME materials

Samples from 32 different brands of Pilsner beer (except for one
sample, all brewed in Brazil) were obtained at local groceries,
stored at ambient temperature (25 �C or less) under appropriate
conditions and used before their expiration dates. All extractions
were performed manually using 65 lm polydimethylsiloxane/divi-
nylbenzene (PDMS/DVB) SPME fibres (Supelco, Bellefonte, PA, USA)
coupled to a holder and previously conditioned according to the
supplier’s instructions. The selection of this fibre and of other
HS-SPME-GC–MS operational conditions was based on earlier
studies (da Silva, Augusto, & Poppi, 2008). For the extractions, sam-
ples were enclosed in 16 mL glass vials capped with Teflon/silicone
septa (Pierce, Rockford, IL, USA). Sample temperature during
extraction was controlled with ±0.1 �C using a circulating water
bath (Cole-Parmer, Vernon Hills, IL, USA). Toasted barley from a lo-
cal market, reagent grade NaCl (J.T. Baker, São Paulo, Brazil) and
caffeine (Sigma–Aldrich, St. Louis, MO, USA) were also used, as well
as a C8–C20 n-alkane standard mix (Fluka, Büchs, Switzerland) for
measurement of linear temperature programming retention in-
dexes (LTPRI) of the detected peaks.

2.2. Chromatographic analysis

All chromatographic analysis were performed on a Saturn 2000
Ion Trap GC–MS (Varian, Walnut Creek, CA, USA) equipped with a
30 m � 0.25 mm � 0.25 lm HP-50 column (Agilent Technologies,
Wilmington, DE, USA) and a split-splitless injector operated in
the splitless mode, fitted with an adequate deactivated glass liner
for SPME. The oven temperature was programmed as follows:
2 min at 40 �C ? 10 �C min�1 ? 140 �C ? 7 �C min�1 ? 3 min at
250 �C. The injector and the MS transfer line were kept at 210
and 280 �C, respectively. Helium was used as carrier gas at a flow
rate of 1.0 mL/min. The MS scan range was from 50 to 300 amu.
Identification of the detected peaks was performed using the auto-
mated mass spectral deconvolution and identification system (AM-
DIS) software coupled to the NIST mass spectral search programme
(NIST, Washington, DC, USA) and confirmed by LTPRI measured
from chromatograms of selected samples spiked with the C8–C20

n-alkane mixture. A total of 54 unique peaks, present in all ana-
lysed samples, were pre-selected for the modelling.

2.3. HS-SPME procedure

Before analysis, beer bottles were cooled at �5 �C and, immedi-
ately after opening, the bottle content was degassed in an ultra-
sonic bath for 15 min. Aliquots of 5 mL of degassed beer were
transferred to a glass vial and 1.3500 g of NaCl was added. The vials
were sealed and the samples magnetically stirred for 5 min at
50 �C. After this sample/headspace equilibration period, a PDMS/
DVB fibre was exposed to the sample headspace for 30 min at
the same temperature. The extracted analytes were immediately
desorbed in the injection port of the GC–MS at 210 �C; the fibre
was kept in the GC injector for 15 min to ensure total desorption
and avoid inter-run carryover.

2.4. Sensorial analysis

QDA of the samples was carried out by a panel of 15 volunteers
from 25 to 45 years old using proper standardised procedures
(Stone, 1992). All tasting was performed individually on a room
with appropriate ventilation, illumination and isolation. The panel-
lists were submitted to a 5-day training period degusting beer
diluted with deionized water (to represent the low level of both
bitterness and grain taste scales), undiluted beer spiked with caf-
feine (representing the full-scale level for bitterness) and with
ground barley (representing the full-scale level for grain taste).
After this training and testing phase, beer samples were presented
to the panellists. Samples were coded and tasted by each panellist
in triplicate and in random order. For each beer sample the panel-
lists registered the perceived intensities of bitterness and grain
taste. These individually recorded intensities were converted to
numerical values ranging from 1 to 9, and the data sets checked
by ANOVA and Student’s t-test to find possible inconsistencies
and outliers. Finally, overall average descriptors for bitterness
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and grain taste, ranging from 1 to 9, were calculated for each
sample.

