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Open access under the El
Hypertension is associated to an increase in central oxidative stress and an attenuation of the baroreflex
control of arterial pressure. The present study evaluated the effect of alterations in the levels of nitric
oxide (NO) and superoxide anion in the caudal ventrolateral medulla (CVLM), a key area of the brainstem
for the baroreflex control of arterial pressure, in renovascular hypertensive rats (2K1C). Baseline mean
arterial pressure (MAP), heart rate (HR), and reflex bradycardia were evaluated 30 days after renal artery
occlusion in anesthetized (urethane, 1.2 g/kg, i.p.) 2K1C or normotensive (SHAM) rats. The MAP, HR, and
baroreflex control of HR were evaluated before and after CVLM microinjections of the non-selective NOS
inhibitor L-NAME (10 nmol), the NO precursor L-ARG (50 nmol), or the antioxidant ascorbic acid, Vit C
(10 nmol). In both 2K1C and SHAM animals, CVLM microinjection of L-NAME produced a decrease in
MAP, whereas L-ARG induced a significant increase in MAP. However, microinjection of Vit C into the
CVLM produced a decrease in MAP and HR only in 2K1C and not in SHAM rats. Cardiovascular effects pro-
duced by microinjection of L-ARG into the CVLM were abolished by prior microinjection of L-NAME in the
CVLM of 2K1C and SHAM rats. Microinjection of L-NAME into the CVLM increased the sensitivity of reflex
bradycardia in 2K1C animals. In contrast, the CVLM microinjection of L-ARG reduced reflex bradycardia
only in SHAM rats. Vit C in the CVLM did not change reflex bradycardia in either 2K1C or in SHAM rats.
These results suggest that increased oxidative stress in the CVLM during hypertension contributes to the
reduced baroreflex sensitivity and to maintain hypertension in the 2K1C model.

� 2012 Elsevier Inc. Open access under the Elsevier OA license.
Introduction (ROS), nitric oxide (NO) and superoxide anion (O �) may be altered
Evidence supports the hypothesis that the increase in oxidative
stress plays a role in the pathophysiology of arterial hypertension
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in central areas related to cardiovascular control in hypertensive
animals [3,4].

NO plays an important role in cardiovascular regulation, in both
physiological and pathological conditions [5,6]. It has been
described as a neurotransmitter in the brain, involved in the mod-
ulation of excitatory and inhibitory neurons, and acting through
interneurons or directly stimulating the release of neurotransmit-
ters [7,8]. Increasing evidence indicates that NO modulates
responses mediated by the sympathetic nervous system (SNS)
and parasympathetic nervous system (PNS) through its action in
the main areas in the brain involved in the control of cardiovascu-
lar functions, such as the paraventricular nucleus of the hypothal-
amus (PVN) [9–11], the nucleus of the solitary tract (NTS) [12,13]
and the areas of the ventrolateral medulla (VLM) [12,14,15]. Previ-
ous studies have shown that mRNA expression of NO synthase
(NOS) isoforms and the NO production in the brain may vary in
hypertensive rats, according to the time course of the hypertension
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or the CNS region [12,16–20]. Additionally, an elevation of super-
oxide in brain areas related to cardiovascular control has been de-
scribed as one of the factors responsible for increased SNS activity
in hypertensive models [1,21].

The CVLM is a depressor region, and stimulation of this area
causes hypotension with consequent vasodilatation of several
peripheral vascular beds [22–24]. The tonic activity of the CVLM
is important for the maintenance of normal blood pressure (BP),
and involves a combination of excitatory (glutamatergic) and
inhibitory (GABAergic) synapses, although the source of this activ-
ity is not fully understood [25,26]. It is well established that CVLM
is rich in GABAergic neurons, and many of these GABAergic neu-
rons tonically inhibit sympatho-excitatory neurons in the rostral
VLM (RVLM), leading to a decrease in SNS activity and a conse-
quent reduction in BP [27–31]. Therefore, inhibition of CVLM neu-
ronal activity significantly increases the neuronal activity of RVLM,
SNS activity, and BP. Further, the CVLM is essential for most sym-
patoinhibitory reflexes produced by activation of NTS, such as the
baroreflex control of BP [31,32].

