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Abstract 

In this paper we study a simplified version of the cellular automata approximation introduced 
by De Boer, Segel and Perelson to model the immune repertoire. The automaton rule defines 
an activation window based on the idea of  the proliferation function (biphasic dose-response 
function), which is used to describe the receptor crosslinking involved in the B cell activation. 
This proliferation function is very sensitive to the activation threshold and activation interval 
definitions. Here we investigate the influence of these parameters on the automaton rule proposed 
by Stauffer and Weisbuch. Using a fixed window they obtained the stable-"chaofic" transition only 
for d > 4. We find, contrary to their results, that this transition is always present for d > 2 until a 
certain critical value of  the activation threshold is attained, above which this transition disappears 
and the system will always evolve towards a stable configuration. The shorter the activation interval 
the faster the system undergoes to the "chaotic" behaviour. Increasing the activation interval there 
is a certain critical size from which the system will always exhibit the same behaviour no matter 
the activation interval size. We also investigate the influence of  the initial distribution on the 
results. Since we defined the relevant parameters of the model, we obtained the phase diagrams 
exhibiting the regions of stable and "chaotic" behavior. Such diagrams are not easily found in the 
literature. 
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1. Introduction 

In the last decades there has been a great interest in modeling the immune system. 
The ideas of  clonal selection and idiotypic networks have allowed the use of simple 
mathematical models to study the immune system. A wide variety of models has been 
introduced to study both general properties and specific reactions of the immune system 
[1-3] .  

The models discussed here are based on the responses generated only by B cells, 

one of the main classes of  lymphocytes, and are also based on the pattern recognition 
inspired in the lock-and-key idea used to describe the recognition of the antigen by 
the lymphocytes and/or antibodies. When stimulated by the antigen presentation, the B 

cells secrete the antibody molecules specific to the antigen presented to the organism. 
The antibody secreted by a certain lymphocyte has the same molecular structure as the 
receptor carried by the lymphocyte itself (on its surface). So the antigen selects which 

clone (of  B cells and antibodies) will grow. 
The antigen is not recognized as a whole object; in fact it is recognized by small 

regions called epitopes. All the B cells/antibodies that recognize the same epitope belong 
to a clone with the same idiotype. 

Any model should take into account the receptor diversity which enables the system 
to recognize any foreign shape, in other words the repertoire must be complete. Due to 
the completeness of the repertoire, the immune system recognizes idiotypes in its own 
antibodies, therefore the same mechanism works for both antibody-antigen and antibody- 
antibody reactions. In 1974 Jerne [4] suggested that this recognition mechanism leads 
the system to form an idiotypic network that regulates the immune response. 

In this work we study a cellular automata model introduced by Stauffer and Weisbuch 
[5] to describe the development of the repertoire taking into account the interactions 
between the idiotypes (receptor shapes) of the different clones. This model is based 
on one previously introduced by De Boer, Segel and Perelson [6] (from now on 
referred to as BSP model) using the shape space formalism to simulate a large-scale 
model of the immune network. Their aim was to obtain some insight about whether 
or not the network, in the shape-space formalism, will be able to combine a functional 
idiotypic network with the clonal organization of functionally disconnected antigen- 
reactive clones. According to Coutinho [7] and Holmberg et al [8] only 10-20% of 
the clones form the idiotypic network and the rest of the lymphocytes will form an 
ensemble of  immunocompetent clones that are able to recognize any foreign antigen. 
The network is responsible for the repertoire selection, which means that it will select 
which T and B cells clones will be produced on the animals. In a shape-space formalism 
this question of network versus disconnected clones organizations will be translated into 
finding a mosaic of  regions of network and regions of disconnected clones. 

In the BSP model the receptors of the B cells are characterized by a vector r in 
n-dimensional real space ( those authors considered only n = 1 and 2). Two receptors 
are assumed to interact if they have complementary shapes. The interaction is maximal 
whenever the spatial coordinates are equal and opposite (i.e, r and - r )  and decays for 



R.M. Zorzenon dos Santos, A.T. Bernardes/Physica A 219 (1995) 1-12 

less complementary shapes according to a Gaussian function of the Euclidean distance 

between the pair of  interacting shapes. The space is discretized and the concentrations 
are assumed to be discrete in a logarithmic scale. They found that, by starting from a 
nearly homogeneous distribution of initial populations of the different cells, the final 
distribution is very inhomogeneous: at some points of the network the cell populations 
are orders of magnitude above those for other points. In the two-dimensional case these 
high population regions have a tendency to cluster in small circles. The results obtained 
do not agree with the Coutinho-Holmberg estimates. 