2.5. Bitterness analysis by the standard method

The bitterness parameters of the different beer brands were also
determined by the AOAC 970.16 official standard method (AOAC,
1969). It is denominated the bitterness units (BU) method and con-
stitutes a spectrophotometric method. It utilises spectral grade
2,2,4-trimethylpentane (isooctane) (Carlo Erba), reagent grade oc-
tyl alcohol (Merck) and a 3 mol/L hydrochloric acid (Merck) solu-
tion standardised by a sodium hydroxide (Merck) solution.

Ten mL of chilled (10 �C) carbonated beer were transferred to a
50 mL centrifuge tube, using a pipet which had a minute amount of
octyl alcohol in the tip. One millilitre of 3 mol/L HCl and 20 mL of
isooctane were added. The centrifuge tube was tightly stoppered
and shaken vigorously for 15 min on a mechanical shaker. After
that, the samples were centrifuged for 10 min to separate the
phases. The clear upper phase (isooctane) was immediately trans-
ferred to a cuvette of 1.0 cm path length. The analyses were per-
formed with a Femto 700 Plus Spectrophotometer at 275 nm. The
instrument was set to read 0 A at 275 nm for an isooctane-octyl
alcohol blank solution (10 mL of isooctane containing one drop of
octyl alcohol).

To calculate the BU the Eq. (1) was used.

BU ¼ A275 � 50 ð1Þ

The A275 term corresponds to the absorption verified at 275 nm
of the extracted sample.

2.6. Data processing

All calculations were performed in MATLAB 7 programming
environment (The MathWorks, Natick, MA, USA) utilizing a genetic
algorithm routine from the PLS Toolbox 4.2 (Eigenvector Technol-
ogies, Manson, WA, USA) (Wise et al., 2006) and OPS Toolbox rou-
tines available on the Internet at http://lqta.iqm.unicamp.br, to
perform the selection of the variables.

For each sensorial parameter to be modelled (bitterness and
grain taste) the input data consisted of a X matrix with 32 lines
(one line per sample) and 54 columns (one column for each se-
lected chromatographic peak, containing the corresponding peak
area), and a y vector with 32 lines corresponding to the average
QDA of each attribute measured for the sample by the panel. For
each sensorial attribute, the correlation between X and y was per-
formed by partial least squares regression, after a preliminary step
to select the variables (peak areas) relevant to the models.

Variable reduction was performed by using a GA approach un-
der the following conditions: ten replicates with population size
of 64; mutation rate of 0.005; and maximum of 80 generations.
Tests with data not submitted to any pre-processing before GA var-
iable selection, as well as with the data sets previously auto-scaled
and mean-centred were performed. The best and most appropriate
results were obtained with auto-scaled data and all discussion will
be based on these models. The performances of PLS models gener-
ated for each sub-set of selected variables and with different num-
bers of latent variables were evaluated by calculating the root
mean square error of cross validation (RMSECV). After determina-
tion of the relevant variables for each model, the correlation of pre-
dicted versus measured values of QDA parameters and the
distribution of residuals was verified to confirm the reliability of
the models developed.

In relation to OPS method, firstly it was performed the investi-
gation to the choice of the number of latent variables (LV) to be ap-
plied to the generation of the vectors and the number of LV (hOPS)
necessary to the construction of the regression vector. These two
parameters are necessary to implement the algorithm in the selec-
tion of the variables. Five replicates were performed to all evalu-
ated informative vector and all calculations were performed with
auto-scaled data and, as done to the GA study, the performances
of PLS models generated for each sub-set of selected variables were
evaluated by calculating the RMSECV. After determination of the
relevant variables for each model, the correlation of predicted ver-
sus measured values of QDA parameters and the distribution of
residuals was verified to confirm the reliability of the models
developed.

