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Abstract This paper presented a digital interpretability of the annual tile-based mosaic (TBM) images for the operational
purposes of time-series land cover analysis. The primary data used were the TBM images of Landsat-8 OLI of the central
part of Sumatra, acquired from January 2015 to June 2017. The method used was comparing the overall accuracies of
the results of the TBM images of land cover classification that using the master training samples of 2016 data with that
using the training sample from each year of the three-years of data. The classifications were performed using four groups
of spectral bands, namely Band 6-5-4-3-2, Band 6-5-4, Band 6-5-2, and Band 5-4. In order to improve the overall accu-
racies (OA), the classification results were afterward reclassified using fewer class number, based on Jefferies Matusita
(JM) distance approach. The digital interpretability of the images could be deliberated through the average of overall
accuracy (AOA) scores, which is Good with a score of > 80%, Fair between 70.0% - 79.9% and Poor if < 70%. The results
showed that the use of the group of the Bands 6-5-4-3-2 performed at Good overall accuracy, consistency level with an
AOA score of 86% for six object classes. Whereas the classifications using the groups of the Bands 6-5-4-3-2, Bands 6-5-
4, and Bands 6-5 indicated Good accuracy, the consistency level for four object classes, with AOA scores of 89%, 82%,
and 81%, respectively. It means that the annual mosaic image could be accepted through the digital interpretability of
the land cover classification with AOA > 80% for six and four object classes. To support operational requirements, the
use of group Bands 6-5 could also be recommended as the most efficient group of bands selected for land cover analysis
with four object classes.

Keywords: Overall accuracy, consistency, annual mosaic image, master sample

Abstrak Paper ini menyajikan interpretabilitas dijital citra mosaik tahunan TBM untuk keperluan operasional analisis
liputan lahan time-series. Data primer yang digunakan yakni citra Landsat-8 OLI TBM wilayah Sumatera bagian tengah,
yang direkam dari Januari 2015 hingga Juni 2017. Metode yang digunakan yakni membandingkan akurasi keseluruhan
hasil klasifikasi liputan lahan citra TBM menggunakan master training sampel data tahun 2016 dengan hasil klasifikasi
menggunakan training sampel dari masing-masing ketiga tahun data. Klasifikasi tersebut dilakukan menggunakan empat
kelompok kanal spektral yakni Band 6-5-4-3-2, Band 6-5-4, Band 6-5-2, dan Band 5-4. Guna meningkatkan nilai akurasi
keseluruhan, hasil klasifikasi tersebut kemudian dilakukan klasifikasi ulang menggunakan kelas yang lebih sedikit melalui
pendekatan Jefferies Matusita (JM) distance. Interpretabilitas citra dapat diukur melalui nilai rata-rata akurasi keseluru-
han (AOA), yakni Bagus dengan nilai > 80%, Fair antara 70,0% - 79,9%, dan Buruk apabila < 70%. Hasil penelitian
menunjukkan bahwa penggunaan kelompok Band 6-5-4-3-2 mempunyai tingkat konsistensi akurasi keseluruhan Bagus
dengan skor AOA 86% untuk enam kelas objek. Sedangkan kelompok Band 6-5-4-3-2, Band 6-5-4, dan Band 6-5 menun-
jukkan tingkat konsistensi akurasi Bagus untuk empat kelas objek, dengan skor AOA masing-masing yakni sebesar 89%,
82%, dan 81%. Dengan demikian citra mosaik tahunan TBM dapat diterima melalui interpretabilitas dijital klasifikasi
liputan lahan dengan AOA > 80% untuk enam dan empat kelas objek. Guna mendukung keperluan operasional, peng-
gunaan kelompok Band 6-5 dapat direkomendasikan sebagai kelompok band terpilih paling efisien untuk analisis liputan
lahan dengan empat kelas objek. jukkan tingkat konsistensi akurasi Bagus untuk empat kelas objek, dengan skor AOA
masing-masing yakni sebesar 89%, 82%, dan 81%. Dengan demikian citra mosaik tahunan TBM dapat diterima melalui
interpretabilitas dijital klasifikasi liputan lahan dengan AOA > 80% untuk enam dan empat kelas objek. Guna mendukung
keperluan operasional, penggunaan kelompok Band 6-5 dapat direkomendasikan sebagai kelompok band terpilih paling
efisien untuk analisis liputan lahan dengan empat kelas objek.

Kata kunci: Akurasi keseluruhan, konsistensi, citra mosaic tahunan, sampel master

planning in Indonesia. Considering the area and
the heterogeneity of the region, it is important for
Indonesian decision-makers to have accurate and
accountable data as a basis for determining the policy

1.Introduction
Geospatial Data and Information (IG) becomes
an important component in national development
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development, caused by the non-standard or unequal
maps used as the basis for planning. The perspective of
the OMP can be used asleverage in realizing space justice
for national development (Presiden Republik Indonesia
2011,2016). Until now, there are still many non-standard
or unequal map uses that have not been referenced in
one geospatial reference, one standard, one database,
and one geoportal in various sectoral development
programs (Presiden Republik Indonesia 2014b).