Nevertheless, as pointed by Perelson and Oster [9], if the notion of shape-space is 
of any relevance, its dimension should be far larger than 2 ( at least d > 5), since each 
dimension will represent an aspect involved in the idiotypic/anti?idiotypic interaction 
(shape, charge, number of aminoacids in the epitope, etc). 

In order to study this model in higher dimensions, Stauffer and Weisbuch [5] have 
proposed a simplified version of the BSP model, from now on referred to as BSP III. 

They replaced the Gaussian distribution of interactions by nearest-neighbour interactions, 
and the B cell concentrations, which could assume any value in the BSP model ,  are now 
restricted to assume only 3 values representing the virgin (B = 0), suppressed (B = 1) 
and immune (B = 2) states. This three peak structure was obtained by the authors in 
the final result for the concentration distribution when only the type of interaction is 
changed from Gaussian to nearest-neighbour (the BSPII model). The simulations were 
performed for d varying from 2 to 10. The automaton rule defines a window of activation 
for the sites depending on the number of  nearest-neighbour (B = 2) sites. Starting with 
an initial distribution symmetric in B = 0 and 2 (same number of sites with B = 0 and 
2), the system always evolves to stationary states (fixed point or limit cycle of period 
2) for d < 3, but goes through a transition at a critical concentration(xc) of B = 1 for 
d > 4. For x < Xc the system always evolves to stationary states and for x > Xc it ends 
up in a "chaotic" state, where a large fraction of sites evolves in a very complex way: 
This kind of behaviour seems to be unrealistic for the aim of the model, as pointed out 
by the authors. They also have obtained that the fraction of coupled sites for d _> 4 is 
far above the Coutinho-Holmberg estimates. 

In recent work [ 10], one of us has studied how the system attains this "chaotic" 
regime, how the periods and transient times behave near the critical concentration xc. 
When x ~ x c the periods increase leading the system to limit cycles of periods 4, 
8, 12 . . . .  The larger the system the faster the period increases close to Xc. The very 
large periods might be interpreted as a long chain of activation, so even before attaining 
the ~'chaotic" regime the system is already trapped in a sort of "non-healthy" state. The 
transient times diverge very rapidly in the vicinity of the transition threshold, attaining 
values larger than the average lifetime of the system. 

The automaton rule in all these models [5,6] defines a window of activation for 
the sites, based on the log bell shaped proliferation function (biphasic dose-response 
function) which is associated to the receptor crosslinking involved in the B cell acti- 
vation. The definition of the activation threshold of this proliferation function is quite 
crucial in order to generate the immune responses on population evolution models, since 
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for some values the results are not interesting or have no meaning from the biological 
point of  view. In particular, if the activation threshold is too small, instead of attaining 
a localized attractor, the system percolates (in the sense that it evolves to a situation 
where a chain of  activation is created, between the idiotypic populations, leading to the 
excitation of the whole system [ 11,12] ). So we might expect that the activation thresh- 
old of  the window, defined by the automaton rule, should also influence the behaviour 
of  the automata and maybe define a region of interest for the biological proposal of  
the model. Since Stauffer and Weisbuch [5] actually worked with a window definition 
that was slightly different from their original proposal, we performed simulations using 
the original definition and noted that the transition mentioned above appeared only for 
d _> 4. By performing other changes on the window definition the crucial importance 
of the activation threshold on the kind of final result obtained (final cellular automata 
configurations) became evident. 

