Formalising Workflow: A CCS-inspired Characterisation of the
YAWL Workflow Patterns

Andrew D H Farrell Marek J Sergot
Department of Computing
Imperial College London
London SW7 2AZ. United Kingdom.
{andrew.farrell, m.sergot } @imperial.ac.uk

Claudio Bartolini
Hewlett Packard Labs
1501 Page Mill Road

Palo Alto, CA 94304-1126. USA
claudio.bartolini@hp.com

April 27, 2006

Abstract

We present work concerning the formal specification of business processes. It is of sub-
stantial benefit to be able to pin down the meaning of business processes precisely. This is an
end in itself, but we are also concerned to do so in order that we might prove properties about
the business processes that are being specified. It is a notable characteristic of most lan-
guages for representing business processes that they lack a robust semantics, and a notable
characteristic of most commercial Business Process Management products that they have
no support for verification of business process models. We define a high-level meta-model,
called Liesbet, for representing business processes. The ontological commitments for Liesbet
are sourced from the YAWL workflow patterns, which have been defined from studies into
the behavioural nature of business processes. We underwrite the meta-model by giving it a
formal semantic characterisation using a language that we define called LCCS, an abstract
machine language which has a mapping to a prioritised form of standard CCS. We present
the Liesbet meta-model and its semantic characterisation in LCCS, explain how we have fa-
cilitated the verification of properties of business processes specified in Liesbet, and discuss
how Liesbet supports the YAWL workflow patterns. We include a simple three-part example
of using Liesbet.

Keywords: Business Process, Workflow, Meta-model, Formal Semantics, CCS, Verification

1 Introduction

This article presents work concerning the formal specification of business processes. It is of
substantial benefit to be able pin down the meaning of business processes precisely. This is an
end in itself, but we are also concerned to do so in order that we might prove properties about
the business processes that are being specified. We start by presenting some background to
the modelling and specification of business processes.

The operation of companies and organisations is characterised by a number of business
processes that need to be carried out in a way that is strategically aligned with the objectives
of the business. The Workflow Management Coalition (WfMC) (http://www.wfmc.org) de-
fines a business process to be [52] a set of one or more linked procedures or activities which
collectively realise a business objective or policy goal, normally within the context of an or-
ganisational structure defining functional roles and relationships [52].

Business Process Management (BPM) is a term that has been used to refer to aligning
business processes with an organisation’s strategic goals, designing and implementing process
architectures, establishing process measurement systems that align with organisational goals,
and educating and organising business managers so that they will manage processes effectively
(http://www.bptrends.com). In [30], BPM is described as process technology enhanced with
process management capabilities, implemented in a way that is appealing to business users.
Although BPM tends to be a term that is differently applied, the consensus behind its use
seems to be the notion of a managed automation of business processes, where the management
generally is meant to align the enactment of a process to the objectives of the (business)
enterprise.

Workflow technologies [22, 17] have become a key enabling technology for the implemen-
tation of BPM. Notably, one of the principal areas in which Information Technology (IT)
has been deployed to help automate the enactment of business processes has been in the
co-ordination of activity enactment. (IT has also been used to provide application-led sup-
port to the enactment of individual activities, empowering workers to complete activities in
a more timely and efficient manner.)

Workflow technologies handle the co-ordination of activities in a business process by
initiating their execution through assigning agents to them at appropriate times. The term
workflow is used in an abstract sense in that it refers to the automation of a (specific)
business process, without any reference to how the process is automated. In contrast, the
term workflow model refers specifically to the machine representation of a business process.

An example graphical representation of a workflow is presented in Figure 1. The language
used to express a workflow model is commonly referred to as a workflow language. In the
context of formalising such languages, the term workflow meta-model, or workflow ontology,
is commonly used, to refer to the collection of constructs used to represent a workflow model.
We use the terms workflow meta-model and workflow ontology interchangeably in this report.
Finally, the term workflow management system (WfMS) (a.k.a. process engine) is used to
refer to the engine responsible for executing workflow models.

Within enterprises, there is a seemingly inexorable drive to improve agility and com-
petitiveness. One proposed means of improving the efficacy of enterprise operation is the
Service-Oriented Architecture (SOA) [33], where IT applications are repackaged as services
with a standard interface, thus promoting re-use of enterprise components. Web services are
rapidly emerging as a key facilitator of the SOA. They are proposed as the cornerstone for
architecting and implementing business processes and collaborations within and across organ-
isational boundaries [33]. W3C defines a web service as a software application identified by a
URI, whose interfaces and bindings are capable of being defined, described and discovered as
XML artefacts. A Web service supports direct interactions with other software agents using
XML-based messages exchanged via Internet-based protocols [53].

Web services are used to encapsulate business functionalities. They can be invoked by
applications or other web services using standardised XML-based Internet protocols, such
as HTTP, SOAP, WSDL and UDDI [4]. Service Composition is a principal aspect of the
Web Services framework, where composite (web) services may be created by inter-connecting

Par ’\
»@ /

Figure 1: An example workflow model.

Fi

deployed web services from potentially many different service providers. WS-BPEL [34] is
a standardised language for (web) service composition. A composition is the equivalent
of a workflow model in the context of SOA. Just as for a workflow model, a composition is
concerned with the co-ordination of activities and the data that passes between them, except
that the work carried out for an activity is typically realised by a web service rather than
some other kind of IT application, or other resource. As compositions and workflows share
many similarities, they are typically discussed together when talking about business process
modelling.

An important distinction should be made between Web Services Orchestration (WSO)
and Web Services Composition (WSC). WSO is concerned with defining composite web
services from web services that may belong to the same enterprise, or some other. WSC is
concerned with defining collaborations between web services [33, 51]. WSOs are typically
viewed as under-writing WSCs, or facilitating the driving of WSC-style interactions across
enterprise boundaries. That is, the WSO is the private, end-point, or local, perspective of
the operation of a business process, which will need to support the public, global view (WSC)
of the collaboration between the business process and others. In this work, we are solely
concerned with Web Services Orchestration. An example of a WSO language is WS-BPEL
[34]. An example of a WSC language is WS-CDL (Web Services Choreography Description
Language) [18].

It is often convenient to divide the description of a workflow model into several different
perspectives. There have been several suggested taxonomies for workflow perspectives, e.g.,
[22, 43]. We follow the one presented in [43]. Here, Van der Aalst describes a number of
different perspectives, but we shall concentrate on just two — the control and data perspec-
tives. The control perspective is arguably the most important in the definition of a workflow
model. Tt is concerned with the definition of the (partial) ordering by which activities should
be executed (by a WIMS). Figure 1 is an example of a workflow model defined at the control
perspective.

The data perspective is concerned with the management of data during the enactment of
the workflow model. We can define two types of data: control and application (or production)
data. Control data is used to evaluate branching conditions, or, more generally, is used by
the WIMS to determine how execution should proceed [1]. Tt is usually declared, or allocated,
within a workflow model, and its scope of existence is the workflow model. It is simply meant
to control the enactment of the model. Application data, on the other hand, is data that
primarily exists outside of the model, but is imported, and used, by the model. For example,
in the case of workflow models, such data may be documents, forms and tables [43], or, in
the case of service compositions, such data would be that sent and received in messages that
are exchanged between services [1].

A principal aim of the Process Modelling Group (PMG) (http://www.petripi.org) is to
try to understand the behavioural nature of business processes, in order that ontologies may
be developed for them, and so that the utility of formal tools or languages, such as Petri-nets
[38] and CCS/m-calculus [31, 32, 40], for providing a robust semantics for such ontologies,
may be determined. The manifesto of the PMG says that it has been formed to encourage the
study of business processes and to experiment with them; it aims to ease their understanding
by humans, to implement them on machines, and to develop their underlying science.

In considering this aim, an important distinction that should be made is between who, or
what, will use such business process modelling ontologies, and for what purpose. By under-
standing this distinction (as well as understanding the very behavioural nature of business
processes themselves), we may discern what ontological commitments are appropriate for
describing business processes. We distinguish between (at least) the following classes of user
of such ontologies, where for each class, the pertaining ontology defines a wview of business
processes or workflows.

e Presentation view: Business managers, executives, customers.

e Authoring view: Business analysts and process authors — i.e. those responsible for
capturing/authoring workflows. This view would have an associated ontology whose
constructs would be considered to be intuitive to a process author. The ontology would
most likely be graphical in nature. For instance, Figure 1 might constitute a workflow
model defined using such an ontology.

e Information view: Serialisation (or file) format and reference point for the computa-
tional view (see below), in that it fixes the sufficient and (as much as possible) necessary
representational requirements of the modelling approach. Note that in some modelling
approaches, it may be appropriate to divide this view into two, along these two themes.
However, we have not needed to make such a distinction in our modelling approach.

Note that the information view will typically be closely aligned to the authoring view
(for ease of mapping between the two views) and will, as a consequence, make simi-
lar ontological commitments to that of the authoring view, albeit they will likely be
represented by distinct ontologies.

e Computational view: Process engine, or the process engine implementer.

new s a.(b.c.s|d.e.s)|s.s.f might be a computational view of a particular work-
flow model, such as the one illustrated in Figure 1, where the ontology used would be
CCS/m-calculus-like [31, 32, 40].