The contribution of the CVLM to the genesis and maintenance
of hypertension has not been completely elucidated [33–35]. Sev-
eral studies have shown that hypertension occurs during hyperac-
tivity of neurons in the RVLM [36–38]. Moreover, in spontaneous
hypertensive rats (SHR) and in renovascular hypertensive rats
[39,40], the inhibition caused by GABAergic CVLM on the RVLM
excitatory neurons seems to be attenuated, which could explain
the increase in SNS activity observed in these models of hyperten-
sion [39–41].

In the present study, we evaluated the possibility that NO and
the superoxide anion (O2

�) could not only contribute to the base-
line control of BP, but could also modulate baroreflex bradycardia
at the CVLM in hypertensive rats. For this purpose, we evaluated
baseline BP and baroreflex control of HR after CVLM microinjection
of the non-selective NOS inhibitor L-NAME, microinjection of the
NO precursor L-arginine (L-ARG), or microinjection of a potential
scavenger of superoxide anions (ascorbic acid – vitamin C; Vit C)
in 2K1C renovascular hypertensive rats.
Materials and methods

Animals

Experiments were performed in male Fisher rats from ENUT,
Universidade Federal de Ouro Preto, Brazil. The animals were
housed in separate cages in groups of four rats according to their
group (2K1C or SHAM), with free access to rat chow and tap water
in a temperature- and light-controlled room. All animal procedures
were in accordance with the Guidelines for Ethical Care of Experi-
mental Animals, and were performed as approved by the Institu-
tional Ethics Committee of the Federal University of Ouro Preto,
Minas Gerais, Brazil (Protocol # 022/2007).
Induction of renovascular hypertension

Goldblatt renovascular hypertension was induced as described
by Goldblatt et al. [42]. Briefly, the rats (weighing 150–180 g) were
anesthetized with a mixture of ketamine and xylazine (50 and
10 mg/kg, respectively, i.p.), and a silver clip (0.20 mm ID) was
placed around the left renal artery through a midline incision
(Goldblatt renovascular hypertension, 2-kidney, 1-clip model;
2K1C). Other rats were submitted to similar procedures but with-
out the renal-artery clip placement (SHAM group or normotensive
rats). BP recording and CVLM microinjections were carried out
30 days after the surgery. At this time the animals weighed
260–300 g.
Arterial pressure measurements

Pulsatile arterial pressure was monitored by a Gould pressure
transducer (PM-1000, CWE) coupled to a blood pressure signal
amplifier (UIM100A, Powerlab System). Mean arterial pressure
(MAP) and heart rate (HR) were determined from the arterial pres-
sure wave. All variables were continuously recorded with a Power-
Lab digital acquisition system (Powerlab – 4/20, AD Instruments)
with an 800 Hz sampling rate.

CVLM microinjections

2K1C and SHAM rats were anesthetized with urethane (1.2 g/kg,
i.p.) and underwent a tracheostomy. Next, a polyethylene catheter
was inserted into the abdominal aorta through the femoral artery,
for arterial pressure measurement, and another catheter was in-
serted into the inferior cava vein through the femoral vein, for drug
injection. The animals were placed in a stereotaxic frame (David
Kopf Instruments, CA) as described by Rodrigues et al. [43].

Unilateral microinjections of L-NAME (10 nmol/100 nl), L-ARG
(50 nmol/100 nl), Vit C (10 nmol/100 nl) or sterile saline (vehicle
– NaCl 0.9%) in a volume of 100 nl were made over a 20–30 s per-
iod into the CVLM (0.7 mm anterior, 1.8 mm lateral to the obex,
and just above the pia mater on the ventral surface), as described
by Alzamora et al. [44]. The doses of L-NAME, L-ARG, and Vit C were
based on previous studies [1,15,45,46].