In addition, there are still many national and
regional institutions that have not been supported
by the availability of the latest spatial maps. In such
areas, the satellite image can be a very useful source
of information to complement the availability of
spatial data for the implementation of OMP (Presiden
Republik Indonesia 2013b, 2018). For areas that are
often covered by clouds, such as parts of Kalimantan,
Papua, and Sumatra, a model of image processing is
required to extract the abundance of imagery data
available in the region. The continuity and regularity
of the availability of the minimum cloud cover of the
annual mosaic image for areas often covered by clouds
are necessary for the purposes of regional planning
and development (Setiyoko et al, 2016; Kushardono
& Dewanti 2016). As a developing country, Indonesia
needs the availability and regularity of satellite data
covering wide areas to support regional development
programs (Presiden Republik Indonesia 2011, 2014a).

Optical remote sensing systems are often
constrained by clouds and haze, especially in tropical
regions such as Indonesia (Gastellu-Etchegorry
1988; Roswintiarti et al, 2014). But along with the
development of data processing technology, some
images with different acquisition dates can be
processed to produce a cloud-free composite mosaic
image through a mosaicing process between cloudy
and cloud-free areas. Image mosaicing is the process
of combining two or more side-lap/overlap images to
produce a representative and continuous image that will
be used in a further analysis process for an information
extraction need. The principle of this image mosaicing
is to replace the cloud and haze covered areas with
different scene/tile/pixels with the cloud or haze free
data (CRISP 2001; Mouginis-mark et al, 2001; Furby
2002; Furby et al, 2006; De Vries et al, 2007; Broich
et al, 2011; Ghosh & Kaabouch 2016; Guo et al, 2016;
Hansen & Loveland 2012; Roswintiarti et al, 2014;
Kustiyo et al, 2015; Kustiyo 2016; Margono et al, 2016).

Several researchers developed solutions to address
the availability of medium-scale of remote sensing
data in areas often covered by clouds (Roswintiarti et
al, 2014), some of them are Pixel-Based Mosaic (PBM)
models (Hansen et al, 2008; Kustiyo et al, 2014). In the
PBM model, the larger the area being analyzed, the
more pixels being processed, or the more time it takes
and the more storage capacity it requires. If there are
no cloud-free pixels for the region being analyzed,
it will be difficult to obtain pixels to replace cloud-

covered areas. Using PBM models often results in less
efficiency and makes the complexity of the annual
mosaic image analysis process. The Mosaic Tile Based
(hereinafter called Tile-Based Mosaic or TBM model)
is an approach developed from a set of pixels, so the
TBM model can overcome the limitations of the PBM
model in making a better accuracy of the annual mosaic
image. Thus the TBM model was proposed to be applied
in this study. The proposed TBM model was applied to
Landsat-8 OLI data in the central part of Sumatra to
obtain the minimum cloud cover of the annual TBM
image (hereinafter called annual mosaic image). The
algorithm of the model was (Dimyati, RD. et al, 2018):

Final_score=a*%Cloud Free+b*%Haze
Free+c*Veg. Conf. +d*Open Land Conw
Where:

a. % Cloud Free is the percentage of brightness
value or free from cloud cover on image tile;
range of value between 0-100%; 100% value
if the tile of cloud free image, and value 0
when the total image tile is closed by cloud;

b. % Haze Free is the percentage of brightness
or free value of haze on the image tile; the
range of values between 0-100%; haze value
100 if the image tile is absolutely no haze, and
value 0 if the image tile is completely fogged;

c. Veg. Conf. (Vegetation Confidence) is the
percentage of a confidence value of the
vegetation cover on the image tile, derived
from the mean NIR/Green index value on
the land; the range of values between 0-100%;

d. Open Land Con. (Open Land Confidence) is
the percentage of a confidence value of the open
land on the image tile, which is derived from
the average SWIR-1/Green index value of the
land; the range of values between 0-100%; and

e. a b, ¢, d are coefficients given the value 1.

The purpose of this study was to examine whether
the digital interpretability of the annual mosaic
image results was acceptable for the digital analysis
of time-series land cover. The digital interpretability
of data processing is proposed to be measured
by the consistency of the annual mosaic image.

The results of this study will be used to ensure that
the annual mosaic image of TBM model meets the
requirementsrecommendedinthedigitalinterpretability
of a digital analysis of time-series land cover image,
as an input to the process of standardization of
nationwide large-scale remote sensing data processing.

2. The Methods
Study area

The selected study area covered the central part of
Sumatra, including parts of Riau, North Sumatra, and
West Sumatra Provinces (Figure 1). The main reasons
for the selection of this study area are, among others,
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that as a part of Indonesia which is often covered by
clouds and haze disturbance (Gastellu-Etchegorry
1998; Roswintiarti et al, 2014), and the Landsat-8 OLI
images of the TBM model for 2015, 2016, and 2017
are ready for the region (Dimyati, RD. et al, 2018),
and has been shown to have high interpretability for
visual land cover analysis (Dimyati, M. et al, 2018).

In addition, the area has a relatively complete
topography and varies, from flat to mountainous.
The area also has a relatively complete object of
land cover such as forests, swamps, plantations,
shrubs, bushes, paddy fields, settlements, and
mangroves. The land cover change of the region
is quite dynamic and good for representing an
analysis of dynamic land cover changes (Broich et
al, 2011; Margono et al, 2014; Setiawan et al, 2015).
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Figure 1. Location and path-row coverage of
the study area, the central part of Sumatra

Data

The primary data used for this study were
annual mosaic images of Landsat-8 OLI of 2015,
2016, and 2017. Those data have been geometrically
corrected at Level-1T (precision and terrain
correction level) and radiometrically corrected of
ToA (Top of Atmosphere) and BRDF (Bi-directional
Reflectance Distribution Function), covering parts
of Riau, West Sumatra, and North Sumatra Provinces
(Dimyati, RD. et al, 2018, Dimyati, M. et al, 2018).