Primarily, the computational view will define an ontology to provide a semantic charac-
terisation of the ontology defined at the information view. That is, the computational view
fixes the precise meaning of workflow models, by providing a semantic characterisation of
information view models. The definition of the computational view will be facilitated by the
use of some formal tool, such as Petri-nets [38] or CCS/n-calculus [31, 32, 40].

A computational view workflow model may be directly executable by a workflow engine;
that is, the engine may directly understand and execute Petri-nets [38] or CCS/m-calculus
[31, 32, 40]. In this case, a translator will map models serialised using the information
view format to the computational view. Or, as the computational view fixes the meaning
of models, an engineer may implement a process engine capable of understanding models
written at the information view, and ensure their enactment according to computational
view semantics. In either case, it is imperative that the computational view provides an
intuitive and tidy characterisation of the information view ontology.

The existence of the computational view is important for precision and robustness in
the definition of workflow models, and for verifying properties of workflow models, such as
workflow soundness (see below). It is a notable characteristic of most workflow languages
that they lack a robust semantics [44], which would be provided by the computational view;
and a notable characteristic of most commercial workflow products that they have no support
for verification of workflow models.

Workflow soundness [13] is a property of the control perspective of workflow models. Tt
is a highly desirable property that corresponds to the absence of basic errors in a workflow
model. Errors can quickly creep into workflow models as they are being defined. Such errors
may lead to undesirable execution of some or all instances of a workflow model [6]. [43]
says that ‘the errors may lead to angry customers, back-log, damage claims, and loss of
goodwill’. Tt is important, therefore, that soundness of workflow models is verified prior to
model deployment.

The authoring, information and computational views of a workflow model may be rep-
resented using the same ontology or using distinct ontologies. An example of the former is
the use of Petri-nets for workflow modelling where the same formal tool is used for all views.
In the case where there are distinct ontologies for different workflow views, it is unlikely
that the information or authoring views will be defined formally, i.e., using some mathe-
matical formalism. Rather, they will usually be abstracting syntaxes, or ontologies, for the
computational view.

In this work, we are concerned with capturing the computational view of workflows as
an end in itself, as well as for facilitating the verification of workflow properties. For these
purposes it is also appropriate to define an information view ontology, to serve as an abstract
syntax which can, on the one hand, act as a serialisation syntax, and on the other hand,
act as a reference point for the computational view ontology to target. Its primary purpose,
however, is to fix concisely what we are concerned with representing. As a result, it may
closely resemble an authoring view ontology — which we do not define in this article.

We define the Liesbet meta-model, or ontology, for the definition of (the control per-
spective of) workflow models at the information view. We underwrite Liesbet by providing
a formal semantic characterisation using a CCS-inspired abstract machine language (which
represents a computational view ontology) that we define, called LCCS. Importantly, LCCS
has a mapping to a prioritised form of standard CCS [31, 32], which we present in [13]. We
have chosen CCS as the basis for our computational view ontology because of the natural,
and intuitive, way in which it represents process dynamics (action sequencing, interleaved
concurrent action execution, process templating through replication, and so on). We call an
LCCS semantically-characterised Liesbet workflow model, an LCCS Liesbet model.

The ontological commitments that any approach to business process modelling makes
should be sourced from an understanding of the behavioural nature of business processes.
Members of the PMG community have previously set about characterising the behavioural
nature of business processes, in the form of the YAWL (Yet Another Workflow Language)
workflow patterns [46, 47, 45, 25]. We use these patterns as the basis for the definition of
our information view ontology (the Liesbet meta-model).

In summary, our main aims are as follows. We are concerned with defining an ontology
for workflow (Liesbet). It is intended to be used in other work that we are undertaking (as
outlined in Section 6), in particular to support the modelling of abstract workflows for use
in planning the fulfilment of business processes. We consider the YAWL workflow patterns
to be a good starting point from which to derive the sufficient and necessary ontological
commitments for Liesbet. Further, we seek to provide a formal characterisation of Liesbet
(using LCCS), in order to fix precisely the meaning of Liesbet constructs. With such a
characterisation to hand, we are then able to define a verification procedure for Liesbet
workflow models, enabling us to verify model soundness and other model properties.

The structure of this article is as follows. In Section 2 we present an introduction to the
Liesbet meta-model and some of its (core) constructs, and discuss how we have supported the
YAWL workflow patterns through Liesbet. Section 3 provides a simple three-part example
that uses the meta-model. In Section 4 we introduce LCCS and present an LCCS based
formalisation of the Liesbet constructs introduced in Section 2. In Section 5 we discuss
verification of Liesbet models. In Section 6 we conclude with a discussion and overview
of related work. Appendix A presents some further Liesbet constructs and their LCCS
characterisations, and Appendix B a BNF grammar for Liesbet.

2 Liesbet Meta-model and its LCCS Characterisation

We have defined in this work a workflow meta-model (called Liesbet) corresponding to the
information view of a workflow model, and a CCS-inspired [31, 32] characterisation (called
LCCS) of Liesbet, corresponding to the computational view.

In this section we give an introduction to some Liesbet basics, and then proceed to
introduce the most commonly used constructs of the Liesbet meta-model. For convenience,
we describe just a handful of constructs in this section, leaving the remainder to the appendix.
The constructs that we introduce here are: Activity (Act), Synchronisation (Sync, Cond
and FreeChoice), Sequence (Seq and SeqCancel), Parallel (Par and PriPar), Exclusive
Choice (DefaultChoice and Choice), Multiple Choice (MultiChoice) and Cancel Activity
(CancelActivity).

For each Liesbet construct, we present what we call an ‘Easy Syntax’. For the purposes
of implementing a model checker for verification of Liesbet workflow models, we have also
defined an XML serialisation (or file format) syntax for each construct. This is not presented
in this article, for brevity. A BNF grammar for Liesbet is presented in Appendix B.

2.1 Liesbet Basics

We start by introducing some terminology. A customised activity type is a customisation of
a Liesbet meta-model construct when used in the specification of a Liesbet workflow model.
In contrast, the term generic activity type is used synonymously with meta-model construct.
For example, in the Liesbet model Seq(A,B), the Seq is a ‘sequence’ generic activity type
which is customised to mean a sequence that contains two activity types, A and B.

A basic activity type, defined using the Liesbet meta-model construct Act, corresponds
to a self-contained piece of work, where conceptually we would defer to the environment to
inform us when the work of the activity type has completed. As a LCCS-characterisation is
a closed system [13], and as we do not model the environment in our LCCS-characterisation
of Liesbet, we make the simplifying assumption that basic activities always complete suc-
cessfully.

In contrast, structured activity types, defined using any other Liesbet construct, exist
for the purpose of marshalling instances of basic activity types (i.e. Act types), where the
enactment of instances of these other constructs (e.g., Par and Seq) is handled wholly within
the realms of the workflow engine.

During enactment of a workflow model, activity types will be instantiated to create
activity instances. It is through activity instances that work is realised in the enactment of
a workflow model. If an activity type is instantiated twice in the enactment of a model, the
work associated with that type will be carried out twice.

Basic activity types defined in ‘Easy syntax’ may either be simply defined in situ, or
in a separate definition which is then referred to when instantiating the activity type else-
where. For basic activities, defining them in situ is done simply by referring to them, e.g.
A or A(join(...), ...). Defining them separately would be done thus: A = Act, or A =
Act(join(...), ...). Here, A is the customised type name and Act is the (only) generic type
for basic activity types. join(...) is one of the optional attributes that may be attached to
an activity type to express synchronisation conditions (see Section 2.5 below).

For structured activity types defined in situ, an explicit name for the activity type is not
given. An example might be Par(A,B), where Par is the (structured) generic type name,
and Par (A,B), the customised type definition. Structured activity types can also be defined
separately and assigned a name, e.g. P = Par(A,B). Here, P is the customised type name.

Activity types that are defined separately and not in situ are called defined types. Con-
sider the following simple Liesbet model as an example.

Par(S1,Seq(B,C))
S1 = Seq(A,B)

Here, A, B, and C are in situ definitions of basic activity types; we can tell this as they are
not defined types. The second argument of the Par is a structured activity type defined in

situ. In contrast, the first argument, S1, is a defined type.

The definition of a workflow model will include just one defined type that is unnamed.
This is taken to be the top-level activity of the workflow model. A workflow model is a
hierarchical structure with this activity at its root. In the example, Par(S,Seq(B,C)) is the
top-level workflow activity type.

Finite State Machine for Activity Instances

The following Finite State Machine (FSM) is defined for the operation of an activity in-
stance. An activity instance may be in one of four states — st(Ready), st(Running),
st(Cancelled) or st(Completed). We also consider an activity instance to be finished,
if it is in a st (Cancelled) or st (Completed) state.

st (Ready) -execute-> st(Running)
st (Ready) -cancel-> st(Cancelled)

st (Running) -complete-> st(Completed)
st (Running) -cancel-> st(Cancelled)

e An activity instance begins life in the st (Ready) state. At some point, the parent of
the activity instance will initiate execution of the instance. The instance will be moved
into the st (Running) state, by virtue of the execute action.

e When the work of the instance is done, it is moved to the st(Completed) state, by
means of the complete action.

e From the st(Ready) and st(Running) states, the instance may be moved into the
st (Cancelled) state, by means of the cancel action. This will have the effect of not
only immediately cancelling the activity instance itself, but also all of its descendants,
in a single, atomic reduction.