Evaluation of the sensitivity of the baroreflex bradycardia

The baroreflex bradycardia was tested in different groups of
animals (2K1C and SHAM), before and 5–10 min after CVLM micr-
oinjections of L-NAME (n = 8 in each group), L-ARG (n = 6–7), and
Vit C (n = 10–11). Baroreflex control of HR was determined by
recording reflex heart rate changes (baroreflex bradycardia) in re-
sponse to transient increases in MAP produced by repeated bolus
injections of graded doses of phenylephrine (0.5–50 lg, i.v.) in ure-
thane-anesthetized rats, according to previous studies [47]. The HR
was converted to pulse interval (PI, ms) by the formula: 60,000/HR.
A best-fit regression line was drawn from MAP and HR changes ob-
tained with the different doses of phenylephrine for each animal.
The slope of the regression line was used as an index of baroreflex
sensitivity (baroreflex gain).

Experimental procedures

The arterial pressure and HR of urethane-anesthetized 2K1C
and SHAM rats were continuously recorded. In three different
groups of rats, after a 10-min stabilization period, the micropipette
was positioned in the CVLM, and L-NAME (10 nmol, n = 6–7) or sal-
ine (NaCl, 0.9% – 100 nL); L-ARG (50 nmol, n = 6–11) or saline
(NaCl, 0.9% – 100 nL); and Vit C (10 nmol, n = 13–14) or saline were
microinjected, in a random order. In some animals, phosphate-
buffered saline (pH 7.4; 100 nl) was microinjected into the CVLM
as a control for the Vit C vehicle. In order to test the ability of
L-ARG to induce a rise in NO level, approximately 50 min after
the CVLM microinjection of the L-ARG, L-NAME was microinjected,
and after 5 min L-ARG was repeated in 2K1C (n = 6) or SHAM
(n = 11) rats.

Finally, the baroreflex test was evaluated in three additional
groups of 2K1C and SHAM animals, before and 5–10 min after
CVLM microinjection of L-NAME (n = 8), L-ARG (n = 6–7), or Vit C
(n = 10–11).

In another group of rats SHAM and 2K1C rats (n = 6–12) was
evaluated the mRNA expression of nNOS and eNOS by qRT-PCR
analysis.



Table 1
Primers sequence used to perform real-time PCR.

Gene Sequence (50–30) forward Sequence (50–30) reverse

nNOS GCCATCCAGCGCATAATGACCCAG GAGGGTGACTCCAAAGATGTCCTC
eNOS CTGCCCTTGGCCTGCGCTGGT ACACAGGTCCCTCATGCCAAT
s26 CGTGCTTCCCAAGCTCTATGT CGATTCCTGACAACCTTGCTATG
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Histological verification of microinjection sites

At the end of each experiment, the animals were then killed
with an excess of anesthetic, and the brain was carefully removed
and fixed in 10% phosphate-buffered formalin. Serial coronal sec-
tions (40–50 lm) of the medulla oblongata were made and stained
with neutral red for histological examination. Microinjection sites
were identified by tissue rupture produced by the microinjections
under light microscopy, and was referred to standard anatomical
structures of the brain stem according to the atlas of Paxinos and
Watson [48]. Fig. 1 shows, on the left side, an image of a histolog-
ical section of the medulla, illustrating the microinjection site in a
representative animal. On the right side, diagrams of frontal sec-
tions of the medulla from the atlas of Paxinos and Watson [48]
show the location (black area) of the center of the microinjections
in all animals of this study. The microinjections into the CVLM
were located in the ventral portion of the lateral reticular nucleus,
at the level of �13.3 to �13.8 mm, posterior to the bregma (Fig. 1).