The total data used consisted of 570 scenes, covers
10 (ten) scenes on the path-row 125-59, 125-60, 126-
59, 126-60, 126-61, 127-59, 127-60, 127-61, 128-59,
and 128-60. However, for three-year data of 2015,
2016, and 2017 in this study, only 478 scenes were used
due to the availability at the time of data collection.

The orientation of this study was focused on
detecting land cover objects in the terrestrial area.
The efficiency and relevancy of using spectral band
selection were considered. Several considerations
in the spectral band selection where the relevancy to
the application theme, sensitivity to land cover and
its environment objects, stability to the atmospheric
disturbances variability, and avoiding redundancy.
The characteristics of spectral bands of Landsat-8 OLI
are shown in Table 1. Therefore only 5 (five) spectral
bands among 9 (nine) available spectral bands of OLI
had been selected for this research (Dimyati, RD. et
al. 2018). The spectral bands selected for this research
were Band-2, Band-3, Band-4, Band-5, and Band-
6 with spatial resolution of 30 meters. The sensitivity
of the five spectral bands to the vegetation and its

Table 1. The characteristics of spectral bands of Landsat-8 OLI (USGS 2015)

Spectral band Wavelength Useful for mapping
(um)

Band-1 Coastal Aerosol 0.435-0.451 Coastal and aerosol studies.

Band-2 Blue 0.452 - 0.512 Bathymetric mapping, distinguishing
soil from vegetation, and deciduous from
coniferous vegetation.

Band-3 Green 0.533 - 0.590 Emphasizes peak vegetation, useful for
assessing plant vigor.

Band-4 Red 0.636 - 0.673 Discriminates vegetation slopes.

Band-5 Near Infrared (NIR)  0.851 - 0.879 Emphasizes biomass content and shore-
lines.

Band-6 Short-wave Infrared  1.566 - 1.651 Discriminates moisture content of soil

(SWIR-1) and vegetation; penetrates thin clouds.

Band-7 Short-wave Infrared  2.107 - 2.294 Improved moisture content of soil and

(SWIR-2) vegetation and thin cloud penetration.

Band-8 Panchromatic 0.503 - 0.676 15 meter resolution, sharper image defi-
nition.

Band-9 Cirrus 1.363 - 1.384 Improved detection of cirrus cloud con-

tamination.
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Table 2. The correlation coefficients among spectral bands

Correlation coeflicient (r)

2015 Band-2 Band-3
Band-2 -—-- 0.98
Band-3 0.98 ----
Band-4 0.96 0.98
Band-5 0.28 0.37
Band-6 0.63 0.70
Average 0.71 0.76

2016 Band-2 Band-3
Band-2 - 0.94
Band-3 0.94 -
Band-4 0.90 0.94
Band-5 -0.09 0.09
Band-6 0.30 0.44
Average 0.51 0.60

2017 Band-2 Band-3
Band-2 - 0.94
Band-3 0.94 -
Band-4 0.91 0.95
Band-5 -0.02 0.13
Band-6 0.33 0.47
Average 0.54 0.63

Band-4 Band-4 Band-6
0.96 0.28 0.63
0.98 0.37 0.70
---- 0.28 0.68
0.28 -—-- 0.71
0.68 0.71 ----
0.73 0.41 0.68

Band-4 Band-4 Band-6
0.90 -0.09 0.30
0.94 0.09 0.44
---- -0.07 0.43
-0.07 -—-- 0.62
0.43 0.62 -
0.55 0.14 0.45

Band-4 Band-4 Band-6
0.91 -0.02 0.33
0.95 0.13 0.47
---- -0.02 0.45
-0.02 ---- 0.65
0.45 0.65 -——-
0.57 0.19 0.47

environment is indicated by the high spectral reflectance
and the contrast of the objects. Several spectral bands
which not directly relevant to the application theme
or redundancy being used for this research, such as
Band-1, Band-7, Band-8, and Band-9 were skipped in
the process. The nearly similar characteristic of Band-6
and Band-7 in the detection of vegetation objects was
also considered as redundancy, only one (Band-6) was
selected for analysis. Table 2 showed the correlation
coefficients among spectral bands of the data used.

Figure 2, Figure 3, Figure 4, and Table 2 were
representing spectral characteristics of the reflectance
of the data used. The cloud cover of the 2015, 2016,
and 2017 TBM data were shown in Figure 2, the
cloud variations in the data used were very high and
even most of the data used indicated the above 40%
cloud cover. The spectral band reflectance statistic
parameters such as the mean and standard deviation
of each band of the annual TBM images were shown
in Figure 3. While the histogram patterns, the tone
and object feature differences of each spectral band
were shown in Figure 4. From Figure 3 and Figure 4
showed the consistent pattern of reflectance numbers
of each spectral band for all three-years of the data,
particularly Band-5 (NIR) and Band-6 (SWIR-1).
The Band-2, Band-3, and Band-4 look unstable,

particularly the 2015 data which had larger standard
deviations compared to the 2016 and 2017 data.

The annual mosaic image Landsat-8 OLI used as
the primary data in this study was the image developed
using the TBM model with a tile size of 0.02 x 0.02
degrees (2.2 km x 2.2 km). The annual mosaic image
included the data from 2015, 2016, and 2017. The 2016
data were used as a reference in the training sample
selection for the digital analysis of time-series land
cover. The reason for the 2016 data selection was due to
the quality of data among the available three-years data,
and the availability of the latest reference data from
the Ministry of Environment and Forestry (MoEF).