Cancellation of an activity may happen because of the execution of a CancelActivity
instance (Section 2.8), because of a failed join condition (Section 2.5), or because of
dead-path elimination. Dead-path elimination [28] is performed in workflow model
enactment when it is identified that an activity instance will never be executed. This
happens, for instance, when executing a Choice activity instance. Those continuation
activity instances within the Choice instance that correspond to unselected branches
are moved to the st(Cancelled) state.

Isolated Scopes

As explained in Sections 2.2 and 4.3.2 below, instances (of certain activity types) may query
the state of other activity instances. However, since the enactment of a workflow model
may create multiple instances of the same activity type, there is potential ambiguity about
which specific instance is referred to in the query. In the example shown in Figure 2, the
join condition on activity B queries the state of activity C of which there are three separate
instances. Liesbet provides several methods for disambiguating such references, of which the
isolated scope declaration is the most fundamental.

Any activity may be marked as an isolated scope. In Easy Syntax this is achieved by
encapsulating the definition of an activity type in the container Isolated. In the example
below, both activity types A and B are isolated scopes but C is not. The scope of an activity
type is not isolated, by default.

Par(Isolated(A), B)

A= ...
B = Isolated(...)
C = Seq(...)

Isolate(S)

| join(Sync(Completed_act(C)))

The join condition on activity type B will have a visibility horizon that is restricted to the descendants of the
isolated scope P, but not including the isolated scope S and its descendants. The only candidate instance of
activity type C for the query in the join condition of B is thus the instance of C marked .

Figure 2: Isolated Scopes in Operation

This has the effect of creating a wisibility horizon on the workflow state, S, for activity
instances that exist within an instance of the isolated scopes A and B.

When an instance A exists within the scope of another activity instance which is isolated,
the instance A can only query the state of activity instances that are descendants of the
isolated scope instance that is the most immediate ancestor of A, and this isolated scope
instance itself. Moreover, if any of these descendant instances more immediately fall within
the scope of a different isolated scope instance, then these particular instances will not be
visible to the querying instance A. The visibility horizon for a querying instance is thus the
sub-tree extending from its (immediate) ancestor isolated scope instance, from which are
pruned any sub-trees extending from further isolated scope instances (as is demonstrated in
the figure).

There is another way of creating a visibility horizon for an activity instance, and that is
by using so-called reference activity types in queries. These queries take (what is called) a
‘plain’ or ‘distinct’ reference type. We will not describe the use of distinct reference types in
this article — instead, we refer the reader to [13]. The use of a reference type is similar to that
of an isolated scope, in that it is used to limit the visibility horizon of querying instances,
except that, in contrast to the use of isolated scopes, we may specify within individual queries
what the visibility horizon for the query should be. That is, it is the individual query that
determines the visibility horizon, within the visibility constraints of any isolated scopes that
might exist. Note that multiple queries may be made by a single querying instance, all
with different visibility horizons. As a result, we can set a much finer granularity for the
visibility of certain queries, rather than setting a universal visibility horizon for a whole tree
of querying instances. Figure 3 shows an example of using queries with reference types. A
workflow model may use a mixture of isolated scopes and reference queries.

Note that in order to seek the most immediate ancestor of a querying instance having a
particular reference type, we traverse the instance tree from the querying instance towards
the root instance. If in doing so, we first encounter an activity instance that is marked as an
isolated scope, then this instance is taken to be the reference type instance for the purpose
of establishing the visibility horizon.

2.2 Sync, Cond and FreeChoice Synchronisation Activity Types

The synchronisation activity types of Liesbet represent synchronisation points in the work-
flow model. The most general of these constructs is Sync (StopQuery, GoQuery) in which
StopQuery and GoQuery are queries on the current workflow state. There is a race between
which of these queries is satisfied first, which ultimately determines whether the synchroni-
sation activity itself completes successfully or not.

Par P’

* Par P

Seq * s N

Al B

| join(Sync(Completed_act(C in P))) |

| join(Sync(Completed_act(D))) |

Since P is not an isolated scope in this example, the visibility horizon for the join condition on activity type A
extends beyond P, and includes all instances of type D marked *. (For this particular workflow model there is
only one such instance of D.) For the join condition on activity type B, the visibility horizon is determined by
means of a reference type, specified as P. Since S is not an isolated scope, the instances of C marked * will be
in the visibility horizon of this instance of B.

Figure 3: Reference Types in Operation

Easy Syntax

Sync (StopQuery, GoQuery)
Sync (GoQuery)

Cond (GoQuery)
FreeChoice

A StopQuery or GoQuery query is a blocking query on current workflow state that must
be satisfied. That is, a query blocks until it is satisfied. A query is any boolean compound
(using ‘|’ for conjunction and ‘4’ for disjunction) of the following (where ATN stands for
Activity Type Name).

e Completed_act (ATN) — This query is satisfied if and only if an instance of the activity
type ATN, within the visibility horizon of the querying instance, has completed.

e Completed_act(ATN in Ref ATN) — This query is the same as Completed_act (ATN)
except that it specifies a plain reference type, Ref _ATN, in order to create a visibility
horizon for the query.

e Completed all(ATN) — This query is satisfied if and only if all extant instances of the
activity type ATN, within the visibility horizon of the querying instance, have completed.

e Completed all(ATN in Ref ATN) — This query is a combination of Completed all (ATN)
and Completed_act (ATN in Ref ATN).

Queries can also be made to ascertain the existence of activity instances in the st (Ready),
st (Running), or st (Cancelled) states, as well as finished instances (those in st (Completed)
or st(Cancelled) states). To use such queries, the keyword Completed is replaced appro-
priately in the previous query descriptions.

In the following example, the query is satisfied if either an instance of activity type A or
B has completed, and an instance of activity type C has completed.

(Completed_act(A) + Completed_act(B)) | Completed_act(C))

We may also:

e Evaluate a query against the current variable state in the data perspective (see Sec-
tion 1) which we do not model. We may write EvalExpr (EXPR), where EXPR is an
arbitrary boolean expression over current variable state.

e Write True for the query that is trivially satisfied, and False for the query that can
never be satisfied.

Informal Operational Semantics

When an instance of the activity type Sync (StopQuery, GoQuery) is running, and StopQuery
is satisfied before GoQuery, then the synchronisation activity instance goes to st (Cancelled).
If GoQuery is satisfied, and StopQuery is not satisfied beforehand, then the synchronisation
activity instance goes to st (Completed). While neither query is satisfied, the instance re-
mains in the st (Running) state.

An instance of the activity type Sync (GoQuery) will remain in the st (Running) state un-
til the GoQuery query is satisfied, whereupon it will move to st (Completed). Sync (GoQuery)
is thus equivalent in behaviour to Sync(False, GoQuery).

An instance of the activity type Cond(GoQuery) moves from the st(Running) state
to st(Completed) if GoQuery is satisfied and to st(Cancelled) if —GoQuery is satisfied.
Cond (GoQuery) is thus equivalent in behaviour to Sync (—GoQuery,GoQuery).

FreeChoice is an activity type that non-deterministically goes from st(Running) to
st (Completed) or st(Cancelled).

Finally, note that a Sync type can be used to effect the YAWL workflow pattern Mile-
stone [46, 25], which is where the enabling of an activity depends on the (instance of the)
workflow model being in a specified state, i.e., the activity is only enabled if a certain mile-
stone has been reached which did not expire yet. Consider three activities named A, B, and
C. Activity A is only enabled if activity B has been executed and C has not been executed yet,
i.e., A is not enabled before the execution of B and A is not enabled after the execution of
C. This synchronisation behaviour can be captured in Liesbet as Sync(Finished act(C),
Finished act(B) | —Finished act(C)). Here, if C has already finished, the Sync cancels.
Or, if B has finished, but C has not finished, the Sync completes.

2.3 Seq and SeqCancel — Sequence

The Liesbet constructs Seq/SeqCancel are a direct facilitation of the YAWL workflow pat-
tern Sequence [46, 25], which is where an activity in a workflow model is enabled after the
completion of another activity.

We also support an unordered sequence construct, which in YAWL [46] is called the
interleaved parallel routing construct, but do not present details here. The interested reader
should consult [13].

Easy Syntax

Seq(Actl, ..., Actn)
SeqCancel(Actl, ..., Actn)

Informal Operational Semantics

When a sequence (Seq/SeqCancel) instance is running, it executes each constituent activity
in the order specified, waiting for each to get to a finished (st (Completed) or st (Cancelled))
state. For Seq, if a constituent activity is cancelled, then the sequence continues as normal;
for SeqCancel, the sequence is cancelled. When the last constituent activity finishes, Seq
goes to st(Completed), and SeqCancel goes to Completed if the last constituent activity
completed successfully and to Cancelled otherwise.

2.4 Par — Parallel

The Liesbet construct Par is a direct facilitation of the YAWL workflow pattern Parallel
[46, 25], which is a point in the workflow model where a single thread of control splits into

10

multiple threads of control which can be executed in parallel, thus allowing activities to be
executed simultaneously or in any order.