Reverse transcription and real-time PCR

Normotensive – SHAM and 2K1C rats (n = 6–12) were decapi-
tated, their brains were removed, the CVLM region was dissected,
quickly frozen on liquid nitrogen and stored at �70 �C until pro-
cessed. A pool of CVLM region from two animals was homogenized,
and the total RNA was isolated with TRIzol reagent (Invitrogen Life
Technologies) according to the manufacturer’s protocol. RNA sam-
ples, approximately 2 lg, were treated with DNAse (Invitrogen Life
Technologies) to eliminate genomic DNA present in the samples.
Approximately 1 lg of DNased mRNA was used as template for
M-MLV reverse transcriptase (Promega) using the reverse specifics
oligonucleotides. Real-time PCR was carried out following genera-
tion of first strand cDNA. Endothelial (eNOS), neuronal NOS (nNOS)
and the endogenous S26 ribosomal cDNA were amplified using
specific primers (Table 1) and SYBR Green PCR Master Mix (Applied
Biosystems) in an ABI Prism 7000 Sequence Detection Systems.

Drugs

The drugs (urethane, phenylephrine, L-NAME, and L-ARG; Sigma
Chemical Company, St. Louis, MO, USA) were all dissolved in saline.
Vit C (Sigma Chemical Company, St. Louis, MO, USA) was diluted in
phosphate-buffered saline (pH 7.4).

Statistical analysis

The results are expressed as means ± SEM. Comparisons be-
tween two groups were assessed by Student’s t test. Comparisons
of three or more groups were made by one-way ANOVA followed
by Newman–Keuls. Statistical analyses were performed with the
Fig. 1. Left, image of a histological section of the medulla illustrating disruption of
the tissue caused by CVLM microinjection. Right, diagram of frontal sections of the
medulla (13.80 mm caudal to the bregma) showing the center of the microinjection
into the CVLM (black area). The diagram is from the atlas of Paxinos and Watson,
1986. AP = area postrema; Amb = nucleus ambiguus; LR = lateral reticular nucleus;
Py = pyramidal tract; Sol = nucleus of solitary tract; nXII = hypoglossal nucleus.
software Graphpad Prism (version 4.00). The criterion for statistical
significance was set at p < 0.05.

Results

Baseline values of MAP and HR

The baseline values of MAP of anesthetized 2K1C (140 ± 2 mm
Hg, n = 45) were significantly higher than the baseline values of
MAP of anesthetized SHAM rats (105 ± 1 mm Hg, n = 44). The base-
line values of HR were not significantly different between the 2K1C
group (370 ± 6 beats/min, n = 45) and the SHAM group (372 ± 4
beats/min, n = 44).

BP effect of CVLM microinjections

Unilateral microinjection of L-NAME into the CVLM produced a
significant decrease in MAP in 2K1C rats (�17 ± 3 vs �5 ± 1 mm
Hg, n = 7; saline; Fig. 2A), which was similar to that produced by
microinjection of L-NAME into the CVLM in SHAM rats (�17 ± 3
vs �4 ± 0.4 mm Hg, saline; n = 6; Fig. 2A). No significant changes
were observed in the duration of the hypotensive effect induced
by L-NAME in 2K1C rats (6 ± 1 min, n = 6) or in SHAM rats
(4 ± 0.5 min, n = 6). In addition, L-NAME also induced a significant
fall in HR in 2K1C rats (�29 ± 7 beats/min vs �1 ± 1 beats/min,
n = 7; saline; Fig. 2D), similar to that observed in SHAM rats
(�39 ± 15 beats/min vs �1 ± 1 beats/min, n = 6; saline; Fig. 2D).

