
ar
X

iv
:c

on
d-

m
at

/0
20

94
08

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
7 

Se
p 

20
02

Survival-extinction phase transition in a bit-string

population with mutation

Kathia M. Fehsenfeld,1,∗ Ronald Dickman,1,† and Américo T. Bernardes2,‡
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Abstract

A bit-string model for the evolution of a population of haploid

organisms, subject to competition, reproduction with mutation

and selection is studied, using mean field theory and Monte Carlo

simulations. We show that, depending on environmental flexibil-

ity and genetic variability, the model exhibits a phase transtion

between extinction and survival. The mean-field theory describes

the infinite-size limit, while simulations are used to study quasi-

stationary properties.
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I. INTRODUCTION

Many mathematical models have been proposed to describe the evolution of
populations, focusing on varied aspects, for example, mutation accumulation
[1,2], and adaptation [3,4,5,6,7]. In the first case, how deleterious mutations
are passed to offspring, and the consequences for individual growth, are of
particular interest. In the second, the principal interest is the influence of
different environmental conditions on the population. One goal in this area
is the development of a simple model capable of describing the response of
a population to environmental mutability. Of interest, for example, is the
ability of a population to adapt to rapid changes in its environment. Penna’s
bit-string model [1] seems well suited to this purpose.

In this paper, we propose a model for evolution of an adapting popula-
tion, to study the consequences of variation of conditions affecting survival,
related to environmental flexibility, and the genetic variability of the popula-
tion. Our main interest is to describe the conditions determining the extinc-
tion or survival of the population. The population evolves in discrete time
with non-overlapping generations. It consists of haploid organisms defined by
their genotype (a bit-string of G positions, or genes). The individuals undergo
asexual reproduction, subject to mutation, competition and selection. Selec-
tion is represented though a survival probability that depends on the difference
between a genome and a certain ideal genome. Environmental changes can be
represented via alteration of this ideal. In the present study, however, the
ideal genome is fixed, allowing a systematic study of the effect of various other
parameters upon survival.

We develop a mean-field (MFT) description, which describes the evolution
of an infinite population exactly, since it has no spatial structure. We also
perform Monte Carlo simulations for the model. The latter are useful for
studying fluctuations due to finite population size, that are not captured in the
MFT. We determine the survival/extinction phase boundary, and compare the
temporal evolution, and the genomic distribution of the population predicted
by MFT against simulation results.

The paper is organized as follows. In Sec. II, we define the model and in Sec.
III develop the MFT. Sec. IV describes the Monte Carlo simulation algorithm,
while Sec. V reports MFT and simulation results. We present our conclusions
in Sec. VI.
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II. MODEL

We study a model for evolution of a population of haploid individuals de-
fined by their genomes, and subject to competition, asexual reproduction with
mutation, and selection. In this model, successive generations do not overlap.
Each individual is represented by a bit-string of G positions (genes), denoted by
the vector σ = (σ1, σ2, ..., σG), where σi = 0 or 1. The fitness of an individual
to the environment is measured in relation to a “model individual” (or “ideal
genome”), represented by the sequence σi = 0, i = 1, ..., G. Each gene in state
1 represents a reduction in fitness, and carries the same weight, independent
of its position i. Thus the Hamming distance from the ideal genome, given by
H =

∑

i σi, characterizes an individual’s fitness (This manner of characterizing
fitness has been used in several studies of age-structured populations [5,6,7].)
The dependence of fitness on H is through the survival probability

S(H) =
1 + eB

eH/Gτ + eB
. (1)

S(H) is the probability for an individual to survive up to the stage in which
she must compete with the rest of the population; individuals that survive the
competition stage go on to reproduce offspring, as detailed below. The pa-
rameter τ , which plays a role analogous to temperature in equilibrium statis-
tical mechanics, represents environmental flexibility, while B, which is related
to the genetic variability of the population, represents mutational tolerance.
S(H) = 1 for H = 0, and decays monotonically with H . We note that for
fixed H and B, the survival probability is an increasing function of τ , and that
for fixed H and τ , S is an increasing function of B. The Fermi-like function
S(H) was used in a similar manner in the model of Thoms et al [5]. These
authors define a death probability pd = [eβ(b−a) + 1]−1, where β is an inverse
temperature and (b− a) represents the difference between the typical number
of mutations in the population, and the number of mutations of the individual.