On the other hand, looking at the initial distribution proposed by Stauffer and Weis- 
buch there is no biological reason to choose that particular initial symmetric distribution: 
i x  of  B = 0, ( 1 - x) of  B = 1 and ½x of B = 2. Since there are three possible states, it 
will be more natural to consider two different probabilities: x of B = 0, y of B = 1 and 

( 1 - x - y) of B = 2. Assuming we want to describe the initial distribution by a single 
parameter, we might consider a certain symmetry on the distribution, but there is still no 
reason to impose symmetry between the number of  virgin (B = 0) and immune (B = 2) 
states. Actually we should expect to find more B = 0 sites representing the attentive 
(immunocompetent but resting) cells that will be able to recognize any different foreign 
molecule presented to the organism (the disconnected clones mentioned by Coutinho 
[7] and Holmberg et al. [8] ). A majority of B = 2 cells could be interpreted as a 
highly exposed (to different antigens) system, still exhibiting immunity. From what we 
know about real systems, this behaviour would be very unlikely. Though the system is 
able to recognize 109 different forms, it is not expected that it will recognize such large 

number of antigens during its lifetime. 
In this paper we investigate the influence of the initial distribution and also that of the 

activation threshold and activation interval of  the window on the behaviour exhibited by 
the BSP III cellular automata. 

2. The  mode l  

In the BSP model, the receptors variables ( r )  interact with maximum strength with 
their complementary shapes ( - r ) ,  but also ( r  ÷ e) is allowed to interact with ( - r ) ,  
provided • is not too large, to reproduce the fact that antigens are recognized by 
slightly different antibodies (slightly defective lock and key). The influence of other 
cell idiotypes on a given cell type (i) is governed by the field h ( i )  that depends on a 
Gaussian function centered at k = - i .  The B cell concentrations are made discrete on a 

logarithmic scale. 
The cellular automaton approximation in the BSP model is defined by the rule: 
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"B(i) increases by one i f  and only i f  h(i) lies in a predetermined interval; otherwise 
it decreases by one (or stays at zero i f  it is already zero)". 

In the BSP III version introduced by Stauffer and Weisbuch [5], the Gaussian dis- 
tribution of the interactions is reduced to interactions with the mirror image and its 2d 
nearest neighbours, where d is the dimension of the shape-space we are considering. 
The N = L d sites of the lattice are numbered from - N / 2  to N/2 ,  going through the 

system like a typewriter, so that in all dimensions the i and - i  sites have complementary 
shapes. The B cells concentrations, which could assume any integer value (on a loga- 
rithmic scale) in the BSP model, now can assume only three values: virgin (B = 0), 
suppressed (B = 1) and immune (B = 2). The field h(i) which influences the site i is 
proportional to the number of  B = 2 sites among the 2d + 1 neighbours (mirror image 
and 2d nearest neighbours) centered on k = - i .  The rule now is given by: 

"B(i) increases by one, i f  the number h o f  B = 2 neighbours is between 1 and ~ o f  
the number o f  the 2d + 1 neighbours; otherwise it decreases (no change is made i f  it 

would lead to B = - 1  or to B = 3)". 
Using this definition, as mentioned above, the results have changed: there is no 

transition for d < 4 instead of d < 3 as obtained by them [5]. On the other hand, the 
strange fluctuations on the critical concentration obtained by the authors as d increases 
- for some dimensions the value of the critical concentration is decreased (see Table 
I in [5] ) - also appear using the present window definition. This decreasing occurs 
whenever the window definition turns out to be symmetric, i.e., the activation interval 
corresponds to ½ of the possibilities of the number of neighbours to have B = 2, the 
possibilities varying from 0 to 2d + 1. For example, for d = 5, the possibilities are: 
0 < n < 11 sites having B = 2, so the sites will be activated (concentration enhanced), 
only if they have 4, 5, 6 or 7 neighbours with B = 2. This window definition will 
generate symmetric windows only for certain dimensions, which satisfy the condition: 
the number of possibilities, (2d + 2), must be a multiple of 3. Whenever we get a 
symmetric window the critical concentration decreases. Such behaviour suggests that 
the activation threshold and activation interval play an important role on the behaviour 
of  the cellular automata, similar to that played by the proliferation function; in other 
words the behaviour of  the cellular automata could depend on the activation threshold 
and activation interval definitions. 

In order to perform an appropriate analysis of these aspects on the final behaviour of 
the cellular automata, we have introduced the following parameters: P1 related to the 
activation threshold and Pat related to the activation interval, 

(# of  possibilities below the activation interval) 
P1 = 

(2d + 2) 

(# of  possibilities on the activation interval) 
Pat = 

(2d + 2) 

For the example given above (d = 5): P1 = 4 and Pat = 4 (the symmetric situation). 
We now allow P1 to vary from the minimum to a maximum value which still guarantees 
the existence of the activation interval, since the number of neighbours is fixed for a 
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given dimension. In the example mentioned above it corresponds to varying P1 from 
to 8 .  