Microinjection of L-ARG into the CVLM produced a significant
increase in MAP in 2K1C rats (11 ± 3 vs �0.3 ± 0.6 mm Hg, n = 6;
saline; Fig. 2B), which was similar to the pressor effect produced
by microinjection of L-ARG into the CVLM in SHAM rats
(11 ± 1 mm Hg, n = 11; Fig. 2B). However, L-ARG lengthened the
hypertensive effect in 2K1C rats (26 ± 7 min, n = 6) compared to
the SHAM group (10 ± 2 min, n = 11). The pressor effect of L-ARG
was not accompanied by a significant effect on the HR in 2K1C rats
(�12 ± 6 vs �3 ± 1 beats/min, n = 6) or in SHAM rats (8 ± 8 beats/
min vs �1 ± 1 beats/min, n = 11; saline; Fig. 2E).

Microinjection of Vit C into the CVLM produced a significant de-
crease in MAP in 2K1C rats (�17 ± 2 vs�3 ± 0.5 mm Hg, n = 14; sal-
ine; Fig. 2C). In contrast, microinjection of Vit C into the CVLM
produced no significant decrease in MAP in SHAM rats (�5 ± 1 vs
�3 ± 0.6 mm Hg, n = 13; saline; Fig. 2C). Vit C also induced a signif-
icant decrease in HR in 2K1C rats (�26 ± 6 beats/min vs �0.5 ± 0.5
beats/min, n = 14 saline; Fig. 2F) and had no significant effect on
HR in SHAM rats (�13 ± 4 beats/min vs �3 ± 2 beats/min, n = 13;
saline; Fig. 2F).

As shown in Fig. 3, microinjection of L-L-NAME into the CVLM
abolished the pressor effect induced by L-ARG on the CVLM
in 2K1C rats (11 ± 3 mm Hg, before L-NAME vs 3 ± 2 mm Hg, after
L-NAME; n = 6; Fig. 3A) and in SHAM rats (11 ± 1 mm Hg, before
L-NAME vs 3 ± 2 mm Hg, after L-NAME; n = 11; Fig. 3A). Microinjec-
tion of L-ARG after L-NAME had no significant effect on HR in both
groups (data not shown).

Evaluation of the sensitivity of the baroreflex bradycardia

As expected, the reflex bradycardia of 2K1C rats (0.12 ± 0.02 ms/
mmHg, n = 25) was significantly lower compared to that of SHAM
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Fig. 2. Mean arterial pressure (DMAP, mmHg) and heart rate (HR, beats/min) changes produced by CVLM microinjections of L-NAME (10 nmol/100 nl; panels A and D) or L-
ARG (50 nmol/100 nl; panels B and E) or Vit C (10 nmol/100 nl, panels C and F) or saline (100 nl) in normotensive (SHAM, n = 6–13) or hypertensive (2K1C, n = 6–14) rats.
⁄p < 0.05 in comparison to saline (ANOVA followed by Newman–Keuls test).

Fig. 3. Mean arterial pressure changes (DMAP, mmHg) produced by CVLM
microinjections of L-ARG (50 nmol/100 nl) before and 5 min after microinjection
of L-NAME (10 nmol) in normotensive (SHAM, n = 11) or hypertensive (2K1C, n = 6)
rats. ⁄p < 0.05 compared to saline (ANOVA followed by Newman–Keuls test) and
#p < 0.05 compared to L-ARG before (ANOVA followed by Newman–Keuls test).
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rats (0.37 ± 0.07 ms/mmHg, n = 25). Fig. 4A illustrates the barore-
flex bradycardia induced before and after the CVLM microinjection
of L-NAME. As shown in Figs. 4A and 5A, L-NAME significantly
increased baroreflex bradycardia in 2K1C rats (0.18 ± 0.04 vs
0.07 ± 0.01 ms/mmHg, n = 8; before L-NAME). In contrast, microin-
jection of L-NAME into the CVLM did not change the baroreflex bra-
dycardia of the SHAM rats (0.41 ± 0.05 vs 0.35 ± 0.06 ms/mmHg,
n = 8, before L-NAME; Fig. 5A).