2. The Methods

Three of tile sizes of 0.1 degrees (11x11 km?2), 0.05
degrees (5.5x5.5 km2), and 0.02 degrees (2.2x2.2 km2)
were used to examine the reliability and simultaneously
the level of visual interpretability as well as digital
interpretability of the produced images. Of the three
tiles, a 0.02x0.02 degree tile had the most optimum
accuracy (Dimyati RD. et al, 2018). The merit of the
annual mosaic image could be assessed from the digital
interpretability of the product images in particular, for
the digital time-series land cover analysis and other
analysis. In this study, we proposed the definition
of digital interpretability of annual mosaic images,
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Figure 2. Average cloud cover (%) of the annual
mosaic images

hereinafter called digital interpretability is an automatic
image processing quality, which is analyzed by using the
master sample. The master sample here is a set of sample
statistic training values of a certain year data from
the image used. In this study, we proposed the digital
interpretability is indicated by the spectral consistency
of TBM images for the extraction of annual digital land
cover information to answer the question of how many
bands are used, which bands, and how many land cover
classes can produce the optimal accuracy. The digital
interpretability was measured by the accuracies (overall
accuracy, user accuracy, and producer accuracy) of the
classification results which were analyzed using master
sample against the specified reference (Costa et al, 2018;
Costachioiu et al, 2011; Danoedoro 2012; Gémez et al,
2016; Islam et al, 2016; Mausel, et al, 1990; Mitchell et
al, 2011, 2012; Peacock 2014; Zhongyang et al, 2011).

The procedure to determine the digital
interpretability of time-series annual Tile-Based
Mosaic (TBM) of Landsat-8 OLI for land cover analysis
image consisted of 4 (four) main processes. The
main processes consisted of sample selection, image
classification, assessment of the object separability
and re-classification, and assessment of the accuracy
of the digital interpretability. The development steps
of digital interpretability through digital time-series
land cover classifications were presented in Figure 5.
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Figure 3. The mean and standard deviation of
annual mosaic image reflectance each band

Sample selection

The master sample selections were completed by
identification and delineation of the objects on the
red-green-blue (RGB) image of 2016. The clearness of
the object and the easiness of object recognition for
further analysis could also be identified on the RGB
annual mosaic images (Butler 2018; USGS 2018). The
training sample selection was also, the supported by
using the Land Cover Map produced by the MoEF of
2016 on the scale of 1: 250,000 and the field knowledge.
The determination of observed objects in the RGB
image of 2016 for digital analysis of time-series
land cover was referred to the Indonesia National
Standards on Land Cover Classification, Forest Cover
Change Calculation Method Based on Visual Optical
Remote Sensing Image, and Land cover classes for the
interpretation of the medium-resolution optical images
(BSN 2010, 2014, 2015). The statistic parameters of
the master training sample of 2016, such as mean,
deviation standard, variance, and covariance are used
for digital classification of time-series land cover of
the three-years’ data. The observed objects of the
master training sample refer to the national land cover
classification of the above mentioned standards. The
steps of 1, 3, and 4 in Figure 5 represented this process.

Image classification
Digital analysis of time-series land cover of the
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annual mosaic images, for the three-years data of 2015,
2016, and 2017 was processed by Maximum Likelihood
Classification (MLC) using a set of the master training
sample statistic parameters of the annual mosaic image
of 2016. The land cover classifications using MLC were
examined for each of four groups of the spectral bands,
namely (a) Bands 6-5-4-3-2, (b) Bands 6-5-4, (c) Bands
6-5-2, and (d) Bands 6-5. Examination of the spectral
band groupings were objected to find the optimum
accuracy with the most efficient spectral band numbers
among the four spectral band groups (Danoedoro,
2012; Richards & Jia, 2006). Correlation analyses were
performed to determine the most optimal spectral band
combinations for the digital analysis of time-series land
cover classification (Bodart et al., 2011; Ma et al., 2017).
The steps of 2 and 6 in Figure 5 represented this process.

Assessment of the object separability and re
classification

In order to assess the object separability among the
training samples of the 2016 data, the object separation
assessment was done by developing the application
independently derived from the Jeftries Matusita (JM)
distance formula (Gu et al., 2008; M. Dabboor et al,,
2014). JM distance value ranges between 0 and 2.0. In
general, the JM distance value separation criterion is
categorized as good if > 1.9 and good enough if 1.7-1.9

(Gu et al, 2008; Dabboor et al, 2014; Sonobe et al, 2017).

The digital classification of time-series land
cover were conducted using a spectral combination
of correlation analysis, i.e., the four types of spectral
band combinations consisted of the Bands 6-5-4-3-
2, Bands 6-5-4, Bands 6-5-2, and Bands 6-5. From
the digital classification of time-series land cover of
all four spectral band groups, there were 20 annual
mosaic image results analyzed using 24 classes of the
land cover. The 20 images consist of 12 annual mosaic
images classified by the same training samples, and
eight annual mosaic images classified by independent
training samples vary from year to year. The eight
images were from four images in 2015 and four images
in 2017. Each image was then re-classified into 16, 13,
9, 6, 4, and 2 classes so that it became 72 annual mosaic
images. A total of 92 images was afterward analyzed
to obtain the optimum accuracy results in the object
separability using the confusion matrix. The results of
re-classification using MLC of three-years data of 2015,
2016 and 2017 that processed by master training samples
of 2016 were assessed with the confusion matrices and
the JM distance analyses. The classification results were
reclassified into 16, 13, 9, 6, 4, and 2 classes to improve
the OA scores. The determination of the number and
object classes to be re-classified referred to the results
of the analysis of the JM distance matrix. Each the re-
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Figure 5. Procedure of the development steps of digital interpretability through digital time-series
land cover classifications

classification step generated a confusion matrix. The
steps of 5 and 9 in Figure 5 represented this process.