We have also varied Pat, for a fixed P1, in order to get its influence on the dynamical 
evolution of  the cellular automata. 

The initial distribution used by Stauffer and Weisbuch (from now on referred to as 

SW distribution), is a random distribution associated to the concentration x, symmetric 

with respect to B = 0 and B = 2. From the immunological point of  view there is no 
reason to consider such symmetry. Actually we should expect to find more B = 0 sites, 

which will represent the ability of  the system to recognize any foreign antigen (related 

to Coutinho-Holmberg estimates). 
From the models used to describe the general immune responses, we know that once a 

given clone recognizes a specific antigen, its idiotypic population will grow and will be 
maintained in a high concentration by the anti-idiotypic population. In other words, for 

each B -- 2 site there will be a B = 1 site corresponding to the anti-idiotypic population. 
Taking the above considerations into account, we introduce a new distribution: ( 1 - x )  

of  B = 0 and i x  of  B = 1 and B = 2, which we refer to as RA distribution from now 

on. In this case, for small x the sites have mostly B = 0. 

We have also considered other two different distributions: 
(a) the STR distribution: let y be a random number between 0 and 1, if  

y <  Ix ,  B = 0 ,  
l x < y < 2 x ,  B = I ,  

otherwise, B = 2; 

(b) the B2 distribution is the other symmetric possibility for the distribution: ½x of  

B = 0 and B = 1 and (1 - x )  of  B = 2. For small x already there will be a predominance 

of  B = 2 sites in the neighbourhood of  site i, favoring the activation or suppression. So 
we might expect a completely different behaviour o f  the cellular automata, in this case, 

compared to the SW and RA distributions. 

3. R e s u l t s  

Since one of  our goals is to study the influence of  the activation threshold and 
activation interval of  the window defined by the BSPIII  rule on the behaviour of  the 

cellular automata, we performed our simulations for d between 1 and 10. According to 
the results obtained (and discussed below) the behaviour of  RA and SW distributions is 
quite similar, so we have performed most of  our simulations using the RA distribution, 
as we believe it to be more appropriate to describe the actual immunological situation. 

One of  the most interesting results obtained is that, in contrast to the previous results 
on the BSP cellular automata, we get the stable-"chaotic" transition for d _> 2 depending 
on the value of  P1 and on the window definition. The system is considered to attain 
the "chaotic" regime if after a certain number of  iterations (time steps = itmax) it does 
not repeat a chosen configuration. We have used typically itmax varying from 256 up 
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Table 1 
The values of Xc for P1 = 62- and Pat = 63- for different values of the maximum number of iterations (#max) 

it.~x SW dist. RA dist. 

256 0.25 0.36 
512 0.27 0.38 

1024 0.29 0.39 

to 2048 in order do verify this transition, although we used higher values for the cases 
which the transition was not clear. In two dimensions this transition is clearly obtained 

for SW and RA distribution for P1 = 3 and Pat = 3 .  We have also evidence of  this 
transition for P~ = 3 and Pat = 3' but due to computational limitations it was not clearly 

stablished. We have performed simulations for L = 1000 or N = 106 sites. In Table 1 

w e  show, for d = 2 and P1 =3 and Pot =3, the values of  Xc for different numbers o f  

the maximum iteration ( i t ,~x) considered, for both SW and RA distributions and the 
convergence towards a limit value of  Xc is quite evident in both cases. The Stauffer- 

Weisbuch windows for d = 2 correspond to P1 = 3 and Pat = 1 in our definition. 

Since the activation interval is small, it will lead the system to evolve only to stable 
configurations (no transition is observed). 

The dependence of  the transition on the number of  iterations becomes more pro- 

nounced due to the normalization introduced in considering the window based only on 
the number o f  B = 2 sites. I f  instead of  that definition we consider, as in the BSP original 

model, a window based on the actual values of  the field (summing over all the states 

of  the nearest neighbours and not only over those with B = 2),  we obtain a smooth 

variation o f  the transition threshold when we vary i t~x ,  indicating the convergence 
we need to confirm such transition. The simulations performed using this definition of  

window will be published elsewhere, reporting also an analysis of  the behaviour of  the 

system, related to periods and transients when x ~ x c .  
The fact that now, using the appropriate parameters, we can get the stable-"chaotic" 

transition in d = 2, will enable us to look at the properties of  the automata behaviour 

in the "chaotic" regime from the biological point of  view, as well as the correlation 
between this behaviour and the percolation in the evolution population model [ 11,12]. 
This investigation is already under way and will be published elsewhere. 