Easy Syntax

Par(Actl, ..., Actn)

Informal Operational Semantics

When the parallel instance is running, it starts the execution of each child instance in parallel.
Once all have reached a finished state (st(Completed) or st(Cancelled)), the parallel
instance goes to st(Completed). Note therefore that cancelling child instances does not
cancel the Par activity.

We also support a Priority Parallel (PriPar) construct. Its formalisation in LCCS is not
presented in detail in this article but is presented in full in [13]. PriPar allows arbitrarily
complex structured activities to be specified as running in parallel, but the execution of
individual basic activities within these structured activities occurs according to a priority
ordering. For example, suppose we define the customised activity type PriPar(Seq(A,B),
Seq(C,D)). Here, execution of basic activities C or D may only be initiated if the execution
of A or B is not possible and if instances of these activities are not already running. In sum,
(partial) execution of the second Seq(C,D) may occur if and only if Seq(A,B) is blocked
(e.g., because of a blocked join condition, Section 2.5).

2.5 Activity Join and Transition Conditions

An activity definition in Liesbet may optionally specify a join condition and/or a transition
condition for the activity type.

A join condition is used to specify conditions under which execution of an activity can
occur. When execution of an activity instance is initiated, the join condition, if specified,
is evaluated. If the join condition is satisfied, then the instance is executed (moves to
st (Running)); if the condition is not satisfied, the activity instance is cancelled.

A join condition can be any activity type, although it would rarely be anything but a
synchronisation activity type (Sync or Cond). Activity types that are used as join conditions
may not themselves specify join (nor transition) conditions.

A transition condition for an activity A is used to specify synchronisation conditions that
must be evaluated after A has finished executing. Whereas a join condition can be any
activity type, a transition condition must be a Par activity type, which will encapsulate the
synchronisation activity types.

Easy Syntax

Join and transition conditions, when specified, sit to the right of an activity type definition.
They are given in a separate set of parentheses, and enclosed in the containers join and
trans. There are thus three possible forms (besides an activity definition without join and
transition conditions).

A(join(AJoin))
AJoin = ...

A(trans(ATrans))
ATrans = Par(...)

A(join(AJoin) ,trans(ATrans))

AJoin = ...
ATrans = Par(...)

11

Informal Operational Semantics

An activity type with a join condition should be considered as being equivalent to a SeqCancel
activity type containing (in order) the join condition activity type and the actual activity
type. This realises the desired behaviour, namely: that if the join condition does not com-
plete successfully, the activity instance that it is attached to is not executed. If a transition
condition is specified, then the join condition (if any) and the actual activity type are run
first, followed by the transition condition Par. Even if the join condition or the instance of
the actual activity type get cancelled, the transition condition will still be evaluated.

In summary, the following mappings should be applied, at the level of the meta-model
(that is, at the information view). Note that as there exist mappings for join and transition
conditions at the level of the meta-model, they do not demand specific treatment within a
semantic characterisation, such as that provided by LCCS.

e A(join(AJoin) ,trans(ATrans)) maps to Seq(SeqCancel (AJoin, A), ATrans);
e A(join(AJoin)) maps to SeqCancel (AJoin, A);
e A(trans(ATrans)) maps to Seq(A, ATrans)

where ATrans is always of the form Par(...).
The root activity of a Liesbet workflow model is not permitted to have join, nor transition,
conditions.

2.6 DefaultChoice, Choice — Exclusive Choice with and without de-
fault

The Liesbet constructs DefaultChoice/Choice are a direct facilitation of the YAWL work-
flow pattern Ezclusive Choice [46, 25], which is a point in the workflow model where, based
on a decision or workflow control data, one of several branches is chosen.

Easy Syntax

DefaultChoice(Guardl, ContActl; ... ; Guardn, ContActn; ContAct_d)
Choice(Guardil, ContActl; ... ; Guardn, ContActn)

Informal Operational Semantics

Each Guard; is a guard activity type and ContAct; is a continuation activity type. A guard
will usually be a synchronisation activity type (Section 2.2), although it could actually be
any activity type. For example, Empty, which is the basic act type that trivially completes
(see Appendix A), can be used to effect a non-deterministic choice .

The first guard instance that goes to st(Completed) initiates its corresponding con-
tinuation instance. All other continuation instances go to st(Cancelled). In the case
of DefaultChoice, if all of the Guard; activities go to st(Cancelled), then an instance
of the default continuation activity type, ContAct_d, is executed. In the case of Choice,
which has no default activity type, the Choice will itself go to st(Cancelled). The
DefaultChoice/Choice instance completes once the executed continuation instance has fin-
ished.

2.7 MultiChoice — Multiple Choice

The MultiChoice construct is a direct facilitation of the YAWL workflow pattern Multi-
Choice [46, 25], which is a point in the workflow model where, based on a decision or workflow
control data, a number of branches are chosen .

Easy Syntax

MultiChoice(Guardl, ContActl; ... ; Guardn, ContActn)

12

Informal Operational Semantics

MultiChoice is similar to Choice, except that there is no race between guard instances
to complete first. For MultiChoice, those guard instances that complete successfully have
their corresponding continuation instances executed. Those that go to cancelled have their
corresponding instances cancelled.

We also support a variant, MultiChoiceMin, which imposes a minimum number of
branches that must be executed. If this does not occur, the instance is cancelled. Details of
this variant are not presented here. The interested reader should consult [13].

2.8 CancelActivity — Cancel Activity

The Liesbet construct CancelActivityis a direct facilitation of the YAWL workflow pattern
Cancel Activity [46, 25], which is where an activity is cancelled.

Easy Syntax

CancelActivity(CancelAct)
CancelActivity(CancelAct in RefAct)

Informal Operational Semantics

A CancelActivity instance will cancel all running (i.e., st(Running)) and all possible
future running (i.e., st (Ready)) instances of the named activity type, CancelAct, within its
visibility horizon. Optionally, CancelActivity may specify a reference type (see Section 2.1)
to constrain the visibility horizon.

2.9 Support for YAWL Workflow Patterns

In Table 1, we present an overview of how the Liesbet meta-model supports the YAWL
workflow patterns [46]. Note the difference in our support for Discriminator (Pattern #9)
compared with that presented in [46].

13

‘ Workflow Pattern

‘ Satisfied How?

1 Sequence Seq

2 Parallel Split Par

3 Synchronisation, A.k.a. AND-JOIN Yes®

4 Exclusive Choice DefaultChoice, Choice
5 Simple Merge, A.k.a. XOR-JOIN Yes®

6 Multiple Choice MultiChoice

7 Synchronising Merge, A.k.a. OR-JOIN Yes®

8 Multimerge

Multimerge (see Appendix A)

9 Discriminator

Disc(”) (see Appendix A)

10 Arbitrary Cycles**V

Yes(™)

11 Implicit Termination

Yes

12 Multiple Instances (MIs) Without Synchronisation

MultiNoSync (see Appendix A)

13 MIs Without A Priori Design Time Knowledge

MultiLimit (see Appendix A)

14 MIs Instances With A Priori Run Time Knowledge

MultiKnown (see Appendix A)

15 MIs Without A Priori Run Time Knowledge

Multi (see Appendix A)

16 Deferred Choice

DeferredChoice (see Appendix A)

17 Interleaved Parallel Routing (Unordered Sequence) | UnorderedSeq""
18 Milestone Sync
19 Cancel Activity CancelActivity

20 Cancel Case

Exit (see Appendix A)

Table 1: Satisfaction of YAWL Workflow Patterns [46, 25]

Comments

Supported in multiple ways:

e Implicit Synchronisation when activity completes

e Arbitrary Synchroniser can run in parallel

(iii)

(iv)

Our version of the Discriminator pattern (see Appendix A) is more general than that presented
in [46]. In [46], Discriminator is supported by means of a threshold on the number of completed
instances of a multiple instance activity. While we also support this sort of Discriminator, our
main support for the Discriminator pattern is through the Disc activity type, which can be
used to synchronise on arbitrary activity instance executions, not just those of a continuation
activity type belonging to a single multiple-instance activity instance.

An arbitrary cycle can be thought of as being a repeating piece of workflow logic that can not
be mapped to a multiple-instance activity. This is an equivalent definition to that given in
[25].

We naturally support arbitrary cycles, as any use of activity types within a Liesbet model
definition may create a cycle; but we assume that, where possible, the desired behaviour will
be represented using multiple-instance activity types. We do not support the verification of
models (for soundness and other properties) containing arbitrary cycles, as discussed in [13].
It is clear that supporting the verification of such models would increase the complexity of
verification quite considerably, and is not something we currently need to support for the
purposes of our work.

From [25]: A given subprocess should be terminated when there is nothing else to be done.
In other words, there are no active activities in the subprocess and no other activity can be
made active (and at the same time the subprocess is not in deadlock).

Liesbet, and its LCCS characterisation, operates on the basis of implicit termination

14

3 Three-Part Liesbet Example

In this section, we illustrate the use of the Liesbet meta-model by means of a three-part
Travel Agency example. We have sought to keep this example simple, as its main purpose is
to give a general impression of how processes may be modelled with Liesbet. We do not seek
to cover, in this section, the full range of constructs supported by Liesbet. The main source
of requirements for Liesbet is the YAWL workflow patterns — in Section 2.9 we summarise
how Liesbet supports these. In [13], we present many further examples.