On the other hand, L-ARG significantly decreased baroreflex bra-
dycardia in SHAM rats (0.28 ± 0.03 vs 0.42 ± 0.07 ms/mmHg, n = 6;
before L-ARG; Figs. 4B and 5B). In contrast, microinjection of L-ARG
into the CVLM did not change the baroreflex bradycardia in 2K1C
rats (0.08 ± 0.02 vs 0.10 ± 0.03 ms/mmHg, n = 7, before L-NAME;
Fig. 5B).
In addition, microinjection of Vit C into the CVLM did not
change the baroreflex bradycardia in 2K1C rats (0.14 ± 0.02 vs
0.13 ± 0.02 ms/mmHg, n = 10, before Vit C; Fig. 5C) and in SHAM
rats (0.34 ± 0.06 vs 0.35 ± 0.06 ms/mmHg, n = 11, before Vit C;
Fig. 5C).

Expression of nNOS mRNA and eNOS mRNA in the CVLM

As shown in Table 2 the mRNA expression of nNOS and eNOS,
obtained by qRT-PCR analysis, were lower in the CVLM of 2K1C rats
(values and values, respectively) as compared to SHAM rats (values
and values, respectively).

Discussion

The main finding of the present study was that CVLM inhibition
of NO synthase with L-NAME increased the sensitivity of the baro-
reflex bradycardia in 2K1C hypertensive rats, suggesting the exis-
tence of an inhibitory nitrergic influence on CVLM neurons that
participates in baroreflex pathway. Interestingly, the response in-
duced in baseline arterial pressure was not different in 2K1C rats
in comparison to SHAM. On the contrary, the administration of
an antioxidant agent, Vit C, did not alter baroreflex modulation
at the CVLM, but induced a higher hypotensive response in 2K1C
rats.

This result is in keeping with those of other studies showing
that NO plays an inhibitory role in the brain [49], especially in
areas related to cardiovascular control such as the PVN [9,10,49],
NTS [50–52], and RVLM [53–55]. Overall, these studies have shown
that an increase in NO level in the PVN or in the RVLM leads to ef-
fects that include marked reductions in BP and in sympathetic
activity, through an interaction between NO and GABAergic neu-
rons. These studies are consistent with the observations reported
here, and reinforce the hypothesis that NO also has an inhibitory
role in neurons of the CVLM.

Several studies using a variety of methods have identified NOS
in different nuclei associated with baroreflex control, including the
PVN, NTS, CVLM, and RVLM [20,56–58]. The role of NO in different
areas of the brain related to baroreflex control is not completely



Fig. 4. Pulsatile (PAP, mmHg), mean arterial pressure (MAP, mmHg) and heart rate (HR, beats/min) recordings illustrating the typical effect produced by injection of
phenylephrine (25 lg, i.v.) before and after CVLM microinjection of L-NAME (10 nmol) in 2K1C rats (panel A) or L-ARG (50 nmol) in SHAM rats (panel B). Arrows indicate
injection sites of phenylephrine (iv, in bolus).
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understood. In the NTS, a major site for baroreflex modulation,
some investigators have suggested that NO increases baroreflex
sensitivity [59], whereas others have found either that NO medi-
ated an inhibitory effect [17,60,61] or that it had no effect
[17,62]. Conversely, studies have shown that the overexpression
of eNOS in RVLM improved baroreflex function in stroke-prone
SHR [55], whereas nNOS gene transfer into the RVLM improves
baroreflex function in rats with heart failure [63]. These effects
may have resulted from a cardiac sympathoinhibitory effect of
NO in RVLM neurons.
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Table 2
mRNA expression of nNOS and eNOS (arbitrary unit) in the caudal ventrolateral
medulla (CVLM) of renovascular hypertensive rats 2K1C or normotensive SHAM rats.

nNOS mRNA (a.u.) eNOS mRNA (a.u.)