Accuracy assessment of the digital interpretability

In order to assess the OA, the independent training
samples from three years data on the annual mosaic
image of 2015, 2016 and 2017 were also generated. The
training samples were captured at the different locations
from the master training sample of the 2016 mosaic
image. All three sets of training samples were used to
perform the confusion matrix analysis, which were
to conduct the assessment of accuracy using the OA
(Peacock 2014; Sutanto 2013; Wulansari 2017). The OA
assessments were made of a confusion matrix between
digital analysis of time-series land cover based on sample
2016 with the training sample selected from the above
three years data of 2015, 2016 and 2017. Finally, the
analysis to determine the most optimal number of land
cover classes and spectral band groups was proceeded
with the criteria as below. The criteria of the number
of land cover classes of each spectral band groups were
determined based on the value of Average of Accuracy
(AOA), namely (a) Good with value >80% or >0.80,
(b) Fair between 70.0% -79.9 % or 0.70-0.79, and (c)
Poor if <70% or <0.70 (Peacock 2014; Sutanto 2013).
The number of land cover classes and the spectral band
groups that meet the criteria of Good for all three years
of data were recommended as the representation criteria
for the digital analysis of time-series land cover using
the annual mosaic image of Landsat-8 OLI data. The
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steps of 7, 8, and 10 in Figure 5 represented this process.

However, for consideration of the efficiency and
operationalization of the use of facilities and resources,
such as storage space, processor, memory, speed and
easiness of the process, the smallest number ofland cover
object classes and the smallest number of spectral bands
used group that meet the criteria of Good for the three-
years of data, were recommended for further digitally
time-series land cover analysis using annual mosaic
images. The optimal number of land cover classes and
the optimal spectral band groups were recommended
to be part of the regional and nationwide medium-
scale remote sensing data standardization process.

3. Results and Discussions
Sample selection analysis

Based on the results of identification of land cover
objects in an RGB image of 2016, with the support of
Land Cover Map produced by MoEF of 2016 on the scale
1:250,000, and the field knowledge, the 24 land cover
object classes were selected for the training samples for
further classification processes. The determination of
class types were also reffered to the national standards of
Land Cover Classes for the Interpretation of Medium
Resolution of Optical Images 2010 and 2014 (BSN
2010, 2014, 2015). The training sample list of land cover
objects and spectral signature values of each training
sample are shown in Table 3 and Figure 6. From Table
3 and Figure 6, the objects of land covers by various
vegetation had a similar spectral pattern at all spectral
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bands. Therefore, the separation of the objects among
vegetation cover types were not easy to complete. The
training sample statistical parameters of the annual
mosaic image of 2016 were calculated to analyze the
object’s separability and to classify the land cover from
the annual mosaic image of 2015, 2016 and 2017. This
was the beginning process of the digital interpretability,
i.e. whether the training sample statistic parameters
of the 2016 data could be used to classify time-series
land cover of three-years data and resulting some
adequate and acceptable AOA score of above > 0.80.

Jeffries Matusita (JM) distance analysis was
executed to compare the statistical separation among
objects of the training samples (Dabboor et al, 2014;
Sonobe et al, 2017). JM distance value ranges between 0
and 2.0. JM distance separation criterion is categorized
as Very Good if > 1.9 and Good if 1.7-1.9 (Gu et al, 2008;
Sonobe et al, 2017). In this study, the JM distance scores
were multiplied by 1000 to make the difference between
the JM distance scores looked more distinct. The results
of the object separability assessment using JM distance,
based on the statistical training samples of the annual
mosaic image of 2016 for Bands 6-5-4-3-2 were shown
in Table 4. In order to simplify the grouping of 24
classes of training sample objects observed, the author
proposed five groupings of separability, i.e. very high,
high, moderate, low, and very low, as shown in Table 5.

From the analyses of Tables 4 and 5, known that
the objects belong to the very low separability or very
difficult to distinguish from other objects were indicated
by red shading, namely Dryland agriculture mixed with
bush/shrub (TS-7), Swamp bush/shrub (TS-11), and
Secondary inland forest (TS-15). The objects belong
to the low separability or difficult to distinguish from
other objects, were shown by pink shading, namely
Estate forest (TS-1), Plantation (TS-3), Paddy field (TS-
8),Grassland (TS-10),and Primaryinland forest (TS-14).

The objects belong to the medium separability
category (<1600-1300) or relatively easy to distinguish
from other objects, were indicated by orange shading,
namelyPrimaryswamp forests (TS-4), Secondary swamp
forests (TS-5), Bush/shrub (TS- 6), Settlement-1 (TS-9),
Primary mangrove forest (TS-19), Secondary mangrove
forest (TS-20), and Other vegetated area or Tiling
effect (TS-24). The objects that have high separability
category or easily distinguishable from other objects
were indicated by yellow shading, namely Airport
area (TS-12) and Settlement-2 (TS-23). The dominant
objects which had a very high separability category or
very easily distinguished from other objects, indicated
by green shading in succession of Open land-1 in the
Estate forest or Plantation area (TS-2), Water body (TS-
13), Cloud-1 or thick cloud (TS-16), Cloud-2 or thin
cloud (TS-17), Cloud-3 or Cloud shadow (TS-18), Open
land-1 in the mining area (TS-21), and Swamp (TS-22).