3. Results and discussion

Measurements from five out of the 15 original panellists were
discarded after ANOVA analysis of the raw data obtained in the
training phase; the remainder judges tasted the beer samples in
triplicate and the QDA values and respective significance intervals
were calculated from their scores. The scores for bitterness ranged
from 2.1 to 8.4; the average was 4.8 and the median was 4.6. For
grain taste, the scores ranged from 3.5 to 6.1, with 4.8 as average
and a median of 4.8. These distributions were deemed as broad en-
ough to be representative of the Pilsner beer brands usually avail-
able and consumed within the Brazilian market. In the GC–MS
data, 54 compounds were systematically found in all examined
beer samples (Table 1). Most of chromatographic peaks were iden-
tified, however some of them, although being unique chemical spe-
cies as indicated by their mass spectra and LTPRI, their identity
could not be established. For example, considering the retention
index and mass spectrum, peak #18 corresponds to an 8-carbon
aliphatic acid, but not exact identification could be attributed. Also
in seven chromatographic peaks no identification was possible.
Since these unidentified or partially identified peaks could be re-
lated to the sensorial properties of the samples and, therefore,
could be significant to the PLS models, it was retained on the input
data. Most of these compounds had already been identified in pre-
vious studies on the composition of the volatile fraction of Pilsner
beers and can be related to the brewing process.

3.1. Bitterness parameter

After GA variable selection, 11 variables were selected for the
bitterness parameter (Table 1). This corresponds to a reduction of
approximately 80% of the 54 original variables.

Also in Table 1, the selected peaks by OPS method to the bitter-
ness parameter are presented. Here, it was pointed out 17 vari-
ables, representing a reduction of approximately 68.5% of the
original variables. In the OPS selection, it was evaluated different
informative vectors and combinations of vectors such as the
regression (R), the root square (S) error, the net analyte signal
(NAS) vectors, and combinations of NAS and S (NS) vectors and R
and S (RS) vectors. Comparing the results from all of them evaluat-
ing the RMSECV and the correlation coefficients of the obtained
models, the best result was obtained utilizing the NS combination
vector.

From the selected peaks by the GA and OPS approaches, seven
were pointed out commonly. It corresponds to approximately
64% of agreement in the selection performed by OPS relating to
the one carried out by the GA.

The Table 2 presents some parameters of the best models to the
GA and OPS selection methods. Considering the selected peaks
commonly pointed out by both approaches, the compounds prob-
ably closed related with the bitterness attribute are ethyl acetate,
1-octanol, p-vinylguaiacol, c-nonalactone, b-phenylethyl butyrate,
caryophyllene oxide and dibutylphthalate.

Using only these selected variables, it is possible to study the
bitterness attribute, since really relevant information was

http://lqta.iqm.unicamp.br


Table 1
Analytes detected on the beer headspace and the compounds selected to bitterness
(B) and grain taste (G) attributes according to genetic algorithm (BGA and GGA) and
ordered predictors variable (BOPS and GOPS).

# tR/
min

LTPRI Identification BGA BOPS GGA GOPS

1 1.41 – Not identified – – – –
2 1.60 691 Ethanol – – – –
3 2.31 731 Ethyl acetate x x – x
4 2.37 735 Isopropyl acetate – – – –
5 3.47 797 Ethyl propionate – – – –
6 3.60 804 1-Pentanol – – x –
7 3.66 807 2-Methyl-1-butanol – – x –
8 4.81 872 Ethyl butyrate – x – –
9 5.91 – Not identified – – – –

10 6.00 939 Isopentyl acetate – – – –
11 8.02 – Not identified – – – –
12 8.12 1058 Ethyl caproate – x – x
13 8.46 1077 Isooctanol – x – –
14 9.22 1120 1-Octanol x x – –
15 9.75 1150 Linalool – – – –
16 10.35 – Not identified – – – –
17 10.96 1218 Caprylic acid x – – –
18 11.03 1222 C8 acida – – – –
19 11.06 1224 C8 estera x – – –
20 11.12 1227 Ethyl caprylate – – – –
21 11.60 1254 b-Phenylethyl alcohol – – – –
22 11.87 1269 Benzoic acid – – x x
23 11.91 – Not identified – – – –
24 12.06 1280 Ethyl benzoate – – – –
25 12.19 1287 1-Undecanol – – x –
26 12.54 1307 cis-geraniol – – – –
27 13.10 1339 Aromatic acida – – x x
28 13.62 1368 b-Phenylethyl acetate – – x x
29 13.72 1374 b-Phenylethyl