SHAM 1.28 ± 0.15 1.01 ± 0.10
2K1C 0.40 ± 0.07* 0.20 ± 0.06*

n 3–4 3–6

Values are mean ± SEM; n = number of samples. Each sample represents a pool of
the CVLM of 2 animals.
* p < 0.05 compared to the respective SHAM group (Student’s t test).
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Although it has been shown that NO acts as a modulator of
activity of the SNS, studies showed different changes in the mRNA
expression of nNOS and eNOS in different areas of the CNS and at
different stages or models of hypertension, such as SHR [17,18,67]
and in 2K1C renovascular hypertensive rats [19]. Our present re-
sults showed that the mRNA expression of nNOS and eNOS in the
CVLM were lower in 2K1C rats (4 weeks of renal artery occlusion)
compared to SHAM rats. In fact, Krukoff et al. [19] showed that
nNOS gene expression in CVLM was increased at 3 weeks and de-
creased at 6 weeks after renal artery occlusion. Plochocka-Zulinska
and Krukoff [18] demonstrated an increase in nNOS expression in
the CVLM of adult SHR, but not in young pre-hypertensive rats
[18]. However, despite of the reduced mRNA levels of NOS found
in our study, our data showed an improvement in baroreflex sen-
sitivity after L-NAME microinjection into the CVLM in hypertensive
rats, suggesting that NO is playing a modulatory role on baroreflex
control at this site. Whether this fact can be attributed to a
different source of NO or to an increased activity of the enzymes
involved in NO production at this site remains to be investi-
gated. In addition, the relative contribution of each NOS isoform(s)
for the production of NO in the CVLM at different stages of hyper-
tension awaits future investigation. In the present study, the use of
a non-specific inhibitor of the NOS, L-NAME, as a first approach to
understand the involvement of NO in the CVLM, showed that NO
acting at the CVLM is contributing to the lower baroreflex sensitiv-
ity in renovascular hypertensive rats, at least at a time point where
the disease is dependent on the activation of the circulating renin-
angiotensin system.

Our data showed that microinjection of L-ARG, a precursor for NO
synthesis, into the CVLM induced a significant attenuation in baro-
reflex bradycardia in normotensive rats, which reinforces the
hypothesis that increased NO in the CVLM leads to a decrease in bar-
oreflex sensitivity. On the other hand, the present study showed
that CVLM microinjection of L-ARG in the 2 K1C rats did not alter
the already low sensitivity of the baroreflex, which may be related
to the very low value for baroreflex sensitivity that these animals
showed at the baseline. Interestingly, CVLM microinjection of
L-NAME induced a significant improvement in the baroreflex brady-
cardia in hypertensive rats, in contrast to the effect in normotensive
rats. This finding further suggests that endogenous NO may partic-
ipate in the modulation of the baroreflex control of HR, at least in the
CVLM of 2 K1C rats.

The inhibitory role of NO in baroreflex modulation at the CVLM
could be due to one or more of the following mechanisms: (1) the
well-known inhibitory GABAergic pathway from CVLM to RVLM
[29,31,39,64], (2) the projection from the NTS to the CVLM
[27,65], and (3) the projections from the CVLM to the nucleus
ambiguus [66]. Future studies will be necessary to evaluate which
pathways are being modulated by NO at the CVLM, especially con-
sidering that activation of the parasympathetic system is the major
mechanism involved in baroreflex bradycardia.

In the present study, we have shown that CVLM microinjection
of L-NAME induced similar decreases in MAP and HR in 2K1C and
in normotensive rats. Accordingly, CVLM microinjection of L-ARG
induced similar increases in BP in 2K1C and in normotensive rats.
This agrees with previous studies by us [15] and others [14], which
showed that CVLM microinjection of L-ARG induced a significant
increase in MAP, whereas L-NAME induced a significant hypoten-
sion. Shapoval et al. [14] showed that unilateral CVLM microinjec-
tions of sodium nitroprusside (an NO donor) and L-ARG in
anesthetized cats produced an increase in MAP and RSNA activity,
whereas microinjection of L-NMMA, a non-selective inhibitor of
NOS isoforms, produced opposite effects. Similarly, Lage et al.
[15], observed that microinjection of L-NAME in the CVLM of nor-
motensive rats produced hypotension, whereas microinjection of
L-ARG promoted an increase in BP in normotensive rats.