From the analysis results, it could be seen that

the separability of the land cover objects, which was
analyzed using time-series data of 2015, 2016, and
2017 with group Bands 6-5-4-3-2, which categorized
as very high or very easy to distinguish from other
objects, namely Open land in Estate forest or
Plantation area, Water bodies, Thick clouds, Thin
clouds, Cloud shadow, Open land in the mining
area, and Swamp. While the category of very low or
the most difficult to distinguish from other objects,
namely Dryland agriculture mixed with bush/shrub,
Swamp bush/shrub, and Secondary inland forests.

Analysis of time-series land cover
From the above analysis, it was found that the
24 classes indicates that not all of 24 land cover
objects could easily be identified and differentiated
each other, indicated by the average of the separation
score of 4.3, requiring re-classification. The re-
classification of the 24 land cover classes was carried
out by analysis of the JM distance approach, and
the re-classification staging scheme was shown in
Figure 7. The 24 land cover classes were afterwards
re-classified into 16, 13, 9, 6, 4, and 2 classes.
The rows of the confusion matrix show the results of
the land cover classification based on the 2016 training
sample, and the columns showing, training sample at
different locations for the 2016, training sample of the
annual mosaic image in 2015 and 2017. Two examples
of the 92 confusion matrixes using the combination of
the Bands 6-5-4-3-2 for 24 classes and six classes of land
cover classification results based on the master training
sample 2016 (rows) and training samples of 2016 at
the different locations than those used in land cover
classification (columns) are shown in Table 7. From
Table 7 the OA of 24 land cover classes was 0.69 or 69%,
and the OA of six land cover classes was 0.97 or 97%.
The process of re-classifications of 24 classes into six
classes were step-wisely executed through 16 classes, 13
classes, 9 classes, 6 classes, 4 classes, and 2 classes based
on the results of the JM distance analysis in Figure 7.
Each re-classification stage were calculated its OA by
using the confusion matrix. As an example of 24 classes
with the OA of 0.69 were re-classified into 16 classes, 13
classes, 9 classes, and 6 classes, and gradually increase
the OA results of 0.79, 0.81, 0.92, and 0.97, respectively.
The six classes of land cover could also be
identified from JM distance analysis, namely (1)
Mixed dryland agriculture consisted of Dryland
agriculture mixed with bush, Plantation, Bush/shrub,
and Swamp bush/shrub; (2) Inland forest consisted
of Secondary inland forest, Primary inland forest,
and Estate forest; (3) Mangrove forest consisted of
Primary mangrove forest, and Secondary mangrove
forest; (4) Swamp forest consisted of Primary swamp
forest and Secondary swamp forest; (5) Paddy field
consisted of Paddy field and Grassland; and (6) Built-
up area consisted of Airport areas, and Settlements.
While the use of the Bands 6-5-4, and Bands 6-5
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Table 3. List of training sample (TS) of the observed land cover objects,
extracted from the RGB 654 TBM image of 2016 scale 1:250.000*)

Mo Class Trammg MoEF Map Featwremthe No  Class  Trammg MoEF MapFeature m the RGH
object  Sample (Codeand RGB Image object  Sample (Code and Image
Number Symbel) Number Symbel)
(T$-X) 654 (18-X) 634
1 Primary TS-14  2001-Hp 13 Opsnlmd-l TS-2  2014T
s [—

2 Secondary TS5-15  2002-Hs 14 Sawzh T5-8  20093-5w
inland forest (paddy feld)
3 Bush'shrab TS5-6 2007-B - 15 Openlnd-2 T5-21 20141-Pb e
4 Primary T54  2005-Hmp 16 Swamp 1522 50011-Rw
swamp
foreet I
5 Secomdary TS5 JIDDSI-HHIT Setlement-] TS50  2012-Pm -
swamp L
Pk | { L
6 Swamp T5-11  20071-Br 18 Semdement-2 T5.23  2012-Pm
kit -
7 Prmary T8-19 2004-Hmp 15 Airport ageas  TS-12 ZD]JI-B&_
mangrove
o I
§ Secomdzry T3-20 2004]-Hms 20 Water body  T5-13  5001-A -
mamgrove
forest - -
9 Plnwtion TS.3  2010-Pk PR 21 Cloud-l  T5-16 2500-Aw
= (i
10 Dryland TS-7  20092-Pc 22 Cloud-2 T8-17 2500 -Aw
agncalture (tham)
mixed with
bush'shmb
11 Grassland  T3-10 i 23 Cloud-3 T5-18 2500 -Aw
(shadow) -
12 Estate forest TS-1 2006-Ht 24 Other T5-24  Tile effect
vegetated
[— e (i ]
effect)
Note:

o Open land-1: in the areas of Estate forest or Plantation
o Open land-2: in other areas, as well as mining area.

