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Introduction
Dental practice has been significantly revolutionized by the development of composite 
filling materials [1]. These materials not only satisfy the esthetic demands of the patients, 
but also allow for easy manipulation and contouring of the material to replace or fill the 
lost or damaged tooth. Additionally, the use of a dental adhesive is much less invasive 
and conserves the tooth structure, with minimal visibility. A resin-based composite fill-
ing material can be used routinely in the clinic to restore caries and worn structures, 
close diastemas, and remodel malformed or fractured teeth [2]. It is essential that a 
durable bond is formed between the adhesive and the dental tissue during direct com-
posite restoration. Therefore, adhesive resin monomers should properly integrate and 
polymerize with the demineralized dental tissue.
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weighed, and then immersed in a 37 °C water bath for 1 h or 7 days. The UTS of each 
sample was then measured at a cross-head speed of 1 mm/min (n = 10). The UTS for 
the Clearfil SE Protect was higher in the “Original” than “Desiccated” samples (p < 0.05). 
For the OptiBond XTR, no significant difference was found between the ‘Original’ and 
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hardened, even after light-curing, yet the ‘Desiccated’ OptiBond All-In-One samples 
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Contemporary adhesives have been categorized as “etch-and-rinse” and “self-etch” 
[3]. Among them, the two-step self-etch adhesives (2-SEAs) are popular because of their 
ease of use and rapid application [4]. Self-etching primers generally contain acidic func-
tional monomers that are dissolved in water. Therefore, they do not require a separate 
rinse step after etching, as the acidic and hydrophilic functional monomer simultane-
ously demineralizes and infiltrates the enamel/dentin substrate [5]. These hydrophilic 
monomers promote wettability and infiltration of the adhesive resin, which is mainly 
composed of hydrophobic resin monomers; for example, 2,2-bis[4-(2-hydroxy-3-meth-
acryloyloxypropoxy)phenyl]propane (Bis-GMA), urethane dimethacrylate (UDMA), 
and triethylene glycol dimethacrylate (TEGDMA).

Recent formulations have shifted to one-step self-etch adhesive (1-SEA) systems, in 
which all components are combined into a single solution. Despite their user-friendli-
ness, the lack of a hydrophobic bonding resin in these 1-SEA formulations reduces the 
stability of the bond over time, because the bonded interfaces behave as semipermeable 
membranes that allow the movement of water across them, expediting hydrolytic degra-
dation [6, 7].

Since almost all 1-SEA reagents contains solvents such as water, ethanol or acetone, 
evaporation of the solvent affects monomer conversion and the mechanical proper-
ties of the agent after setting [8, 9]. However, some 2-SEA agents have a solvent as part 
of the ingredients of the bonding agent, and some 1-SEA and 2-SEA products contain 
2-hydroxyethyl methacrylate (HEMA), a hydrophilic compound that can affect water 
absorption by the cured adhesive [10].

Therefore, the purpose of this study was to evaluate the influence of solvent evapora-
tion on the ultimate tensile strength (UTS) of commercial adhesives. The null hypotheses 
of this study were that (1) residual solvent does not influence the mechanical properties 
of the cured adhesive regardless of the period of water storage, and (2) mechanical prop-
erties of the cured adhesive are influenced by the presence of HEMA regardless of the 
period of water storage.

Methods
Study design and adhesives tested

This study followed a factorial 4×2×2 design for “adhesive”, desiccation” and “storage 
period”.

Two 2-SEAs (Clearfil SE Protect, Kuraray Noritake Dental, Tokyo, Japan; OptiBond 
XTR, Kerr, Orange, CA, USA) and two 1-SEAs (OptiBond All-In-One, Kerr; G-Pre-
mio Bond, GC, Tokyo, Japan) were used in this study (Table 1). For each adhesive, four 
bottles with the same batch number were used and randomly divided into two groups 
(“Original” and “Desiccated”).

Active solvent evaporation for “Desiccated” group

Two bottles of each adhesive were opened and the nozzle removed using pliers in a dark 
room. The adhesives were stored in a dark dry oven at 37 °C with silica gel (Wako Pure 
Chemical, Osaka, Japan) shielded from light for 2 weeks to aggressively evaporate any 
residual solvent. After 2-weeks, the nozzle and the bottle cap were replaced and the 
adhesive was stored at a controlled temperature (25 °C) until specimen preparation. The 
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other two bottles were stored at a controlled temperature (25 °C) until specimen prepa-
ration with the bottle cap sealed.