Kishi et al. [54] showed in stroke-prone SHR that overexpres-
sion of an eNOS-related gene in the RVLM increases the release
of both glutamate and GABA. However, the predominant effect
was on GABAergic activity, which resulted in a reduction in the
SNS activity in these animals. It has been reported that hyperten-
sion is accompanied by a decrease in the activity of CVLM gabaer-
gic neurons that project to sympathetic neurons in the RVLM
[39,40,68]. Taken together, the data from these studies suggest that
NO has an inhibitory effect on neurons involved in the tonic control
of arterial pressure, possibly by suppressing the CVLM-RVLM GAB-
Aergic pathway.

As mentioned before, our data showed that there was an in-
creased baroreflex response to CVLM L-NAME microinjection in
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hypertensive rats. However, 2K1C rats showed a similar BP effect
after CVLM L-NAME microinjection compared with SHAM rats.
These data suggest that sympathetic and cardiac baroreflex are
independently regulated by distinct signaling system in the CVLM
[34] Further, NO is specifically affecting the activity of neurons in-
volved in baroreflex.

On the other hand, literature data have shown that during
hypertension, oxidative stress also may increase the production
of other free radicals such as the superoxide anion (O2

�), which
is also considered a modulator of SNS activity [1]. Furthermore,
the reaction between the superoxide anion and NO leads to pro-
duction of another free radical, peroxynitrite, which also contrib-
utes to cardiac sympathovagal imbalance in hypertensive states
[3].

Our present data showed that CVLM microinjection of Vit C,
which has the property of scavenging superoxide anions, did not
alter baroreflex bradycardia in 2K1C or in SHAM rats. This suggests
that endogenous superoxide anions are not involved in baroreflex
modulation, at least at this brain site. Our data also showed that
CVLM microinjection of Vit C caused significant hypotension and
bradycardia only in the 2K1C rats. No cardiovascular effect was ob-
served in normotensive rats after Vit C microinjection. Similarly,
Oliveira-Sales et al. [1] reported that microinjection of Vit C into
the RVLM lowered BP and HR only in 2K1C rats and not in SHAM
rats, showing that oxidative stress is an important additional
mechanism for the high BP of 2K1C rats. As mentioned above, it
is interesting that Vit C microinjection did not alter baroreflex bra-
dycardia in 2K1C or normotensive rats, which is in line with the
concept that different pathways are involved in baseline MAP
and reflex control of HR [34], and superoxide may only affect one
of them.

Furthermore, microinjection of L-NAME and Vit C in the CVLM
induced similar effects on MAP and HR in 2K1C rats by inhibiting
the formation of NO and the superoxide anion, respectively. Con-
sidering also that CVLM microinjection of Vit C did not alter the
MAP of SHAM rats, our data suggest the involvement of superoxide
anions in the CVLM in maintaining the high levels of MAP in 2K1C
hypertensive rats.

In summary, our data emphasize the inhibitory role of NO in the
CNS, by showing that NO in the CVLM may be an additional mech-
anism involved in the attenuated baroreflex bradycardia that is ob-
served in renovascular hypertensive 2K1C rats. The data also
showed that, during hypertension, there is an increased production
of superoxide in the CVLM, which in turn would participate in
maintaining high blood pressure in the 2K1C model. Overall, the
data from the present study showed that increased oxidative stress
in the CVLM contributes importantly to reducing the sensitivity of
reflex bradycardia and to the high levels of MAP that occur in reno-
vascular hypertension.
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