At reproduction, each organism is replaced by two offspring. The latter are
copies of their parent, with a certain number m of mutations. Each position
has a probability of λ to mutate (mutations 0 → 1 and 1 → 0 are considered
equally likely), with mutations at different positions constituting independent
events. The number of mutations m therefore follows a binomial distribution.
The mean number of mutations per reproduction event, λG, is set to unity in
this study.

Competition amongst individuals is represented by the familiar Verhulst
factor,

V = 1 −
N(t)

Nmax
, (2)
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where N(t) is the population at time t and Nmax is the maximum capacity
of the environment. The evolution of the population proceeds by discrete
time steps: at each step, the Verhulst factor is applied by selecting at random
(independently of H), NV survivors; the survivors go on to reproduce as
described above.

III. MEAN-FIELD THEORY

We have developed a mean-field description of the model defined above.
For this model, which has no spatial structure, the deterministic mean-field
description describes the infinite-size limit (Nmax → ∞) exactly. Differences
between theory and simulation are due to fluctuations that appear in finite
sized systems, but that are absent in the infinite-size limit.

In the full stochastic description there are 2G distinct genomes σ, and an
integer-valued random variable Nσ(t) ≥ 0 for each. Our first step in construct-
ing a simplified description is to reduce the set of variables to N(H, t): the
number of individuals with Hamming distance H from the ideal, at time t.
Since the model does not distinguish between individuals with the same Ham-
ming distance, the probability distribution at any time t > 0 will be a function
of H only, if it is so at t=0. We shall always suppose this to be the case.

In the mean-field theory, the discrete-time evolution of the population may
be written so:

N(H, t+1) = E[N(H, t+1)|{N(H, t)}], (3)

where {N(H, t)} represents the entire set of population variables at step t. In
other words, the population at step t+1 is approximated by its expected value,
given the distribution at step t. (The latter, in turn, is given by the expected
distribution, given that for time t−1, and so on.) The integer-valued random
variables of the exact description are therefore replaced by a set of real-valued,
deterministic variables.

Each step of the evolution consists of two stages: (1) death of individuals due
to competition for resources (‘Verhulst stage’); (2) reproduction/selection. In
the Verhulst stage, the total population size N =

∑

H N(H) is evaluated; then
each subpopulation is reduced by the same factor, V = 1−N/Nmax, yielding
the values:

N ′(H) = V N(H), (H = 0, ..., G). (4)
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Note that the Verhulst stage involves an interaction between individuals
(N ′(H) is a nonlinear function of all of the N(H)), and that each individ-
ual interacts equally with all others in this process.

In the reproduction stage each individual is replaced by a pair of offspring
that have, in general, Hamming distances different from those of the parent.
We assume independent, equally probable mutations at each site, so that the
number of mutations m in a given reproduction event is binomially distributed:

P (m) =

(

G
m

)

λm(1 − λ)G−m . (5)

(Since G ≫ 1 while the mean number of mutations λG is of order unity, we
may approximate P (m) by a Poisson distribution in simulations; we retain the
binomial distribution in the MFT analysis.)

Each reproduction event may be represented schematically as H ′ → H1, H2,
where H ′ denotes the Hamming distance of the parent and H1 and H2 those
of the offspring. Since H ′ → H1 and H ′ → H2 are independent events (even
though they happen simultaneously), it suffices to consider one such, i.e., H ′ →
H ; let W (H|H ′) represent its probability. If the offspring differs from its parent
at exactly m positions, then,

max[0, H ′ − m] ≤ H ≤ min[H ′ + m, G].