Measurements of specimen weight and ultimate tensile strength (UTS)

Figure 1 shows a schematic representation of specimen preparation and the method 
of UTS testing. A stainless steel, hour glass-shaped split mold of 1  mm thickness 
(Fig.  2)  was constructed and fixed onto a glass slide. The mold was then filled with 
adhesive, pressed with a second 1-mm-thick glass slide, and then light cured for 60 s 
through the top glass slide using an LED light-curing unit (Demi Plus, Kerr) [11, 12]. 
Light intensity was controlled using a hand-held dental radiometer (Model L.E.D. 

Table 1  Materials used in this study

Bis-GMA, 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane; CQ, dl-camphorquinone; GPDM, glycerol-
phosphate-dimethacrylate; HEMA; hydroxyethylmethacrylate; 4-MET, 4-methacryloyloxyethyl trimellitate; 10-MDP, 
methacryloyloxydecyl dihydrogen phosphate; MDTP, methacryloyloxydecyl dihydrogen thiophosphate
a  Also known as “Clearfil Megabond FA” in Japan

Adhesive (manufacturer) Ingredients Batch no.

2-step self-etch adhesive

 Clearfil SE Protect (Kuraray 
Noritake Dental)a

Bis-GMA, HEMA, 10-MDP, Hydrophobic aliphatic methacrylate, colloidal 
silica, CQ, initiators and accelerators, sodium fluoride, others

CK0014

 OptiBond XTR (Kerr) Hydrophobic monomers, ethanol, camphorquinone, 0.4-μm barium 
glass, nano-silica filler, sodium hexafluorosilicate

5143490

1-step self-etch adhesive

 OptiBond All-In-One (Kerr) GPDM, glycerol dimethacrylate, HEMA, water, acetone, ethanol, CQ-
based photo-initiator, nano-sized fillers, sodium hexafluorosilicate, 
ytterbium fluoride

5164557

 G-Premio Bond (GC) 4-MET, MDP, MDTP, methacrylate monomer, acetone, water, photo 
initiators, silica

1605241

Fig. 1  Schematic illustration of the experimental set-up for ultimate tensile strength (UTS) testing. CHS, 
cross-head speed
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Radiometer, SDS Kerr, Middleton, WI, USA) to ensure a light output of at least 1000 
mW/cm2 [13]. After light curing, the samples were carefully removed from the mold. 
The flash was removed with a surgical blade #15C. The weight of each specimen was 
immediately measured using a digital analytical balance (HR-202i, A&D Co., Tokyo, 
Japan). The specimens were then randomly divided and assigned to one of two stor-
age conditions: 1 h or 7 days in 37  °C water bath shielded from light. After incuba-
tion, each specimen was weighed again, and the cross-sectional area at the narrowest 
part of the specimen was measured using a digital caliper (Mitutoyo, Tokyo, Japan) to 
the nearest 0.01 mm. The remaining specimens were attached to the two free-sliding 
parts of a purpose-built holding device (Micro Tensile Test Jaw, Bisco, Schaumburg, 
IL, USA) using cyanoacrylate glue (Model Repair II Blue, Dentsply-Sankin, Ohtawara, 
Tochigi, Japan), and a tensile load was applied with a Micro Tensile Tester (Bisco, 
Schaumburg, IL, USA) at a cross-head speed of 1 mm/min until the specimen frac-
tured (n = 10). The UTS of the cured adhesive was calculated as:

where F is the tensile load force at failure (N), and A is the cross-sectional area of the 
narrowest part of the specimen (mm2). The ultimate tensile strength (N/mm2) was 
expressed in MPa [11, 12].

Statistical analysis

Data were analyzed using a three-way analysis of variance (ANOVA). If differences were 
found, pair-wise testing was performed using Tukey’s HSD test. The significance level 
was set to α = 0.05. Statistical analysis was performed using IBM SPSS 18 statistical soft-
ware (SPSS, Chicago, IL, USA).

Results
Ultimate tensile strength

The result for the UTS tests is shown in Table 2. No effect was found for “storage period” 
(p = 0.072), whereas a significant effect was found for “adhesive” (p = 0.000) and “des-
iccation” (p = 0.000). A significant interaction was also found for the three factors 
(p = 0.000).

Neither of the 1-SEAs (OptiBond All-In-One and G-Premio Bond) hardened in their 
“Original” states, even after sufficient light exposure. Therefore, these results were elimi-
nated for statistical analysis.

The UTS of the “Desiccated” OptiBond All-In-One was 35.6 ± 15.2 MPa after 1 h and 
28.2 ± 6.2 MPa after 7 days, respectively. In contrast, G-Premio Bond showed the signifi-
cantly lower UTS values than OptiBond All-In-One at both time points (p < 0.05).