acetateisomer
– – – –

30 13.78 1377 Capric acid x – – –
31 13.90 1384 Ethyl caprate – – – –
32 14.09 1394 Ethyl 4-decenoate – x – x
33 14.24 – Not identified – – – –
34 14.71 1429 p-Vinylguaiacol x x x x
35 14.81 1435 Monoterpenea – x x x
36 14.96 1443 Ethyl hydrocinnamate – – – –
37 15.14 1454 b-Damascenone – – – –
38 15.57 1478 c-Nonalactone x x x x
39 16.31 1519 b-Phenylethyl butyrate x x x x
40 16.75 1544 Butylated hydroxytoluene – – – –
41 16.81 1548 Ethyl laurate – x x x
42 16.88 1552 Nerolidol – x x x
43 17.05 1561 Ethyl cinnamate – x – x
44 17.58 1591 Caryophyllenyl alcohol – – – –
45 18.21 1626 Oxygenated sesquiterpenea – x – x
46 18.77 1658 s-Cadinene – x – –
47 18.80 1660 b-Cadinene x – – –
48 18.98 1670 Caryophyllene oxide x x – –
49 19.14 – Not identified – – – x
50 19.30 – Not identified – – – –
51 19.85 1719 Oxygenated sesquiterpenea – – x –
52 21.85 1831 Contaminanta – – x –
53 23.27 – Not identified – x – –
54 24.80 1997 Dibutylphthalate x x x x

a tentative assignment.

Table 2
Parameters of the best models obtained from the GA and OPS variable selection
methods to the bitterness sensorial attribute.

RMSECV Number of latent variables Number of selected variables

GA 0.65 4 11
OPS 0.55 4 17
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captured. This means that the selected variables are the ones that
are directly related to the bitterness quality parameter. It is impor-
tant to emphasise that in most models obtained by OPS method
utilizing other informative vectors, even among other variables,
the compounds cited above were always selected.

Ethyl acetate (#3 in Table 1) is an ester derived from ethanol
and acetic acid and, as with most esters; it is correlated with the
freshness and fruitiness of young beers (Wampler, Washall, &
Matheson, 1996). 1-Octanol (#14 in Table 1) has also already been
reported in the volatile fraction of beer (Pinho et al., 2006). p-Vinyl-
guaiacol (#34 in Table 1) is cited as a derivative of ferulic acid
(hydroxycinnamic acid) during the brewing process, and it is fre-
quently found in beer when wheat or wheat malt is used as a com-
ponent of beer production (Coghe, Benoot, Delvaux, Vanderhaegen,
& Delvaux, 2004). As for c-nonalactone (#38 in Table 1), it is cited
as one of the crucial compounds whose concentration is increased
during beer aging. It is supposed to be derived from nonanoic acid
metabolization by yeast, and not is found in raw hop extracts
(Lermusieau, Bulens, & Collin, 2001). The organic compound
b-phenylethyl butyrate (#39 in Table 1), as with most esters, is cor-
related with the freshness and fruitiness of young beers (Wampler
et al., 1996). Cadinene and caryophyllene (#48 in Table 1) com-
pounds are bicyclical sesquiterpene constituents of the essential
oils of plants, reported as volatile components of fermented bever-
ages, such as wine (Coelho, Rocha, Delgadillo, & Coimbra, 2006).
Phthalate (#54 in Table 1) is also related to bitterness. Phthalates
are chemical compounds mainly used as plasticizers (they increase
the flexibility of the plastic) (Holadová, Prokupková, Hajšlová, &
Poustka, 2007). Although they are not beer constituents, in all data
treatment by GA and OPS, this compound was selected, being pres-
ent in all brands studied. The presence of phthalate can be due to
the contamination by plastic(s) recipient(s) used in some stage
during the brewing process.

Fig. 1a shows a plot of the values of bitterness measured by QDA
against the predicted ones estimated by the PLS approach, after GA
variable selection, where a correlation coefficient (R2) of 0.9678 and
a root mean square error of 0.33 were obtained. As can be observed
in Fig. 1b, the residuals show a random behaviour, reflecting that
the subset indicated by GA for bitterness adequately fit the data.