Let m = m0+m1, with m0 the number of mutations 0 → 1 and m1 the number
of type 1 → 0. Each event is characterized by H ′, m, and m0. (Evidently,
H = H ′ + m0 − m1 = H ′ + 2m0 − m.) The probability of such an event is
given by the hypergeometric distribution:

p(m0|m, G, H ′) =

(

G − H ′

m0

)(

H ′

m − m0

)

(

G
m

) . (6)

Now using m0 = (H−H ′+m)/2, we have,

W (H|H ′) = (G−H ′)!H ′!
G
∑

m=0

λm(1 − λ)G−m

(

H−H′+m
2

)

!
(

H′−H+m
2

)

!
(

G−H+H′+m
2

)

!
(

H′+H−m
2

)

!
.

(7)

Next we observe that the expected number of surviving offspring with Ham-
ming distance H produced by a parent with Hamming distance H ′ is:
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W̃ (H|H ′) ≡ 2S(H)W (H|H ′). Thus the expected number of individuals with
Hamming distance H , at step t+1 is:

E[N(H, t+1)|{N(H ′, t)}] =
G
∑

H′=0

W̃ (H|H ′)N ′(H ′) , (8)

where N ′(H ′) is the distribution just after the Verhulst step. The evolution of
the population is found via numerical iteration of Eqs. (4) and (8).

IV. SIMULATION ALGORITHM

We study the evolution of the model population in Monte Carlo simulations.
Initially, N0 = Nmax/10 individuals of G = 128 bits are generated, each with
a random gene sequence, σ = (σ1, σ2, ..., σG), where σi = 0 or 1 with equal
likelihood. The procedure is as follows:

i) The Verhulst factor V = 1 − N(t)/Nmax is evaluated. Then for each
individual, a random number s is generated; the individual survives (dies) if
s < V (s > V ).

ii) Each individual reproduces: 2 copies are created, with possible muta-
tions. The number of mutations m is given by a random integer, chosen from
a Poisson distribution with parameter 1. The mutation loci are selected at
random.

iii) For each daughter, the Hamming distance H from the ideal is evaluated,
and a random number r, uniform on [0,1] is generated. If r ≤ S(H), the
individual survives; otherwise, it dies.

During the simulations, we record the population, average Hamming dis-
tance, the average survival probability,

〈S(t)〉 =
1

N(t)

N(t)
∑

i=1

S(Hi), (9)

and the survival rate, S(t) ≡ N(t)/N(t − 1). (Note that in general 〈S(t)〉 <
1, while S(t) may, in principle, take any nonnegative value, and is unity in
the stationary state.) Depending on the parameters τ , B, and Nmax, the
population may survive until a certain maximum time (tmax = 30 000 steps
in the simulations), attaining a quasi-stationary state, or may go extinct. We
record the Hamming distance distribution in the quasi-stationary state.
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V. RESULTS AND DISCUSSION

Depending on the values of B and τ that characterize the survival probabil-
ity function S(H), Eq. (1), the population either survives or goes extinct. In
the mean-field theory this is a sharp transition. In simulations, due to finite
population size, fluctuations into the absorbing state (population zero) are to
be expected. Indeed, for any finite system size the population must eventu-
ally go extinct, if the process is permitted to continue indefinitely. We adopt
tmax = 30 000 as a convenient maximum time, allowing us to discriminate be-
tween survival and extinction, and (in the former case), study quasi-stationary
properties, except very near the transition, where, as noted, the sharp distinc-
tion is blurred by fluctuations.

Fig. 1 shows the phase boundary between survival and extinction in the B -
τ plane, comparing the mean-field prediction against simulations using Nmax =
104, 105 and 5×105. As Nmax is increased, the survival/extinction line found in
simulation approaches the MFT prediction, as expected. For small values of τ ,
(a “hard” or inflexible environment), survival of population requires high values
of B, the mutational tolerance. The mean-field survival/extinction line of the
diagram is obtained by fixing the parameter τ and measuring the stationary
population density ρ = N/Nmax as a function of B. Near the transition, ρ
depends linearly on B: ρ ∝ B−Bc(τ), as is normally the case in mean-field
descriptions of a continuous phase transition to an absorbing state [10]. The
line Bc(τ) is readily obtained via linear regression to the ρ(B) data near the
transition. Note that Bc = 0 for τ > 0.192. For τ ≪ 1, on the other hand,
Bc ∝ 1/τ . (Increasing the mutation probability λ, the phase boundary is
displaced upward and to the right, enlarging the extinction region.) Fig. 2 is
a three-dimensional plot of the population density as a function of B and τ ;
the extinction region is evident, as is the monotonic growth of ρ with either
parameter.