Differ to 1-SEAs, both 2-SEAs hardened in their “Original” and “Desiccated” forms. 
The UTS of the “Original” Clearfil SE Protect was significantly higher than the “Desic-
cated” adhesive samples at 1 h (43.7 ± 11.6 vs. 29.9 ± 9.9, respectively; p = 0.008); in con-
trast, by 7 days, “Desiccated” group was significantly higher than the “Original” group 
(24.8 ± 6.8 vs. 36.6 ± 6.9, respectively; p = 0.002). No significant differences were found 
between the “Original” and “Desiccated” OptiBond XTR samples (p = 0.298).

(1)UTS = F/A
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Changes in specimen weight after water storage

The results for the percentage change in weight after water storage are shown in 
Table  3. According to the 3-way ANOVA analysis and Tukey’s post hoc test, a sig-
nificant effect was found for all three factors (p = 0.000). A significant interaction was 
also found among the three factors (p = 0.000).

There was a significant increase in weight for both the “Original” and “Desiccated” 
Clearfil SE Protect specimens after storage for 7 days than storage for 1 h (p < 0.05). 
The “Original” OptiBond XTR showed slightly increase in weight after 1-h storage; 
however, this rather decreased after 7  days in storage. On the other hand, for the 
“Desiccated” OptiBond XTR samples, the percentage weight increase was higher after 
7 days than 1 h. No weight measurements were taken for either of the 1-SEAs (Opti-
Bond All-In-One and G-Premio Bond) in their “Original” forms. The weight of the 
“Desiccated” G-Premio Bond specimen decreased after storage in water, whereas the 
weight of the “Desiccated” OptiBond All-In-One specimen increased after storage, 
both in a time-dependent manner.

Fig. 2  Hour glass-shaped stainless split mold for specimen preparation for ultimate tensile strength (UTS) 
testing

Table 2  Ultimate tensile strengths

Data are the mean ± S.D., MPa; n = 10

Same capital superscript letters indicate that ultimate tensile strength values were not significantly different among each 
group in the same water storage period (p > 0.05)

Same small superscript letters indicate that ultimate tensile strength values were not significantly different among each 
adhesive in the same water storage period (p > 0.05)

ANOVA results could not be detected the significant difference for “storage period” (horizontal raws)

* Not applicable because adhesive could not be hardened even after sufficient light exposure

Group Adhesive 1 h 7 days

Original Clearfil SE Protect 43.7 ± 11.6A,a 24.8 ± 6.8B,b

OptiBond XTR 16.5 ± 4.3B,b 20.2 ± 7.6B,a

OptiBond All-In-One NA* NA*

G-Premio Bond NA* NA*

Desiccated Clearfil SE Protect 29.9 ± 9.9B,b 36.6 ± 6.9A,a

OptiBond XTR 25.0 ± 7.5BC,a 23.8 ± 9.7B,a

OptiBond All-In-One 35.6 ± 15.2AB 28.2 ± 6.2AB

G-Premio Bond 6.8 ± 1.9D 7.1 ± 1.4C
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Discussion
The purpose of this study was to evaluate the influence of solvent evaporation on the 
mechanical properties of commercially available 2-SEAs and 1-SEAs. The mechanical 
property was measured in terms of ultimate micro-tensile strength (UTS), a variable 
that is frequently used to evaluate the performance of an adhesive in terms of its ten-
sile bond strength with the local tissue [14, 15], which differs to the Young’s modulus 
or the nano-indentation value [16].

Two representative 2-SEAs were compared in this study: Clearfil SE Protect and 
OptiBond XTR. The Clearfil SE Protect contains the same proprietary self-etching, 
light-curing technology as the “gold-standard” Clearfil SE Bond, which has been well 
described in the literature [17], but the Clearfil SE Protect has some additional ingre-
dients: an MDPB antibacterial monomer in the self-etching primer, and sodium fluo-
ride and HEMA in the adhesive agent [18, 19]. HEMA has been reported to affect 
water absorption even after the adhesive is polymerized. In contrast, OptiBond XTR 
contains ethanol but does not contain HEMA. Our results found differences in the 
behaviors of these two adhesives.