Another interesting result is that we obtain a phase diagram for all dimensions. 
There is a maximum value PI* for each dimension such that, for Pi < PI* there is 
always an Xc that characterizes the transition from stable configurations to the "chaotic" 
regime; for P1 > PI* the transition disappears and the system will always evolve to 
stable configurations. So, Pl* denotes the highest value of  P1 at a given dimension, 
for which we observe the stable-"chaotic" transition. From the point of  view of  the 
automata themselves, we got a phase diagram that maps different regions of  distinct 
behaviour, in parameter space, according to the Wolfram [ 13] classification of  cellular 
automata: a region of  stable configurations (class 1 or 2),  the "chaotic" region (class 
3) and the critical line where the transients diverge very rapidly [ 10] indicating the 
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Fig. 1. Critical line separating stable and "chaotic" behaviour for Pat close to ½, RA distribution, for different 
dimensions. 

possibility to get a class 4 behaviour. From our simulations on the BSPHI model, the 
stable configurations, for d _> 2, are fixed points or period-two limit cycles, which 

also confirm the droplet-type arguments of Bennet et al [ 14], which limit the possible 

patterns of collective states in d _> 2 to be at most of period two. We shall recall 

that, despite the fact that the higher dimensions introduce a mean-field tendency (with 
the increase in the number of neighbours) that could lead the system to exhibit limit 

cycles of periods greater than two or quasiperiodic behaviour [ 15,16], in this case the 

relevant parameter P1 depends also on the dimension and will be defined equivalently in 
all dimensions. So, in contrast to the survival windows defined in the cellular automata 
introduced by Chatr-Manneville, where the window is fixed, this tendency does not exist 

in our case. 
In order to study only the influence of the activation threshold we have kept the 

activation interval (Pat) as close as possible to 1, since as shown below, this choice 

guarantees that the size of the activation window will not influence the results obtained. 
We have performed simulations for RA distribution varying d from 2 to 10, using 
different values of L for each dimension considered. From Fig. 1, we see that the smaller 
the dimension the smaller PI*, as it should be since P1 depends on the number of different 
possibilities of B = 2 neighbours, which itself depends on the value (2d + 2). We also 
note that for d > 8 the critical curves seem to collapse into the same curve; without 
considering the first point (related to small P1) it can be approximated by a linear 
growth of Xc with/ '1. Going to higher dimensions, as Pl* increases the xc associated to 
it also grows. In other words, going through higher dimensions the activation threshold 

becomes large in order to avoid the "chaotic" behaviour, and there is an enlargement of 
the region x <_ Xc where the system evolves to a stable configuration. 
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Fig. 2. Critical concentration (Xc) versus the activation threshold parameter (P1) for d = 7, L = 6 and RA 
distlibution for different values of Pat. 

In Fig. 2 we show the behaviour of  the critical l ine in the (P1, x)  parameter  space, 

for d = 7, L = 6 and R A  distribution for different values of  Pat. For Pat > 0.31, all 

the critical l ines col lapse to the same line. I f  the activation interval is too small, it  will  

influence the automaton behaviour. On the other hand, i f  Pat >- 1 it  does not influence 

the dynamical  evolution o f  the system. 

In order to investigate the influence of  the choice o f  initial distribution on the be- 

haviour of  the cellular automata, we have performed simulations for d = 7, L = 6 and 

Pat = 0.3125 using four different distributions: SW, RA, STR and B2. From Fig. 3 we 

see very similar  behaviour for both SW and R A  distributions. The differences appear 

when P1 is small and when P1 is close to PI*. This is better shown in Fig. 4, where 

we present  data concerning only the R A  and SW distributions for d = 10, L = 4 and 

Pat = 0.3175. So, for the R A  distribution the activation threshold necessary to avoid the 

stable-"chaotic" transit ion gets higher, but also the region of  stable configuration in the 

parameter  space gets large. Other simulations were performed in order to better compare 

SW and R A  distributions in all dimensions,  from which we get that the S W  curve (xc 

versus P1) crosses the R A  one at the same point, as expected, since the P1 definition 

depends on d. 