*) On the Display Monitor Screen

o  Settlement-2: Similar to ordinary urban and built-up areas, but affected by cloud

shadow;

o Brackish fishpond is categorized as Sawah (paddy field).

were accepted as well for the land cover classification
with four classes resulted the AOA score of 0.86 or
86%. The four classes of land cover can be known
from JM distance, namely (1) Vegetated land consisted
of Primary swamp forest, Secondary swamp forest,
Secondary inland forest, Primary inland forest,
Dryland agriculture mixed with bush, Swamp bush/
shrub, Plantation, Bush/shrub, Estate forest, Primary
mangrove forest, Secondary mangrove forest, Paddy
field, and Grassland; (2) Open land consisted of
Open land either in the plantation or mining areas;
(3) Water consisted of Water body, and Swampy

area; and (4) Built-up areas consisted of densely
Settlement, Airport areas, and sparsely Settlement.

Based on the three-years’ 2015, 2016, and 2017
time-series of land cover classification experiments, the
achievements of OA and AOA of each class number
resulted by land cover classifications using four types of
the spectral band combinations were presented in the
graphs of Figure 8. The annual mosaic image on tile 0.02
degrees indicated the consistency with Good accuracy
(AOA of 86%) for the classifications up to six classes.
Whereas the use of the Bands 6-5-4-3-2, Bands 6-5-
4, and Bands 6-5 showed the consistent level of Good
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Figure 6. Spectral signature pattern of vegetation covered objects (left) and other objects (right) extracted
from the training samples of 2016 mosaic data

Table 4. The JM of distance matrix the land cover training sample (TS) class objects
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22 23

e - I B R
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TR 4 0 3 4 5 & 7T 8 & 0 4 a2
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accuracy of up to four classes with the AOA of 89%,
82%, and 81%, respectively. Considering the of previous
researches conducted by the consortium among LAPAN,
MoEEF and Australia in the Indonesia Australia Forest
Carbon Partnership (IAFCP), collaborative research
between the University of Maryland and MoEF, and the
research of MoEF itself, the results of this experiment
provided more expectations. The digital classification
approach for time-series land cover analysis of this

TBM image, for four objects classes, using three and two

bands, resulted the AOA of 82% and 81%, respectively.

Since joint research of IAFCP that resulted
Indonesia National Carbon Accounting System
(INCAS), particularly for semi-automatic classification
of the forests and non-forests changes for ten years
(2000-2009), had the products with the lower accuracy
of 78% (Wijaya et al, 2015). Although the collaboration
research between the University of Maryland and MoEF,
as well as the project of visual classification of land cover
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by MoEF itself, produced the accuracies up to 90%
and 98%, respectively. Those land cover classification

researches were only up to two classes of forest and non-
forest. For consideration of the operational efficiency of
resource utilization, such as spacious storage, processor,
memory, and the speed and easiness of process, the use
of a combination of these three Bands 6-5-4 or two
Bands 6-5 could be executed with a Good accuracy up
to four classes of land cover analysis. Thus the TBM
model is recommended to be part of the process of
standardization of medium-scale remote sensing data.

Rark (Class) M Distance Range z Score  E*Score
1 2000-1800 187 5 933
<1800-1600 30 4 120
=1600-1300 3 3 99
=1300-1000 16 2 32
<1000 10 1 10
¥ 276 1196

Average =1196276=43

Table 5. The categorization of the average of object sep-
arability based on JM distance

Annual mosaic images

The results of the 2016 mosaic image for land
cover classifications with MLC using the statistical
parameters of the master training sample, for Bands
6-5-4-3-2 with 24, 16, 13, 9, 6, 4, and 2 classes were
shown in Figure 9. While the example of the annual
mosaic images of land cover with twenty four classes
and re-classified into six classes of 2015, 2016, and
2017 were shown in Figure 10. From those figures, the
objects separability of the four land cover classes was
identified using JM distance, namely (1) Vegetated
land, (2) Open land, (3) Water body, and (4) Built-
up area were more easily distinguished among others
in the annual mosaic image of 2015, 2016, and 2017.
The above Vegetated land consisted of Primary swamp
forest, Secondary swamp forest, Secondary inland
forest, Primary inland forest, Dryland agriculture mixed
with bush, Swamp bush/shrub, Plantation, Bush/shrub,
Estate forest, Primary mangrove forest, Secondary
mangrove forest, Paddy field, and Grassland. While
the Open land consisted of Open land in the Estate
forest or Plantation, and Open land in the mining and
other areas. The Water Body consisted of Water Body
and Swamp, and the Built-up area consisted of densely
Settlement, Airport, and sparsely Settlement areas.

Based on the research findings, the annual mosaic
images had Good digital interpretability. Therefore,

Table 6. The confusion matrix for measuring the overall accuracy (OA) of the 24 classes