3.1 Travel Agency
Adapted from PMG (http://www.petripi.org):

Consider a fragment of the process of booking trips involving six steps: Register, (Book-
ing of) Flight, (Booking of) Hotel, (Booking of) Car, Pay, and Cancel. The process
starts with activity Register and ends with Pay or Cancel. The activities Flight, Hotel
and Car may succeed or fail.

Presented in the following sub-sections are a number of variants of the Travel Agency sce-
nario.

3.1.1 Travel Agency 1
Adapted from PMG (http://www.petripi.org):

Every trip involves a flight, hotel and car and these are booked in parallel, having
registered with the travel agent. If all three succeed, the payment follows. Otherwise
activity cancel is executed. Cancel is delayed until all three bookings succeed/fail and
does not withdraw work.

We now present a solution, using the Liesbet meta-model.

PaySync = Sync(Completed_act(Flight) | Completed_act(Hotel) | Completed_act(Car))
CancelSync = Sync(Cancelled_act(Flight) + Cancelled_act(Hotel) + Cancelled_act(Car))
PayCancelChoice = Choice(PaySync,Pay; CancelSync,Cancel)

Book = Par(Flight,Hotel,Car)

Seq(Register,Book,PayCancelChoice)

Here, we execute basic activity Register and structured activities Book and PayCancelChoice
in sequence. Book consists of the basic activities of booking a Flight, a Hotel and a Car,
which are carried out in parallel. Once Book has finished, PayCancelChoice is executed. It
uses two Sync activities, which by definition will not both succeed (go to st (Completed))
nor both fail (go to st(Cancelled)). If PaySync succeeds then all booking attempts must
have completed successfully and we execute the basic activity Pay. Otherwise CancelSync
will succeed and the basic activity Cancel will be executed. The purpose of Cancel might
be to carry out some house-keeping, such as updating the agency’s database records.

3.1.2 Travel Agency II
Adapted from PMG (http://www.petripi.org):

Every trip involves a flight, hotel and car and these are booked in parallel, having regis-
tered with the travel agent. If all three succeed, the payment follows. Otherwise activity
cancel is executed. Activity cancel should be executed the moment the first activity fails
and, at the same time, all outstanding booking activities should be withdrawn.

We now present a solution, using the Liesbet meta-model.

15

PaySync = Sync(Completed_act(Flight) | Completed_act(Hotel) | Completed_act(Car))
CancelSync = Sync(Cancelled_act(Flight) + Cancelled_act(Hotel) + Cancelled_act(Car))
Withdraw = Par(CancelActivity(Book), Cancel)

PayCancelChoice = Choice(PaySync,Pay; CancelSync,Withdraw)

Book = Par(Flight,Hotel,Car)

Par(Seq(Register,Book) ,PayCancelChoice)

This is a variant of the first travel agency solution. It is the same except that the choice
of whether to pay or cancel is made in parallel with the Book activity, meaning that Book
may be cancelled once any of the booking attempts fail. That is, if at any time CancelSync
succeeds the structured activity Withdraw will be executed. This has the effect of executing
the basic activity Cancel and, in parallel, cancelling the booking activity Book by means of
the Liesbet construct CancelActivity.

3.1.3 Travel Agency III
Adapted from PMG (http://www.petripi.org):

Every trip may involve a flight, hotel and/or car and these are booked in parallel, having
registered with the travel agent. A trip should involve at least a flight, hotel or car but
may be any combination of the three bookings, e.g., a flight and car but not a hotel.
If all bookings succeed, the payment follows. Otherwise activity cancel is executed.
Activity cancel should be executed the moment the first activity fails and, at the same
time, all outstanding booking activities should be withdrawn.

We now present a solution, using the Liesbet meta-model. We do not define the synchroni-
sation activities BookFlightSync, BookHotelSync, and BookCarSync here. Their definitions
are straightforward and are omitted for brevity.

PaySync = Sync((Completed_act(Flight) + Cancelled_act(BookFlightSync)) |
(Completed_act (Hotel) + Cancelled_act(BookHotelSync)) |
(Completed_act(Car) + Cancelled_act(BookCarSync)))

CancelSync = Sync((Cancelled_act(Flight) | Completed_act(BookFlightSync)) +
(Cancelled_act(Hotel) | Completed_act(BookHotelSync)) +
(Cancelled_act(Car) | Completed_act(BookCarSync)))

Withdraw = Par(CancelActivity(Book), Cancel)
PayCancelChoice = Choice(PaySync,Pay; CancelSync,Withdraw)

Book = MultiChoice(BookFlightSync,Flight;
BookHotelSync,Hotel;
BookCarSync,Car)

Par (Seq(Register,Book) ,PayCancelChoice)

This is a variant of the second travel agency solution. It is largely the same except
that we make a MultiChoice for the booking activity, Book, meaning that not all booking
activities, Flight, Hotel, Car, have to be executed. As such, PaySync and CancelSync are
adjusted accordingly, to account for booking activities not being executed. The activity Pay
will eventually be executed, unless one of the booking activities we do execute fails — then,
Withdraw is executed instead.

16

4 Formalisation of Liesbet via LCCS Abstract Machine
Language

We now present the CCS-inspired language (or ontology in the parlance of Section 1), LCCS,
that we shall use to give a semantic characterisation to Liesbet. It should be emphasised that
LCCS represents a sugared syntax — an abstract machine language — that has a mapping to
standard CCS [31, 32] augmented with a notion of process priority. It is essentially standard
CCS with a number of additional process artefacts.

A key aspect of LCCS is that we assume that, at any stage, a workflow model W is
characterised by a pair <S,P >, where S is a state chalkboard and P is a CCS-like workflow
process. LCCS is thus a hybrid language where the use of a state chalkboard facilitates
arbitrarily complex queries on workflow state.

We present a brief overview of (standard) CCS and the additional process artefacts that
LCCS admits, and then proceed to describe how we have used LCCS to give a formal
characterisation of the Liesbet constructs introduced in Section 2.

4.1 Overview of CCS

We begin with a brief summary of the main features of CCS. For readers unfamiliar with
CCsS, [40, 31, 32] are excellent starting points.
Firstly, we assume the availability of an infinite set of action names N, ranged over by

a,b,. .., and a corresponding set of co-names N’ = {ala € N}, where N and N are disjoint.
An action name and its co-name are complementary, and together constitute the two halves
of a CCS interaction. Interactions are the means by which we derive reductions for CCS
processes, where reductions are the means by which CCS processes evolve!.

A CCS process term, P, is defined by the following grammar (adapted from [32]).

P:i:=M]|PP |newzP | P
M ::=true | z(2).P | z<y>P | M + M’

| is parallel, and denotes the running of two processes P and P’ concurrently (in an
interleaved fashion).

e ! is replication, and allows multiple copies of the process P to be introduced in parallel
with !P. It may be thought of as a process factory.

e new is restriction, and restricts the scope of the action names, z, that it specifies to be

P.

e +is summation, and specifies a choice of behaviours: the process M + M’ may continue
(exclusively) as M or M.

e true is the inactive process. (In standard CCS, this is written 0.)

. a(z).P is an input prefized process, where P may only occur after the prefixing input
action a(z) has been consumed. The input action is associated with a co-named output

action in forming an interaction. In an interaction, a set of values are passed on z,
which are substituted for occurrences of these parameters in P. Note that only values
may be passed, and not names of channels (unlike 7-calculus [32, 40]).

e a<y>.Pisan output prefized process, where P may only occur after the prefixing output

action a<y> has been consumed. The output action is associated with a corresponding
input action in forming an interaction. In an interaction, a set of values are passed on

Y.

1CCS also has a transition-based semantics, which we do not employ in this work.

17

INTER P=zx<y>P + M
Q=2(2).9 +N
<S,P|Q» — <8, P|Q{V /s b

PAR <8, P> — <S8, P>
<8, P|Q> — <S,P'|O>

RES <8, P> — <8, P>
«S,new z P> — <S,new z P>

STRUCT <8, P> — <S8, P>
P=9Q
P/ = Q/

<S8, 9> — <S8, 9>

Figure 4: CCS Reduction Rules — slightly simplified from [32]

We make use of the reduction-based semantics for CCS [32]. In this semantics, reduction
is the metaphor by which processes evolve, and at its core is the reduction relation, —.
A CCS process P may always be represented as a parallel of summations (omitting scope
restrictions), i.e., in the form:

7)0,0 + ... + 'P(),j0| |7)i,0 + ...+ 'Pi,ji

a It is on such a representation that we derive reductions.

In order to derive a reduction for P, we derive a reduction for two of its constituent
(parallelised) process terms based on the interaction of an input and output action. Then
we proceed to build a derivation for a reduction of P as a whole based on this interaction.

Formally, the CCS reduction relation, —, is defined as the smallest relation closed under
the reduction rules presented in Figure 4 (adapted from [32]).

INTER is the means by which we derive a reduction based on the interaction of an input
and output action. The process P (resp. Q) is a sum whose left operand is a process
consisting of a prefixing action followed by a process P’ (resp. Q'), and whose right operand
is the process M (resp. N). The prefixing action in the left operand for P (resp. Q) is an
output action (resp. input action), which passes data yon (resp. which binds the value
names =z in the rest of Q' to the data values y, passed on x). In the interaction, the two
actions — the input and the output — are consumed, and the other operands of the sums are

rendered void. The process P|Q will evolve to P'|Q'{§/;}.