The STR distr ibution seems to not favour the "chaotic" behaviour ( i t  enlarges the 

region o f  stable configuration behaviour) ;  its PI* is smaller than the maximum value Pl 
for the S W  and R A  distributions. This distribution seems to be more natural than the 

other ones, since it takes into account two different probabil i t ies  (x  and y ) ;  actually y 

is a random number and the distr ibution is made based on the comparison between y 

and x. 
The B2 distr ibution is more unrealistic i f  compared to the other ones, since it favours 

the number o f  B = 2 sites in the initial distribution and the window definition is based 
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Fig. 3. Critical concentration (Xc) versus activation threshold parameter (P1) for d = 7, L = 6 and Pat = 0.3125 
for four different distributions: SW, RA, STR and B2. 
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Fig. 4. Critical concentration (xc) versus activation threshold parameter (P1) for d = 10, L = 4 and 
Pat = 0.3175 considering only SW and RA distributions. 

on the B = 2 neighbour sites. In this case, even considering small x most of  the sites in 

the  in i t ia l  d is t r ibut ion wil l  a lready have B = 2, a si tuation that wi l l  favour  s t imulat ion 

or  suppress ion  depend ing  on P1. For  small  P1 there wi l l  be  a compet i t ion  be tween  

act ivat ion and suppress ion since the number  o f  B = 2 sites wi l l  be  large, so the site wi l l  

easi ly attain B = 2 i f  i t  is not  already in this state, or  it wi l l  be  suppressed (change  

the state) i f  i t  a l ready has B = 2; this s i tuation wil l  lead the sys tem never  to attain a 

s ta t ionary state. I f  PI ~ PI*, even though  it  is necessary to have m o r e  B = 2 neighbours ,  
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Fig. 5. Critical concentration Xc for the Pl* (the last value of P1 for which we still obtain the stable-"chaotic" 
transition) for the different dimensions considered, considering the RA distribution and Pat close to ½. 

a slight increase on the concentration will  cause the system to attain the same situation 

as in case (a)  because o f  the large number of  B = 2 neighbours that will  be available. 

The critical concentration xc varies inside a small range of  values, attaining a maximum 

value around 0.20; for small and large P1, Xc is close to 0.1. 

We have plot ted xc (Px*) for different dimensions in Fig. 5, using the RA distribution 

and Pat ~ ½. As one can see, for low dimensions Xc grows fast, but for d > 5 the 

variation is not very strong, actually it seems that Xc tends to an asymptotic value close 

to one. 

We have also performed simulations in order to analyse the effect of  the finite size on 

the results. As expected, this effect are important  only for small L in low dimensions 

but they are almost negligible in higher dimensions and for large L in low dimensions.  

4. Conclusions 

We have investigated the influence of  the random initial distribution of  a three state 

automata, used to model  the immune repertoire, on its dynamical  evolution. We have 

performed simulat ions considering four different distributions. We got quite similar 

behaviour for three of  them - a well defined line separating the parameter space in two 

regions: one of  stable configurations (fixed point  or l imit  cycles) and another one o f  

"chaotic" behaviour. Another  very distinct behaviour was obtained for the distribution 

that favour the number  of  B = 2 neighbours, as expected, since the automaton rule 

depends on the number o f  B = 2 sites in the neighbourhood. 

From the simulations performed we have confirmed the crucial importance of  the 

activation threshold and also that o f  the activation interval on the behaviour of  the cellular 
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automata, as it should be, since the  window definition is based on the proliferation 

function. If  the activation interval is too small it will influence the behaviour of the 

cellular automata, in the sense that it will enlarge the stable region in parameter space. 
1 

For Pat >- ~ the system seems to converge asymptoticaly to the same behaviour no 

matter the value of Pat. 

A very interesting result obtained is the existence of the stable-"chaotic" transition, 

depending on the value of PI, for d _> 2, whereas earlier work found it only for d _> 4. 

We have also found a maximum value PI*, such that, for P1 _< Pl* this transition is 

always present and xc grows as Pa -+ PI*-. Above Pa* the transition disappears and the 

system always evolves to stable configurations. 

From the point  of view of cellular automata we have obtained the phase diagrams 

mapping the range of parameters for which we attain distinct behaviour. Such diagrams 

are not easily found in the literature and enable us to define the critical region probably 

associated to a class 4 behaviour. 
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