Class 1 2 3 4 B B T B S 101112 13 14 1516 17 18 19 20 M1 2223 24 X %
1 5 17 OTIET M7ER BSS 0 130 17 0 12 144 0 5 S5 200 0 0 4 13 0 0 0 15 40N 455955 | 9347
2 3206 13FEEE 1217 1 a 4 120 202 230 ¥ 21 118 a a a a a a ] ] 0 b 4 ] 133235 | 0584
3 22240 59 TE512E 4907 283 13 TV0e TS 41 55 357 0 a £930 1283 0 a a 18 130 0 il 0 1138 841005 | 5458
4 S8 0 1195 1EVEENES1 0 47 1 0 0 152 0 0 4231583 0 0 0 0 & 04 0 0 11 1881220 | 9pea
5 34EES o 1420 SR4ES0BAROT 15 M7 5 a a Im2 0 a 18816 544 0 a a 1588 190 0D a a s 4p2R32 T4
ﬁ 1136 4 1442 &0 177 9956 &13@ 1325 16 37 3111 1 a 1207 12 a a a =l ] 0 1 il T2 170287 561
]" 4417 827 G999 13519 45 38 1885 S4To ZX2 186 448 15 14 1231 200 a2 a 1 517 1072 0 0 &1 1me 112116 g7
8 957 S35 EEES 190 G0 331 1SS1IS0SB EESY TS 45 34 1501 1433 2% 0 0 12 T 48 8 0 1% €554 55T ITR
Q 1M 1607 5549 1 2 [ul ST 1447 3027 & 3 180 A 22 a a 1 a a a 2 0 791 =02 41530 7210
'H] agt B8 2321 T &1 115 1257 329 125 v 14 105 a 381 140 0 a I H: 1m0 il 3 EE 34726 2,26
11 381 185 15me SIT1 2007 1848 TEER 2851 B4 43 5L OB M@ M5 117 0 0 38 W 474 0 10 29 566 4THEE TS5
12 =T 5813 TR 4 0 I 417 991 3506 92 145 599 &0 55 6 12 & 12 0 2 13 0 99 5 ZEED 239
1 EI. o 1 17 a a 1 1} Bl a a a 0 307008 a2 a a a a ] ] 0 i i 1 307211 pOogeay
14. 12034 3 332 10T 43 45 G 2 5 1 &1 a g 2am22 24 a a 25 33¥J3 1S 40 o 6 4583 3233y 78,71
15 MWi4T 4 430835 19R47 1070 S84 ZS49 135 0 20 2 0 7 IOSRASTO4 0 0 0 1187 &0 0 1 0 168 586132 136
1% 0 M0 a a4 o o 5% & 0 0 0 0 & 0 1M85 0 0 o0 0 0 0 0 45 [6Ee
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1% ZE08E 0 BT 1HRET A4 0 13TI S5 0 EESEMISS 0 9 400 13 0 0 35 MM TS 0 1 £ 3 W0STI 523
90 4%\ 0 425 20800 2M5 1 1193 45 0 905 538 0 0 ME 2 0 0 0 VMMM 0 0 & & BNM  agal
21 o 56 212 a a [u} [} 115 221 a2 a & 3 1 2 a a a ] o &1 2 2 1 1122 35,74
27 m: 0 &% 3 19 55 485 26 0 0 2 0 0 6 8 0 4 0 4% m 0 62 0 1 3@ 5m
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24 EBEI B 4TOS 2098 121 ¢ ET1 47TE3 B35 0 3 0 15 5S4 40 22 03 0 2 0 0 132 108494 13:53 | gnss
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Note:

The columns represented the training sample based on 2016 data; the rows represented the result of classifica-

tion. The OA for 24 classes was 69%.
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Figure 8. The achievements of OA and AOA of each class number resulted by land cover classifications using
four types of the spectral band combinations

these data could be used for further digitally time series
analysis, as well as visually interpretation (Dimyati M.
etal, 2018). It is expected that the TBM model would be
effective in providing the needs of the remote sensing
mosaic image of minimum cloud cover (Presiden of the
Republic of Indonesia 2013, 2018) for medium scale
analysis, such as national, provincial and regency levels,
which is increasing in line with the increase of national
development activities that implement One Map Policy
(PresidenoftheRepublicofIndonesia2011,2013a,2014a,
2018). Thus the need for annual mosaic images for areas
often covered by clouds, such as Sumatra, Kalimantan,
and Papua could be provided using the TBM images.

4.Conclusions
Deriving on the digital interpretability analysis of
annual mosaic Landsat-8 OLI images for time-series

land cover of three-years data, with the case of the
central part of Sumatra, it is concluded that the use of
the Bands 6-5-4-3-2 performs the consistent accuracy
level of the Good with the AOA score of 86% (> 80%)
for six classes objects. Whereas the use of the Bands 6-5-
4-3-2, Bands 6-5-4, and Bands 6-5 shows the consistent
accuracy level of Good up to four class objects for the
three-years’ time-series land cover images of 2015,
2016, and 2017 with the AOA score of 89%, 82%,
and 81%, respectively. It also means that the annual
mosaic images have Good digital interpretability,
providing an AOA score of 80% or above for six and
four class objects. The TBM images are accepted
for further digital land cover time series analysis.

Considering the operational efficiency of resource
utilization, such as spacious storage, processor,
memory, and the speed and easiness of the data
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Figure 9. The land cover classification results with different class numbers
using the group Bands 6-5-4-3-2 of the 2016 TBM images
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Note:

The rows (up, down) representing the year of 2015, 2016, and 2017; the columns (right to left) representing

RGB654, RGB 564, 24 and 6 classes.

Figure 10. The imageries of RGB and land cover classification results with 24 and 6 classes

processing, the most efficient for the time-series
digital land cover analysis of an annual mosaic
image is the use of a combination of the two Bands
6-5 for four classes. These four classes could be
derived using JM distance analysis, namely Vegetated
land, Open land, Water body, and Built-up areas.

Based on the above analysis, the annual mosaic
image shows the consistent accuracy level for the
classifications as well as the object separability of the
land cover. Accordingly, the digital interpretability of
annual mosaic images with tile size 0.02x0.02 degree is
acceptable for further digital analysis of the object of
time-seriesland cover. Thedevelopment TBM datacanbe
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recommended to be part of the standardization process
of remote sensing data processing of medium scale
analysis such as national, provincial and regency levels.
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