In Fig. 2a it is presented the values of bitterness measured by
QDA against the estimated ones by the PLS approach after OPS var-
iable selection. The correlation coefficient is 0.9517 and the root
mean square error is 0.28. Fig. 2b shows the random behaviour
of the residual, showing that the useful information was modelled.

The variables selected by GA and OPS are those supposed the
most directly related to bitterness. To evaluate which of these ones
are independent variables, the correlation coefficient values among
the selected variables by GA and OPS approaches were calculated
and presented in Fig. 3a and b, respectively.

From Fig. 3a and b it can be seen that the selected variables
present low correlation coefficients, indicating that these ones
are not correlated among themselves, except by the variables 16
and 17 pointed out by the OPS method. The variables 16 and 17
correspond to the penultimate (#53) and last (#54) variables,
respectively, from the original data set. Both variable selection ap-
proaches pointed out the last peak area as correlated to bitterness.
So, probably the peak 54 can efficiently represents the peak 53,
which presents a retention time close to that one. From these re-
sults, the genetic algorithm and ordered predictors selection se-
lected basically orthogonal variables, indicating that the useful
information is centralised in independent variables.

The bitterness attribute was also determined by the AOAC offi-
cial standard method. Fig. 4 shows the relation of the bitterness
values defined by QDA and the ones obtained from the AOAC stan-
dard method. Fig. 4 shows a linear tendency between the bitter-
ness intensity values from QDA and the standard method, since
it was obtained a square correlation coefficient of 0.7832. This
result validates the quantitative determination of bitterness rea-
lised by quantitative descriptive analyses.



Fig. 1. (a) Plot of the values obtained through QDA against the values estimated by the PLS model for the bitterness parameter, after GA variable selection. (b) Residual plot for
the bitterness parameter.

Fig. 2. (a) Plot of the values obtained through QDA against the values estimated by the PLS model for the bitterness parameter, after OPS variable selection. (b) Residual plot
for the bitterness parameter.
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Fig. 3. (a) Correlation coefficient values between the variables selected by GA for the bitterness parameter. (b) Correlation coefficient values between the variables selected
by OPS for the bitterness parameter. The lateral bars indicate the correlation coefficient values.

Fig. 4. Relation of the bitterness values defined by QDA and the ones obtained from the AOAC standard method.

Table 3
Parameters of the best models obtained from the GA and OPS variable selection
methods to the grain taste sensorial attribute.

RMSECV Number of latent variables Number of selected variables

GA 0.54 3 15
OPS 0.52 6 16
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3.2. Grain taste parameter

In the study related to the grain taste parameter, as presented in
Table 1, GA modelling selected 15 variables from the original 54
variables. It corresponds to a reduction of approximately 72% of
the initial variables. OPS modelling selected 16 variables (Table
1), corresponding to a reduction of approximately 70% of the origi-
nal variables.

In the OPS selection, it was evaluated different informative vec-
tors such as R, S and NAS vectors and their combinations as NAS
and S (NS) vectors and R and S (RS) vectors. Comparing the results
from all of them evaluating the RMSECV and the correlation coef-
ficients of the obtained models, the best result was obtained utiliz-
ing the R vector.

From the selected peaks by the GA and OPS approaches, ten
were pointed out commonly. It corresponds to approximately
67% of agreement in the selection performed by OPS relating to
the one carried out by the GA.
The Table 3 presents some parameters of the best models to the
GA and OPS selection methods, to grain taste quality parameter.
Considering the selected peaks commonly pointed out by both
approaches, the compounds probably closed related with the grain
taste attribute are benzoic acid (#22 in Table 1), a possible aro-
matic acid (#27 in Table 1), b-phenylethyl acetate (#28 in Table
1), p-vinylguaiacol (#34 in Table 1), a possible monoterpene (#35
in Table 1), c-nonalactone (#38 in Table 1), b-phenylethyl butyrate
(#39 in Table 1), ethyl laurate (#41 in Table 1), nerolidol (#42 in
Table 1), and dibutylphthalate (#54 in Table 1).