Fig. 3 presents a typical evolution of the population density ρ(t). For B
and τ in the survival phase, the population exhibits a rapid initial decay and
then evolves to a quasi-stationary state. Simulation and MFT evolutions are
in good agreement, despite fluctuations in the former.

The quasi-stationary distribution of Hamming distances obtained in sim-
ulation is compared in Fig. 4 with the stationary distribution predicted by
mean-field theory. In all cases, the distribution peaks near the mean value
< H >, and has a generally Gaussian appearance. For fixed τ , we observe
that < H > increases monotonically with B, attaining a plateau, if τ is suffi-
ciently large. The plateau value is < H >≃ 64, i.e., half the genome size. For
fixed B, we observe that < H > increases with τ , until attaining < H >= 64.
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The variance of the distribution behaves similarly. Its saturation value is about
32, giving a standard deviation σ ≃ 5.7. This is not surprising, given that B
and τ both represent tolerance of differences from the ideal genome. Fig. 5
shows the stationary values of < H > and σH as functions of B, as predicted
by MFT; simulations yield very similar behaviour. In simulations, extinction
occurs at larger B values than are predicted by MFT, due to finite-size effects,
as noted above; the difference between simulation and theory diminishes with
increasing system size.

VI. SUMMARY

We propose a bit-string model of the evolution a simple haploid population.
Similarly to previous studies [5,6,7], the model includes the effect of enviromen-
tal flexibility and tolerance to genetic differences on the survival probability.
Unlike previous works, we employ a survival probability that is a monotonic
increasing function of the parameters B and τ that represent tolerance of ge-
netic difference between a given genome and the ideal. The model is studied
via computer simulations and mean-field theory, which are in good agreement.

The model, like many others in population dynamics or epidemic analysis,
exhibits a continuous transition between an active phase (survival) and an
absorbing one (extinction). We map out the phase boundary in the B - τ
plane, and find clear evidence of mean-field-like critical behavior, as in other
population models lacking spatial structure [10]. The mean-field description is
exact in the infinite-size limit, but provides no information regarding fluctua-
tions. On the other hand, simulations for parameter values in the active phase
yield information on the quasi-stationary state of a finite system (Nmax < ∞).
It is also of interest to obtain the lifetime of this quasi-stationary state, or,
equivalently, the mean first-passage time to extinction. Such information can
in principle be obtained from simulations, or from a probabilistic analysis of
finite populations, starting from the master equation [11]. Given the large
number of random variables involved (G+1, if we assume that the probabil-
ity depends only on Hamming distance H), the multivariate Fokker-Planck
equation would seem the most convenient tool; theoretical analysis of finite
populations is left as subject for future work. The simulation results reported
here should prove useful in testing such theories.

Another interesting direction for future study is the response of the pop-
ulation to changes in the environment. Such changes can be represented by
variations in the ideal genome (as presented in [6,7]) and/or in the parameters
τ , B, λ, and Nmax. A related question is that of transitions in the genome
distribution when two or more ideals (corresponding to distinct, well adapted
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types in the fitness landscape), exist. Studies of these problems using the
bit-string model are in progress.
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Figure Captions

Fig. 1. Survival/extinction phase boundary in the B-τ plane for λG = 1. The
solid line is the MFT prediction; dashed lines represent simulation results for
Nmax = 5 × 105, 105 and 104 (bottom to top).

Fig. 2. Population density ρ as a function of B and τ from MFT. For τ ≥ 0.192,
the population survives for any value of B.

Fig. 3. Time evolution of the population density ρ for τ = 0.1 and B = 4, in
MFT (smooth curve) and simulation (Nmax = 105).

Fig. 4. Stationary Hamming-distance distribution for various parameters, as
indicated.

Fig. 5. Dependence of Hamming distance on B for τ = 0.1 in MFT. Central
line: mean Hamming distance, < H >; upper and lower lines represent one
standard deviation above or below the mean.
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