The “Original” Clearfil SE Protect adhesive showed high UTS after 1-h storage in 
water, which decreased after 7 days of storage in water. Both the “Original” and “Des-
iccated” specimens were also significantly heavier after 7  days in water, presumably 
because the Clearfil SE Protect contains HEMA monomers, which are hydrophilic and 
would have encouraged water sorption. For the “Original” specimens, this increased 
water sorption may be correlated with its reduced mechanical strength at 7 days; how-
ever, this is not the same for the “Desiccated” specimens, which showed no difference in 
UTS at 1 h or 7 days. Desiccation at 37 °C might accelerate the hydrolysis of hydrophilic 
monomers, such as HEMA and MDP [20]. However, we surmise that the 2-week desic-
cation period at 37 °C might have led to some deterioration of the adhesive’s composi-
tion, and this may explain the difference in the UTS at the 1-h time point. Yet, without 
desiccation, this reduction in UTS in response to water sorption would, by extension, 

Table 3  Percentage increase in weight after storage in water

Data are the mean ± S.D., %; n = 10

Same capital superscript letters indicate that ultimate tensile strength values were not significantly different among each 
group in the same water storage period (p > 0.05)

Same small superscript letters indicate that ultimate tensile strength values were not significantly different among each 
adhesive in the same water storage period (p > 0.05)

S, detection of the significant difference between 1 h and 7 days (p > 0.05); NS, not detection of the significant difference 
between 1 h and 7 days (p > 0.05); NA, not applicable because adhesive could not be hardened even after sufficient light 
exposure

Group Adhesive 1 h 7 days S/NS

Original Clearfil SE Protect 0.8 ± 0.4B,a 6.7 ± 0.3A,a S

OptiBond XTR 0.7 ± 0.7B,a −1.4 ± 1.5B,b S

OptiBond All-In-One NA* NA* –

G-Premio Bond NA* NA* –

Desiccated Clearfil SE Protect 0.9 ± 0.3B,a 5.9 ± 0.3B,a S

OptiBond XTR 1.0 ± 0.3AB,a 3.0 ± 1.0C,a S

OptiBond All-In-One 2.2 ± 0.6A 8.1 ± 0.7A S

G-Premio Bond − 0.6 ± 0.2C − 8.1 ± 2.1D S
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suggest a similar reduction in bond strength of the adhesive to the tooth substrate as it 
was exposed to water over time [8]. Collectively, these results point to the need for the 
optimization of solvent evaporation for specific adhesive compounds.

Previous studies have shown that, although insufficient air-drying of Clearfil SE Bond 
primer can result in lower UTS of the Clearfil SE Bond adhesive, the UTS of the pure 
adhesive is very high [14, 21], presumably because of its high filler loading and polym-
erization efficacy [22]. It has also been reported that the adhesive layer thickness of the 
Clearfil SE Bond (which is of similar composition to Clearfil SE Protect) does not affect 
the bond strength [23]. Our results therefore confirm that strong air-blowing is unneces-
sary after applying the Clearfil SE Protect adhesive.

According to the manufacturer’s report, filler loading of OptiBond XTR is higher 
than that of Clearfil SE Bond. However, the UTS of the “Original” OptiBond XTR was 
lower than that of the Clearfil SE Protect after 1  h of water storage. Also, in contrast 
to the Clearfil SE Protect, the “Original” OptiBond XTR had a lower specimen weight 
after water storage for 1 week. This phenomenon can be explained in two ways: Unlike 
the Clearfil SE Protect, the OptiBond XTR agent contains ethanol in the adhesive agent. 
Therefore, the percentage of the residual unpolymerized monomer within the light-
cured OptiBond XTR specimens might be larger than that of Clearfil SE Protect. In 
addition, because OptiBond XTR does not contain HEMA, the water absorption of the 
OptiBond XTR is likely to be lower than that of Clearfil SE Protect. For the OptiBond 
XTR, the difference in the UTS between the “Original” and “Desiccated” specimens was 
smaller than that for Clearfil SE Protect. These results suggest that there is less likely to 
be a time-dependent degradation in bond strength, because the polymerized adhesives 
are less susceptible to water absorption [24]. The slight increase in the specimen weight 
may be due to the addition of glycerol-phosphate-dimethacrylate (GPDM) monomer 
[25].

For OptiBond XTR, desiccation did not improve the UTS. Others have shown that the 
addition of 10% to 20% ethanol to the experimental resin blends improves the degree 
of conversion [26]. Although the evaporation of the remaining ethanol in the OptiBond 
XTR might increase conversion, some ethanol remains trapped in the polymer and this 
would promote water sorption, which may lower the mechanical properties of the poly-
mer [27, 28]. Therefore, in the clinic, excess evaporation of the OptiBond XTR adhesive 
might negatively affect the mechanical properties of polymer.