From [40], any reduction may be built up by firstly applying rule INTER, followed by
an application of PAR (which allows us to augment the two interacting processes with an
arbitrary number of other processes operating in parallel), followed by zero or more appli-
cations of RES (which allows us to restrict the scope of action names), followed lastly by an
application of STRUCT.

The rule STRUCT allows us to re-write processes in order that we may prime them for the
derivation of reductions. This is necessary, as INTER requires that two process terms are con-
tiguous for them to interact (and ordered with the outputting process term occurring first).
STRUCT employs a structural congruence relation, which is defined to be closed under the
axioms for structural congruence presented in Table 2 and the laws of equational reasoning
presented in Table 3 [40].

The first three equations in Table 3 ensure that = is an equivalence relation. CONG
ensures that structural congruence is a congruence. From [40], an equivalence relation R is a
congruence if (P, Q) € R implies (C[P],C[Q]) € R for every context C. A context is obtained

18

[SC-ALPHA] P = a(P)

where a renames the restricted names in P
[SC-SUM-ASSOC] P14+ (Py+Ps) = (P1+Pa) + Ps
[SC-SUM-COMM] | P1 + P2 = Pa + 74

[SC-SUM-INACT] | P+true =P

[SC-COMP-ASSOC] | P1|(P2|Ps) = (P1|P2)|Ps

[SC-COMP-COMM] | P[Py = (Po|Py)

[SC-COMP-INACT] | P|true =P

[SC-RES-INACT] new z true = true

[SC-RES-COMP] new z (P|P') = P| new z P’ (3} ntm(m) == 0

where fn(P) yields the unrestricted names of P

[SC-REP] P = P[P

Table 2: Structural Congruence Rules for LCCS

REFL P=P

SYMM | P = Q implies @ =P

TRANS | P = Q and Q = R implies Q=R
CONG | P = Q implies C[P] = C[Q]

Table 3: Rules for Equational Reasoning

from a LCCS process P when the hole [.] replaces a non-degenerative occurrence of true in
P. true occurs degeneratively if it is the left or right term of a sum M + M’.

Note that the inactive process true is suffixed to every summation operand in a CCS
process, although it is often omitted in examples for convenience. The enactment of a process
is considered to have halted successfully if the residual process is structurally congruent to
the inactive process true. A process is considered to be deadlocked if no progression (through
reduction) can be made but the process is not structurally congruent to true.

The heart of process evolution in CCS is the interaction of an input prefixed process term,
residing within a summation (possibly degenerative), with another such output prefixed
process term.

We define an abstract machine language that might appear to add more to the reduction-
based semantics of processes than just this simple interaction-based metaphor. However, all
of the additional process artefacts that we admit may be mapped to standard CCS (with
priority — more information is given in [13]). This is an important point, as staying (largely)
within the realms of standard CCS enables us to make use of the wealth of mathematical
results that exists for it, such as notions of bisimulation equivalence.

4.2 LCCS Abstract Machine Language

The LCCS abstract machine language has a semantics grounded in standard CCS augmented
with a notion of process priority (see [13] for more details). It admits the following addi-
tional language artefacts as syntactic sugar to standard CCS, that have proved helpful in
characterising the YAWL workflow patterns.

e A sequence operator ; which allows us to place arbitrary processes in sequence. The
only sequences that are admitted in standard CCS are those consisting of an input or
output action followed by an arbitrary process.

e The process false. This represents the deadlocked process. It is different from true, in
that occurrences of true may be removed from a process by applications of structural
congruence, whereas false represents a process that cannot evolve (i.e. reduce) in any
way, nor be removed. false has infinitely many mappings to an equivalent process in

19

standard CCS. An example is new a a. This process cannot be reduced, as the scope
of a has been restricted and there is no process with a complementary (output) action
operating in parallel within the scope of the restriction.

e (Pllt> Q) — a transaction scope. Informally, P may evolve as long as no reduction is
derivable for Q. As soon as a reduction is derivable for Q to @', the transaction scope
evolves to Q.

o (Poll>...11>P;ll>...11>P,) — aparallel priority scope. Informally, the evolution
of a process P; within a parallel priority scope may occur while no reduction can be
derived for any higher-priority processes P;, 1<j.

We also conceive LCCS as a hybrid language <S,P >, where P is a CCS-like workflow
process and S is a state chalkboard — essentially, a collection of fluent-value pairs. A fluent
is a property of the state chalkboard which may vary in value over the course of enacting a
workflow model. A class of LCCS actions called *-actions are used to update and query the
state of S, from within P. The workflow process P should be seen primarily as orchestrating
changes to the workflow state S. There are number of advantages of using a state chalkboard
as a metaphor in characterising the YAWL workflow patterns (see Section 6). It should be
emphasised, however, that in the mapping of LCCS to standard CCS, *-actions are mapped
to regular CCS actions which interact with a realisation of S as a standard CCS process. In
characterising the workflow patterns, it is useful to use a *-action metaphor with associated
additional reduction rules (presented in Section 4.3) as the characterisation in standard CCS
is far from trivial.

As for the workflow state chalkboard S, it suffices to consider it to be a binary relation

{iet,n i = v5}

recording fluent-value pairs. We write f; = v; to indicate that the fluent f; has value v;.
Note that f; will be a possibly parameterised string literal. The type of values, v;, that may
be stored in S are

e Integer and boolean data — integer values stored in S are encapsulated within i(...),
e.g. i(-1),1(0), i(1), and so on; boolean values are b(true) and b(false).

e State data — values that are names of states, specifically, st(Ready), st (Running),
st (Cancelled), and st(Completed).

e List data — values within & may be ordered lists of integer, boolean, state, or name
data (but not list data).

e LCCS names — any value that is not a list, st(...), 1(...), or b(...).

List delimiters are [and | and the empty list is denoted [], € tests list membership, i : L
extracts the i*" member from L — where a list is indexed from 0 — and ¢ : L extracts the
last member from L. Further, + is a concatenation operator for lists such that [ag, ..., an]
+ [bo, ..., by] yields [ag,...,am,bo,...,by]. | LI yields the number of elements in L. We
may also use quantifiers V and 3 in writing tests (for rule premises) on lists; for example
Yun € L.State(un) == st(Completed).

Typically, we will write process terms of the form: (0 : L)?...7a(c : L) (where ? is some
LCCS process operator, such as + or |) to mean an ordered ?-composition of all members
of L in the order from 0 to ¢. Similarly, we may write a(¢c : L)?...7a(0 : L) to mean a ?-
composition ordered from ¢ to 0. So a(0: L);...;a(c : L), where L is [a, §,7], would expand
to a(a); a(B); a(y).

Updates on S are specified thus within reduction rules:

SU{f=v} if f# f;forjel...n,
{iet,om—1mt1,nfi =v;}U{f =0} if f=fn

Extracting values from state S is specified thus: v := [S — f]. Here, v is assigned to the
current value of f in S. If f does not exist within S then v is assigned to [].

S@{f:v}é{

20

Fluent

‘ Written by ...

Read by ...

‘ Description

Act_type (un)

*add_activity

_GetCandidates/4, see [13]

The name of the customised activity

type of activity instance un

State (un) *add_activity, *execute *execute, *complete The state of activity instance un;
xcomplete, *cancel *cancel, *running one of st(Ready), st(Running)
st (Completed), or st(Cancelled)
Children(un) *xadd_activity *add_activity, *complete | The (list of) children of
*cancel activity instance un
Parent (un) *add_activity _GetCandidates/4 The parent instance of
activity instance un
Root *add_activity *xexit The name of the root activity instance
of the workflow model
Scope (un) *add_scope_activity _GetCandidates/4 Records whether an activity is
an isolated scope, Section 2.1
Integer(un, I) | *int *iszero, *isnotzero, ... Records Integer data
Boolean(un, B) | *bool *istrue, *isfalse Records Boolean data

Table 4: Fluents stored in S in the course of LCCS workflow model enactment, and actions that
read and write them.

We have also experimented with representing S as a Description Logic knowledge base,
so that we may structure knowledge hierarchically (e.g., as action taxonomies) and query
such hierarchical state in the processing of the workflow model. For example, when we ask
whether an activity of a particular type has completed, the query may be answered by all sub
types of the action type. The version using Description Logic will be described elsewhere.

4.3 LCCS Characterisation of Liesbet Workflow Models

4.3.1 Specifying LCCS Workflow Models

We now show how individual Liesbet models may be mapped to a LCCS Workflow Model
Specification, which is, essentially, a <S,P > pair in which P — the workflow process —
makes use of a library of LCCS process specifications for generic activity types. Table 4
summarizes the fluents that may be stored in the workflow state S as a LCCS workflow
model specification is enacted.

In the following section, we present informal reduction rules for *-actions which should
be fairly intuitive and easy to understand. In the mapping to standard CCS, *-actions are
converted to process patterns which use regular CCS actions.

Consider a very simple workflow model consisting of a parallel activity type which contains
two sequence types, each of which themselves contain two basic activity types. The last
activity type of one of the sequences, and the first activity type of the other, are the same
type. In Liesbet Easy Syntax, the example model would be: Par((Seq(A,B),Seq(B,C)).
The mapping into LCCS for this workflow model is as follows. (In [13, 11], we give an
enactment narrative for this example workflow specification.)

