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ABSTRACT

A fiber bundle model in (1 + 1)-dimensions for the breaking of fibrous composite

matrix is introduced. The model consists of N parallel fibers fixed in two plates.

When one of the plates is pulled in the direction parallel to the fibers, these can be

broken with a probability that depends on their elastic energy. The mechanism of

rupture is simulated by the breaking of neighbouring fibers that can generate random

cracks spreading up through the system. Due to the simplicity of the model we have

virtually no computational limitation. The model is sensitive to external conditions

as temperature and traction time-rate. The energy vs. temperature behaviour, the

diagrams of stress vs. strain and the histograms of the frequency vs. size of cracks

are obtained.
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I. INTRODUCTION

Fracture is an important problem in material sciences and engineering. The response of

a solid under load depends on the features of the material, the external conditions (tem-

perature, humidity etc) and how the load is applied (uniaxial, radial, shear etc). The main

features of the fracture processes can be found in the classical Young’s experiment. Let us

consider a homogeneous bar of initial length Lo and cross section S pulled by an uniaxial

force F parallel to the length. In the σ = F (t)/S(t) vs. δ = ∆L/Lo diagram one can observe

an elastic (linear and nonlinear) region and a plastic/deformation one. The elastic region

occurs in the beginning of the traction when the material returns to Lo if the traction is

stopped. On the other hand, the material acquires a permanent deformation when the force

vanishes in the plastic/deformation region. If the material breaks in the elastic regime the

fracture is called brittle (like glass at room temperature). Otherwise, if the material breaks

in the plastic/deformation region the fracture is called ductile (like a school-rubber).

The presence of disorder in the material is an important feature that determines the

rupture processes [?]. These inhomogeneities strongly influence the mechanical behaviour

of the material and are responsible for the patterns obtained experimentally. In the last

decade, some models taking into account this feature were proposed to simulate the breaking

processes of disordered media [?]. The material, in general, is represented by a network of

structural units whose rate of rupture depends on the local conditions and inhomogeneities.

These models, which were proposed to simulate the rupture of polymer fibers or thin films

(models of lattice springs) [?,?,?] and to study the interface properties of breaking processes

[?,?], have been studied mostly by computational experiments . However, these models

provide just a partial description of the problem. At most, only the fracture pattern and

the stress vs. strain diagram can be obtained. These models do not allow an analysis of

the dependence of rupture features with traction velocity and temperature because they are

sensitive to changes only in one of the external conditions.

In this paper a fiber bundle model to simulate the failure processes of fibrous material is
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introduced. Fracture of fiber-reinforced materials is an important field of investigation, be-

cause these materials have a higher Young’s modulus and other different mechanical proper-

ties than unreinforced ones [?,?]. Fiber bundle models were introduced to study the strength

of material where fibers are held together by friction forces. They are also used to study the

breaking of composite materials where the fibers of the material are joined together by other

homogeneous material, as fiberglass-reinforced composite. When a fiber fails, the load that

it carries is shared by intact fibers in the bundle. An important effort to study these models

was carried out by the calculation of the cumulative breaking probability of the chain of

fiber bundles [?,?,?].

Our model considers the amount of elastic energy into the material, the spread of a

local crack and the fusion of cracks as the breaking mechanism. Some features already

proposed in the literature are used in the definition of our model – the computation of

breaking probability from the elastic energy of a fiber [?,?,?] and a deformation limit for

an isolated fiber like the threshold in the random fuse network model [?,?]. In addition,

we adopt the cascade of breaking fibers as the mechanism to form the cracks into the fiber

bundle. This last characteristic is clearly inspired in the self-organizing criticality [?]. Our

attention is focused on computational simulation for the breaking of a fiber bundle when we

have an uniaxial force (parallel to the fibers) in (1 + 1) dimensions. The fracture processes

are described by the energy of the rupture process vs. temperature, the diagram stress vs.

strain and by the size of the cracks that occurs in the breaking. This paper is organized as

follow: in section II, the model is presented; the results of the computational experiments

are shown and discussed in section III; finally, the conclusions are given in the last section.

II. THE MODEL

Our model consists of No parallel fibers, each of them with the same elastic constant

k. These fibers are fixed in parallel plates as is shown in Figure 1. Note that the first and

last fiber contact with only one neighbour while the inner fibers have two neighbours. For
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convenience one plate is fixed and the other is pulled by a force F in the direction parallel

to the fibers with constant velocity v. It means that at each time step τ the amount of

deformation of the non broken fibers is equal to (∆z = v × τ), where v is the velocity (in

our units τ = 1). When the deformation is z, the elastic energy for each fiber is given by

ǫ =
1

2
k z2 . (2.1)