The “Original” OptiBond All-In-One adhesive did not hard even when light curing was 
used. This is probably due to the presence of water and other solvents, which inhibits the 
polymerization of the monomers in the adhesive resin [29]. The “Desiccated” OptiBond 
All-In-One adhesive, however, showed high UTS values. Almost all commercially avail-
able 1-SEAs contain water as a solvent to promote wetting of the substrate and improve 
the homogeneity of the liquid. Hydrophilic monomers enhance the wettability and infil-
tration of the hydrophobic resin monomers into the demineralized dentin matrix. How-
ever, insufficient air-blowing might result in the presence of residual solvents from the 
adhesive layer, and thereby lead to insufficient polymerization. According to the report 
of Fu and colleagues, the microtensile bond strength of OptiBond All-In-One applied to 
dentin was high (more than 75 MPa) if air-blowing was performed for more than 15 s. 
If air-blowing was omitted, all specimens failed before reaching the microtensile testing 
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phase [30]. Others show that solvent evaporation of OptiBond All-In-One using warm 
air-blowing (60 °C ± 2 °C) led to significantly higher bond strength than after using cold 
air-blowing (20 °C ± 1 °C) [31]. In the clinic, it is difficult to evaporate the solvent com-
pletely [32], because the relative humidity of the oral environment is higher than that 
of an experimental setting (23 °C, 50%), and this is independent of whether the resin is 
applied to an incisal site or a molar site [33–35]. Resin bonding in a high humidity envi-
ronment has reduced bond strength [36]. Therefore, it is recommended to control the 
intra-oral humidity using rubber dam isolation or an intra-oral vacuum device.

“Desiccated” G-Premio Bond, unlike the “Desiccated” OptiBond All-In-One, did not 
obtain adequate hardness even if with sufficient light curing, leaving a “gummy” speci-
men. In addition, whereas the weight of the OptiBond All-In-One specimens increased 
after 7 days of water storage, the weight of G-Premio Bond specimens decreased. Papa-
dogiannis and colleagues [37] recently reported that Vickers hardness could not be 
measured in G-Premio Bond, since the material demonstrated a soft, gel consistency, 
contrary to all other 1-SEA (Adhese Universal, Ivoclar-Vivadent; All-Bond Universal, 
Bisco; Clearfil Universal Bond Quick, Kuraray Noritake Dental; Prelude One, Danville 
Materials; Scotchbond Universal, 3M ESPE). They also reported that the degree of C=C 
conversion of G-Premio Bond (67.2 DC%) was significantly lower than the all other 
1-SEAs (77.7–82.0 DC%) [37]. G-Premio Bond has been reported the strong acidity (pH 
1.5) than the other contemporary 1-SEAs, possibly associated with the presence of many 
acidic monomers (MDP, 4-MET, and MDTP) [30, 37]. Therefore, it can be suggested 
that the “gummy” G-Premio Bond specimen was resulted as the interference of polym-
erization. Ikeda et  al. [14] reported that the UTS of G-Bond HEMA-free 1-SEA (GC) 
was significantly lower than that of HEMA-containing 1-SEA (Clearfil S3 Bond, Kuraray 
Noritake Dental), despite the significantly higher amount of evaporation that occurs by 
air-drying for the G-Bond than the Clearfil S3 Bond. They also observed numerous drop-
lets in the G-Bond, regardless of the length of air-drying (0 s, 5 s, and 10 s). These drop-
lets represent a phase-separation between water and the other adhesive ingredients [38, 
39]. The authors explained that, because longer air-drying did not eliminate the droplets 
and thus the volatile parts of the adhesive, the droplets were likely encapsulated within 
the adhesive upon curing. The lower UTS and reduced specimen weight for the G-Pre-
mio Bond in our study supports their explanation; we surmise that similar droplets 
must have inhibited polymerization of adhesive and reduced its UTS. Tsujimoto et al. 
[40] recently reported numerous cracks in the fractured adhesive interfaces of G-Premio 
Bond adhesive after shear fatigue strength tests through SEM analysis. These defects at 
the adhesive interface might accelerate degradation at the resin-tooth adhesive interface. 
Therefore, further studies should be conducted to establish the relationship between 
residual solvents and bond durability.

Conclusion
Based on the limitations imposed within this work, it can be concluded that the removal 
of residual solvent is important for polymerization of adhesives, particularly 1-SEAs. 
However, the presence of HEMA can negatively affect the mechanical properties of the 
cured adhesive, and desiccation for some types of adhesives can reduce the mechanical 
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strength after contact with water for an extended length of time. It is recommended 
that clinicians remove residual solvent to achieve optimal mechanical properties of the 
cured adhesive but perhaps consider the type of material and solvent before performing 
aggressive desiccation.
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