<[,
new un
(
new _p, _s, _Z
(
new sl1,s2,a,b,c
RepAddStructAct(sl, [a,b],_s)
RepAddStructAct(s2, [b,c],_s)

21

RepAddBasicAct(a,_z) |
RepAddBasicAct(b,_z) |
RepAddBasicAct(c,_z)

1>
new p AddRootAct(p,un, [s1,s2],_p) |

RepStructAct (Par) (_p) |
RepStructAct (Seq) (_s)
1>
RepBasicAct(_z)
)
<t|| *finished(un)

)

Note that all LCCS workflow process specifications, P, must take this form, namely,
((RepAddStructs | RepAddBasicActs ||> AddRootAct | RepStructActs ||> RepBasicAct) <tl|
*finished(un)). We make use of a parallel priority scope, and, a little later, we will explain
the rationale behind structuring a top-level workflow specification in this way. Firstly, how-
ever, we will explain the process abbreviations AddRootAct, RepAddStructAct, RepAddBasicAct,
RepStructAct and RepBasicAct. These are defined as follows

AddRootAct(at, un, [atl, ..., atn], gt)
new unl, ..., unn
atl-<un,unl>; ...; atn-<un,unn>;

*add_activity(at, [],un);
*execute (un) ;

gt-<un, [uni,...,unn]>
RepAddStructAct(at, [atl, ..., atn], gt)

lat (pt,un);

new unl, ..., unn

atl-<un,uni>; ...; atn-<un,unn>;

*add_activity(at,pt,un);

*running (un) ;

gt-<un, [unil,...,unn]>

RepAddBasicAct(at, gt)

lat (pt,un) ;
*add_activity(at,pt,un);
*running (un) ;

gt-<un>

RepStructAct (Activity) (gt)

'gt (un,kids);
(

xrunning (un) ;Activity(un, kids);*complete (un)
<t||

*cancelled(un)

RepBasicAct(gt)

22

'gt(un); (*complete(un) <t|| *cancelled(un))

Elaborating, with regard to the LCCS workflow model specification, the initial workflow
state S is empty. The lines containing RepAddStructAct, RepAddBasicAct and AddRootAct,
along with the line allocating names s1,s2,a,b and c, are all specific to a particular Liesbet
model. The remainder of the example LCCS workflow model specification is not model-
specific. The lines containing RepStructAct (Activity) (gt) are specific to generic activity
types; that is, there is one such process term for each generic activity type, here, Seq and Par,
used in the workflow model. Finally, the line containing RepBasicAct(gt) is ever-present
(unless we have a model consisting of just one basic activity, as remarked later) and there is
only ever one of them — its purpose being to realise generic logic pertaining to basic activity
types.

Referring to the specification of RepStructAct presented above, the Activity parameter
is (the name of) one of the (library of LCCS) process specifications for generic activity types,
defined in the following sections, such as Seq (Section 4.3.3) or Par (Section 4.3.4). The
parameter gt refers to a guard channel along which we can signal the exposure of process
logic for effecting instances of a sequence, a parallel, etc. RepAddStructAct uses a replication
(a factory for LCCS process terms) meaning that an unlimited number of instances of the
generic activity type may be created. The data received on gt are the unique name, un, of
the sequence, parallel, etc., instance being created, and a list of child instances, kids.

Once we have signalled along gt, the exposed process logic proceeds as follows. Firstly,
we wait for the parent activity instance to move this activity instance to the st (Running)
state, as reflected by *running(un). The reduction rule for *running simply checks that
the instance is in the st (Running) state.

QUERY-RUNNING
W =<S,uP+ M>
1 = *running(un)
[S — State(un)] == st (Running)
W — <S, P>

There are similar query rules for st (Ready), st(Cancelled) and st(Completed), ob-
tained by replacing st (Running) in the above reduction rule by one of these other states.
There is also a rule for *finished(un) which simply checks whether the given activity in-
stance is in either a st (Cancelled) or st (Completed) state.

Following that, we proceed with the passed Activity process specification, passing the
unique identifiers for the instance, un, and the instance’s children as the list kids. Af-
ter the Activity logic has been consumed, we perform some housekeeping in moving the
(structured) activity instance into a st (Completed) state, by means of the *complete (un)
*_action whose reduction rule is presented next. It has the effect of moving an activity in-
stance in a st (Running) state to st (Completed). It will do so if all of its immediate children
have themselves finished (have completed or have been cancelled).

ACTIVITY-COMPLETE
W =<8, u. P+ M>
1 = *complete (un)
[S — State(un)] == st (Running)
Children := [S — Children (un)]
Vun; € Children.[S — State(un;)] == st (Completed) V... == st(Cancelled)
S’ := 8 & {State(un) = st(Completed)}
W — <8, P>

Finally, we use a transaction scope, (... <tl|| *cancelled(un)). This has the effect
of immediately consuming all of the process logic for the activity instance, represented by

23

ellipses (...), if has been determined that the instance has been cancelled.

The purpose of RepAddStructAct is to initiate the exposure of process logic pertaining
to an instance of the customised activity type, at, and to create instances of at’s child types
[at1l, ..., atn]. It uses a replication, meaning that it can repeat these tasks, which are
initiated by an interaction on the guard channel at, an unlimited number of times. Passed
along at is the unique name, un, that has been assigned for the instance to be created,
and the unique name, pt, of its parent instance. Whenever an interaction on at occurs, we
proceed to initiate the creation of the child (customised) activity types of un, signalling on the
appropriate RepAddStructAct and RepAddBasicAct guard channels (here, s1,s2,a,b,c) to
do that. Along these channels, we pass the unique name of the parent instance, un, and a
freshly allocated unique name, e.g., un1, for the new child instance. We then add the activity
instance, un, to the workflow state, S, by using *add_activity, passing the customised type
name, at, along with the unique name of the instance and that of its parent. The reduction
rule for *add_activity is as follows.

ACTIVITY-ADD
W =<8, u. P+ M>
1 = *add_activity(atn,pt,un)
§":=8 @ {Act_type(un) = atn} @ {State(un) = st(Ready)}
if (pt]) then {
parents_children := [S +— Children(pt)] + [un]
&' :=8" @ {Parent (un) = pt} ® {Children(pt) = parents_children}
} else {
S :=8" @ {Root = un}
}

W — <S8, P>

Essentially, this does two things. It adds the unique name, un, of the activity instance to
the stored children of its parent instance, pt, as long as the instance is not the root instance
of the workflow model. Alternatively, if the instance is the root instance (indicated by pt
being the empty set), the fluent Root is assigned in the workflow state chalkboard to un. It
also adds to S the activity type name, atn, of un, its parent (if it exists), pt, and sets the
state of un to st (Ready).

Then, we wait for the activity instance to be set to st (Running) (by its parent) before we
expose process logic to effect its behaviour. Once running, we signal on the guard channel gt
pertaining to the generic type of the customised activity type, at, that process logic effecting
an instance of the generic type should be exposed, passing parameters un — the name of the
instance — and [unl, ..., unn] — the children of the instance.

The purpose of AddRootAct is to handle the creation of an instance of the root activity
type. There should be just one of these present in an LCCS workflow model specification.
Similarly to RepAddStructAct, we firstly create instances of the child (customised) activity
types of the root type, signalling on the appropriate RepAddStructAct and RepAddBasicAct
guard channels to do that. Then, we add the instance of the root type that we are cre-
ating to S, setting it to the Running state by means of *execute. Then, similarly to
RepAddStructAct, we expose process logic to effect the root type by signalling on gt, a
guard channel which pertains to the generic type of the customised activity type.

The reduction rule for *execute is as follows.

ACTIVITY-EXECUTE-READY
W =<8, u. P+ M>

1 = *execute (un)

[S — State(un)] == st (Ready)
S :=S @ {State(un) = st(Running)}
W — <S8, P>

24

The premises of the reduction rule say that the current value of State(un) within & —
which reflects the current state of the activity instance un — must be Ready. The effect of
the rule will be to move to the instance into the Running state.

The purpose of RepAddBasicAct is the same as that of RepAddStructAdd, except for basic
activity types. Similarly to RepAddStructAct, it adds an instance of the customised activity
type to the workflow state S. However, as a basic activity type has no children, we simply
proceed to signal on the guard channel (which is common to all basic activity types) to expose
a copy of the generic logic for all basic activity types. This logic, realised by RepBasicAct,
simply completes the activity instance (once its parent instance has set it st (Running)),
according to the ACTIVITY-COMPLETE reduction rule, making use of a transaction scope
which serves trivially to consume the *complete *-action in the event that the instance is
cancelled.

Note that the process logic responsible for adding instances of activity types to S and
signalling the exposure of process logic effecting generic activity types is put at a higher level
of priority than this process logic itself. The reason for this is simple — adding (structured or
basic) instances to S needs to take priority over progressing the workflow process for existing
(structured) instances, in order to maintain model consistency. Moreover, the completion of
basic activities is put at a further lower level of priority to effect the notion that the model is
advanced as far as it can be prior to processing completion events for basic activities. This
is an appropriate semantics, as discussed in [13].