We define the critical elastic energy for each fiber as

ǫc =
1

2
k z2

c , (2.2)

where zc is imposed as the maximum deformation supported by an individual fiber. We

assume that an isolated fiber has a purely linear elastic behaviour with a breaking probability

which grows up with the deformation z of the fiber, being equal to unity at z = zc. The

probability of rupture of the fiber i is

Pi(z) =
1

(ni + 1)
exp[

1

t
(δ2

− 1)] . (2.3)

Here ni is the number of non broken neighbours fibers of the fiber i (in this paper ni could

be 0, 1 or 2),

t =
kBT

ǫc

(2.4)

is the normalized temperature, kB is the Boltzmann constant (in our unity system it is equal

1) and

δ =
z

zc

(2.5)

is the strain of the material. The dependence on the non broken neighbours fibers simulates

the existence of an interaction between the fibers. This dependence is responsible for the

distribution of the load between neighbouring fibers and allows a fiber having an elastic

energy greater than ǫc. In this sense, one can observe fibers with z > zc if they have at least

one non broken neighbouring fiber.
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Initially all the fibers have the same length and zero deformation. In each time step of

the simulation the system is pulled by ∆z, and we randomly choose Nq = q×No fibers that

can be broken, where q is a positive number. It means that the probability of rupture for the

material does not depend on the number of fibers in the fiber bundle. This assumption is in

agreement with the observation that systems with different sizes must have the same rupture

features for the same external conditions (temperature and traction velocity). Obviously the

force and the energy needed to break the bundle must depend on the system size but not the

stress vs. strain diagrams or the size of the cracks that arises in the breaking processes. This

assumption makes also possible the appearance of cracks in different parts of the material for

the same deformation. Let us consider a chosen fiber. The breaking probability is evaluated

and compared with a random number in the interval [0, 1). If the random number is less

than the breaking probability, the fiber breaks. The load spreads to the neighbour fibers

and the breaking probability of them increases because of the decreasing of the parameters

ni−1 and ni+1. This procedure describes the propagation of the crack through the fiber

bundle. Then, the same steps are done for one of the neighbouring fibers. Note that if it

breaks, a cascade begins. It stops in a given fiber, when the test of the probability does not

allow its rupture, or when a hole in the bundle is found (an old crack). The propagation

of the crack is done in either “left” or “right” directions, perpendicular to the force applied

on the system. When the cascade process stops, other fiber in the Nq set is chosen and

all steps already described are repeated. After the Nq trials, we pull the system to a new

displacement ∆z and the breaking procedure begins again. The simulation continues until

the rupture of the system, when no more entire fibers exists.

III. RESULTS AND DISCUSSIONS

At t = 0 it is easy to see that the model breaks at δ = 1.0 with a maximum force

F = Nokzc. All the fibers break at the same time and we have just one crack spreading in

the entire system (the limit of a brittle fracture). For finite temperatures different behaviours
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are observed when the traction velocity is varied. The number of fibers is chosen in such

a way that it does not affect the propagation of the cracks. It means that a crack greater

than or equal to the size of the system, for the values of t and v used in the simulation,

occurs with a negligible probability. In order to investigate this picture we have performed

simulations in systems No = 103
− 106. This probability is controlled by determining the

distribution of cracks vs. the sizes of the cracks arising in the process of fracture. We have

used the following values for the parameters: q = 0.1, No = 104, zc = 1 and k = 1.

Preliminary we have obtained the stress vs. strain diagrams for different temperatures

and traction velocities. When the deformation of the bundle is z and the number of non

broken fibers is N , the stress σ is defined as

σ =
Nkz

No

. (3.1)

The strain δ was defined in expression (2.5). We compare our results with the description

obtained experimentally in order to classify the fracture as brittle or ductile [?]. Figure 2

shows the result of a computational simulation carried out in just one fiber bundle. In this

case, averages are avoiding. For t = 0.1 one observes a brittle behaviour, i. e., the fiber

bundle breaks in the elastic region. Note that the σ × δ plot is purely linear for the highest

velocity (v = 0.1). At t = 1.0 and for high and intermediate velocities the fracture occurs in

the brittle/ductile transition region. The rupture of the material is ductile for low velocities

and it occurs in the plastic/deformation region. For high temperatures (t = 4.0), the shape

of the stress vs. strain plot is typically ductile for intermediate and low velocities. For high

velocities the fracture occurs in the transition region brittle/ductile.

Now let us discuss the behaviour of the energy of rupture as function of temperature.

This energy is defined as the work done to break the material and it can be obtained from

the stress vs. strain diagrams. It is well known that the breaking of materials has strong

dependence with temperature. In general, some materials break brittle at low temperature

and ductile at high ones. It means that the energy of the fracture process has a small value

in the brittle region and a greater value in the ductile one. The results of the normalized
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averaged energy of the breaking process per fiber < Ef > vs. the normalized temperature

t are shown in Figure 3. We have considered 103 samples with 104 fibers, with velocities

v = 0.001, 0.002 and 0.005 in the simulations. At low temperatures the energy of the fracture

becomes independent of the traction velocity. For velocity v = 0.005 the energy increases

with temperature. On the other hand, for slow traction (v = 0.001) the energy grows up to

a maximum (near t ∼ 0.5) and for t > 0.5 it decays smoothly. For an intermediate value of

the velocity (v = 0.002), the energy remains closely constant at high temperatures.