Fig. 5. (a) Plot of the values obtained through QDA against the values estimated by the PLS model for the grain taste parameter, after GA variable selection. (b) Residual plot
for the grain taste parameter.

Fig. 6. (a) Plot of the values obtained through QDA against the values estimated by the PLS model for the grain taste parameter, after OPS variable selection. (b) Residual plot
for the grain taste parameter.
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These compounds can be considered directly related to the grain
taste quality parameter. As emphasised for bitterness, utilizing
these selected variables, it is possible to describe and study the
grain taste attribute. Almost all the selected compounds identified
by the mass spectra are related to beer composition. Benzoic acid
is extensively used as a preservative in foodstuffs, presenting anti-
microbial activity to prevent bacteria, microbe and fungus prolifer-
ation (Pan et al., 2005). It is mainly utilised in products presenting
acid character, such as beer, due its activity in the pH range of
2.5–4.0 (Ochiai et al., 2002). Aromatic acids are natural constituents



Fig. 7. (a) Correlation coefficient values between the variables selected by GA for the grain taste parameter. (b) Correlation coefficient values between the variables selected
by OPS for the grain taste parameter. The lateral bars indicate the correlation coefficient values.
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of cereals utilised in brewing, such as barley and wheat (Coghe
et al., 2004). The aromatic ester b-phenylethyl acetate and ethyl
dodecanoate were found as some of the most active odorants in var-
ious wines (Komes, Ulrich, & Lovric, 2006; Lee & Noble, 2003; Alves,
Nascimento, & Nogueira, 2005; Kafkas et al., 2006). Nerolidol is a
sesquiterpene present in essential oils of diverse plants, showing
antibacterial, antifungal and anti-parasite properties (Cowan,
1999).

As performed for bitterness, a plot was built of the predicted
values by PLS versus the measured values by QDA (Fig. 5a) and
another to evaluate the residuals of the constructed PLS model
(Fig. 5b), after GA variable selection. The selected variables for
grain taste were well-modelled as can be revealed by the square
correlation coefficient, 0.9334, and the root mean square error,
0.27, of the relation shown in Fig. 5a. The residuals (Fig. 5b)
were also randomly distributed, confirming the adequate
fitting of the selected subset by GA to the grain taste quality
parameter.

In relation to OPS variable selection, it was also evaluated the fit
among the predicted values by PLS and the measured values by
QDA (Fig. 6a). The residuals from this model can be seen in
Fig. 6b. The square correlation coefficient was 0.8851 and the root
mean square error was 0.25.

The correlation coefficient values obtained to the grain taste
models can be considered to present an adequate linear relation
among the evaluated values since these ones are related to senso-
rial analysis and the grain taste quality parameter is not so pro-
nounced as bitterness.

As performed to bitterness quality parameter, the variables se-
lected by GA and OPS were evaluated according to its orthogonal
behaviour. To verify this occurrence, the correlation coefficient val-
ues were obtained among the values selected by GA and OPS for
grain taste, as presented in Fig. 7a and b, respectively.

It can be seen in Fig. 7a that the GA selected variables present-
ing low correlation coefficients, indicating that these variables are
not correlated between each other. According to Fig. 7b, all the
correlation coefficients obtained from the evaluation of the vari-
able selected by OPS presented low values, indicating absence
of correlation among them, except to variables 14 and 15. How-
ever, these peaks present retention times quite close. Again,
according to these results, the genetic algorithm and ordered pre-
dictors selection selected basically orthogonal variables, indicat-
ing that the useful information is centralised in independent
variables.
4. Conclusions

The application of GA and OPS for variable selection allowed the
realisation of the correlation between the chromatographic data
obtained from 32 commercial beer samples and the data resulting
from QDA, for bitterness and grain taste sensorial attributes. The
correlation between sensorial and chemical analysis was possible
by finding out beer compounds which are linearly related to these
quality parameters. The considered substances were that whose
peaks were pointed out by both variable selection approaches.

The developed PLS models showed the correlation cited above.
Simpler prediction models can now be obtained, since models with
fewer and more useful variables can be constructed. These ones
can be used to implement monitoring methodologies during beer
production, such as to the monitoring of raw material quality.
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