Figure 4 shows the frequency of the cracks Hc vs. the size of the cracks Sc that arises

in the breaking process. The frequency of the cracks is averaged over the samples (103 ones

in this simulation). Two features can be observed in this figure. For a low temperatures

(t = 0.1, typically brittle fracture) one observes cracks of very different sizes. For low

velocities one observe cracks with a maximum size ∼ 102. For high velocities (v ≈ 0.1) the

size of the cracks tends to the entire system (104 fibers). This means that the system was

pulled essentially non broken until a certain time when a big crack arises in the material.

After this big crack, small ones are observed because of the rupture of the remained fibers.

The brittle process is characterized by the existence of cracks with different sizes and a

remarkable feature is the presence of cracks with sizes near to the system size. The curves

that represent Hc vs. Sc have a maximum at Sc = 1. Note that at the beginning Hc goes

down linearly. In order to verify this last feature, we adjust the data using

Hc ∼ Sα
c . (3.2)

A good fit for this linear part is obtained with α ∼ 1.02 (see Figure 5).

As long as the temperature is increased the size of the cracks becomes smaller. When

one has many cracks of small sizes the fracture is clearly ductile. These cracks appear in

different parts of the material and the shape of the curve Hc vs. Sc changes. The curve has

a maximum at Sc = 2, instead Sc = 1 that occurs for brittle fractures.

A quite different feature can be observed for a slow traction (v = 0.001) and high

temperatures (t > 0.5) when we have obtained a ductile fracture with an unusual low energy
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of rupture (see Figure 3). Only cracks of small size are present in the system (Sc < 12). Now

the system fails when a force smaller than the one needed to break it at higher velocities is

applied. This could indicate that the system is in a different state at high temperatures and

that we have observed it in disaggregation.

IV. CONCLUSION

We have introduced a fiber bundle model for simulate fractures in fibrous materials. The

model is sensitive to external conditions which are present in some problems of material

sciences: traction velocity and temperature. The simplicity of the model allows us to perform

computations on very large systems. Because of this feature we can explore all pictures of

the failure processes.

We have obtained stress vs. strain diagrams showing features of the two principal types of

fractures: brittle and ductile. For low temperatures the system breaks brittle, independent

of the traction velocity. When the temperature increases, the fracture is influenced by

the traction velocity. We can observe a transition from the brittle regime to the ductile

one. The amount of energy needed to rupture the material is dependent on the traction

velocity. For high velocities more energy is needed. This comes from the fact that the size

of the cracks depends on the temperature. For high temperatures and low velocities we

observe a curious behaviour. In this case the energy is smaller than that needed to break

the material in brittle regime. This could indicate that we have a disaggregation process

at this temperature and the interaction between the fibers exerts a small influence in the

rupture process. These results are independent on the number of fibers in the fiber bundle,

because we have chosen values of the parameters v and t for which the maximum crack sizes

obtained in our simulations are less than No.

Several questions remain opened. The first one is the behaviour of this model in (2+1)-

dimensions for several lattices topologies. This could allow the comparison of our results

with that observed in realistic systems. The behaviour of the model in high temperatures
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and low velocities needs a more accurate investigation. It is interesting to verify if those

features remains in (2 + 1)-dimensions.
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Figure captions

Figure 1: A schematic representation of our model. We have filled in deep gray the

fibers fixed on a plate at rest (bellow) with the high extremity fixed on a moving plate,

pulled with constant displacement.

Figure 2: Strees vs. strain plots for different normalized temperatures (indicated in the

diagrams) and velocities (v = 0.001 - full line; v = 0.01 - dashed line; v = 0.1 - long-dashed

line). The pictures were made with just one simulation with a sample of 104 fibers for each

pair of parameters.

Figure 3: Energy of fracture process per fiber < Ef > vs. normalized temperature t.

The value of the velocities for each curve are shown in the inner box.

Figure 4: Frequency of cracks Hc vs. crack sizes Sc for different temperatures and

velocities. The simulations were performed in 103 samples of 104 fibers for each pair of

parameters. Pictures at the top have been calculated for t = 0.1, at the middle for t = 1.0

and at the bottom for t = 4.0. Full line represents v = 0.001, dashed line v = 0.01 and

long-dashed line v = 0.1.

Figure 5: Regression (dotted lines) for the diagrams frequency of cracks Hc vs. crack

sizes Sc for t = 0.1 for different velocities (indicated in the inner box).
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