We use a transaction scope to specify that, once the root instance has reached a finished
state (either st (Completed) or st (Cancelled)), the remainder of the workflow specification,
which will consist solely of replications [13], should be instantaneously garbage-collected.

Finally, if the Liesbet model consists of a single basic activity type, it should simply be
specified thus.

<[],new un, at *add_activity(at,[],un); *execute(un); *complete(un) >

Isolated Scopes

We use *add_activity to add instances of activity types which are not isolated to the
workflow state S. In contrast, we use *add_scope_activity to add instances of activity
types which are isolated. The reduction rule for *add_scope_activity is now presented.

25

ACTIVITY-ADD-SCOPE
W =<8, u. P+ M>
1 = *add_scope_activity(atn,pt,un)
§" =8 @ {Scope(un) = b(true)}
u' = *add_activity(atn,pt,un)
8", W' — <8’ true>

W — <S8, P>

4.3.2 Sync and Cond

The LCCS mapping for the Sync (StopQuery, GoQuery) Liesbet activity type is the follow-
ing process specification, which is part of the library of process specification for the LCCS
semantic characterisation of Liesbet. LCCS mappings of Liesbet constructs, presented in
the remainder of this article, are also part of the library of process specifications.

Sync(StopQuery, GoQuery) (un)

*{GoQuery} + *{—-GoQuery | StopQuery};*cancel (un)

The Sync process abbreviation is supplied with the StopQuery and GoQuery queries in the
first set of parentheses. These are the same as those specified in the Liesbet Easy Syntax,
save for a * being added to queries to turn them into *-actions. So, Completed_act(at)
would become *Completed_act(at). Note that LCCS-actions are not case-sensitive; the
fact that we would usually write this as *completed_act (at) makes no difference. Similarly,
True is mapped to true, as a (case-insensitive) identity mapping, and False is mapped to
false; true being the degenerative process that is trivially consumed, and false being the
inconsumable process. The operators + and | also have an identity mapping. Sync is also
passed, in the second set of parentheses, the unique name of the synchronisation instance,
un.

In the LCCS specification for Sync, there is a prioritised race that takes place between the
GoQuery and StopQuery queries being satisfied, i.e., being consumed. If GoQuery is satisfiable
at some workflow state then it will win irrespective of the satisfiability of StopQuery at the
workflow state. The only way for StopQuery to win at a particular workflow state is for
GoQuery to be unsatisfiable at the state.

The reduction rule for —=Q, where the primary premise of the rule is that Q is not
(atomically) consumable from the current workflow state S, is as follows.

QUERY-NOT
W =<8, uP+ M>
p=-9
=(<8, Q> — <&’ true>)
W — <S, P>

<8, Q> — <8', Q'> in the premises of a rule denotes that <S8’, Q'> is derivable from <S8, Q>
by a sequence of one or more — reductions.

Note also the use of the *{...} containers for GoQuery and StopQuery in the process
specification for Sync. These ensure that the queries will be satisfied atomically, according
to the following reduction rule.

ACTIVITY-MU-ATOMIC
W =<8, uP+ M>
n=+{Q}
<S8, p> — <8’ true>
W — <8, P>

26

In Sync, if the GoQuery query is satisfied first, we complete the activity instance — see
Section 4.3.1. If the StopQuery query is satisfied first, we cancel the Sync activity instance.
The reduction rule for *cancel is presented next. Its effect depends on whether the state of
the given instance is st (Completed) or not. If it is st (Completed), the rule says that the
*xcancel action should be trivially consumed. If it is not st (Completed)

ACTIVITY-CANCEL

W =<8, u. P+ M>

1 = *cancel (un)

State := [S — State(un)]

if (State # st (Completed)) then {
§":=8 @ {State(un) = st(Cancelled)}
Children := [S"” — Children(un)]
i := *cancel(0: Children);...;*cancel (v: Children)
~<8", 1> — <8’ true>

} else {
§=8

}

W — <S8, P>

The variant, Sync (GoQuery) is specified as follows, and reflects the fact that there is no
StopQuery query to evaluate.

Sync (GoQuery) (un)

*{GoQuery}

The specification for Cond (GoQuery) is as follows, and reflects the fact that the StopQuery
query is, in fact, the negation of the GoQuery query.

Cond (GoQuery) (un)

{GoQuery} + —{GoQuery};*cancel(un)

The specification for FreeChoice is as follows, and reflects the fact that the activity
instance non-deterministically completes or cancels itself.

FreeChoice (un)

*complete(un) + *cancel(un)

Note that it does not matter that the RepStructAct container also uses a *complete
*_action. The use of *complete in RepStructAct means that most of the process specifi-
cations for the generic activity types presented here can be given without their needing to
specify *complete themselves. However, sometimes, as here, it is appropriate for the process
specification to use a *complete *-action also.

For the purpose of enacting an LCCS Liesbet model, EvalExpr (EXPR) queries are mapped
to the trivially satisfiable process true.

We refer the reader to [13] for the definitions of the reduction rules for *-actions which
facilitate the Liesbet queries Completed_act and Completed_all queries, presented in Sec-
tion 2.2. There exist similar rules for st (Ready), st (Running), and st (Cancelled) states,
and rules for Finished act and Finished_all, which are queries made on instances being
in st (Completed) or st(Cancelled) states.

27

4.3.3 Seq and SeqCancel
The LCCS mapping for the Seq/SeqCancel Liesbet activity types is as follows.

Seq(un, [unl, ..., unn])
*execute(unl) ;*finished(unl) ;... ;*execute(unn)
SeqCancel(un, [unl, ..., unn])
(
*xexecute (unl) ; *completed(unl);...;*execute(unn);
<t||
(*cancelled(unl) + ... + *cancelled(unn)) ;*cancel(un)
)

Seq executes each child instance in turn, starting one instance after its predecessor has
finished. In contrast, SeqCancel insists that all child instances must complete successfully
for the sequence instance to complete. If any of them get cancelled, the sequence instance is
cancelled.

4.3.4 Par
The LCCS mapping for the Par Liesbet activity type is as follows.

Par(un, [unl, ..., unn])

*{*execute(unl) | ... | *execute(unn)};

Par (atomically) executes all child instances in parallel.

4.3.5 DefaultChoice and Choice

The LCCS mapping for the DefaultChoice Liesbet activity type is as follows.

DefaultChoice(un, [ungl, uncl, ..., ungn, uncn, und])
*{*execute(ungl) | ... | *execute(ungn)};
(
Select (*completed(ungl)) (uncl, ung2, unc2, ..., ungn, uncn)
+...+
Select (*completed(ungn)) (uncn, ungl, uncl, ..., ungn-1, uncn-1)
+
Select (*cancelled(ungl) | ... | *cancelled(ungn))(und, uncl, ..., uncn)
)
Select(Trigger) (unci, ul, ..., uj) =
Trigger; (xexecute(unci) | *cancel(ul) | ... |*cancel(uj))

DefaultChoice uses Select to select between which instance of the continuation activity
types named uncy, ... unc,, uncy to execute. Select takes two sets of parameters. The
first is a process definition, Trigger, which is always a single *-action. Whichever Trigger
in the specified Selects is the first to be consumed will determine which Select process
instance (in the sum of Selects) continues to be executed. The first parameter in the second
set of parentheses is the continuation activity instance unc; to execute, and the remaining
parameters are continuation activity instances that are to be cancelled, as reflected in the
definition for Select.

28

We define a Select process instance for each ung;, and one for the default continuation
activity instance. The Trigger for all Selects but the last is that the corresponding ung;
has completed. The trigger for the last Select is that all ung; instances have been cancelled.

The LCCS mapping for the Choice Liesbet activity type is as follows.

Choice(un, [ungl, uncl, ..., ungn, uncn])

*{*execute(ungl) | ... | *execute(ungn)};

(
Select (*completed(ungl)) (uncl, ung2, unc2, ..., ungn, uncn)
+...+
Select (*completed(ungn)) (uncn, ungl, uncl, ..., ungn-1, uncn-1)
+
(*cancelled(ungl) | ... | *cancelled(ungn)) ;*cancel(un)

)

This is identical to DefaultChoice, except that as there is no default branch, we cancel
the whole Choice in the event that all of the guard activity instances go to st (Cancelled).

4.3.6 MultiChoice

The LCCS mapping for MultiChoice is as follows.

MultiChoice(un, [ungl, uncl, ..., ungn, uncn])

SelectCancel(ungl, uncl) | ... | SelectCancel(ungn, uncn)

SelectCancel (ung,unc)

xexecute (ung) ; (*completed (ung) ; *execute (unc) + *cancelled(ung) ;*cancel(unc))

MultiChoice performs a number (one for each guard activity instance) of SelectCancel
process instances in parallel. SelectCancel simply executes the passed guard activity in-
stance ung, and waits for it to complete successfully, in which case the continuation activity
instance unc is executed, or for it to fail (i.e., get cancelled), in which case the continuation
activity instance is cancelled.

4.3.7 CancelActivity

The LCCS mapping for the CancelActivity Liesbet activity type is as follows. There are
two different versions, one which takes a reference type (ref_atn) — see Section 2.1 — and
one which does not.

CancelActivity(atn) (un)

*cancel_all(atn, un)

CancelActivity(atn, ref_atn) (un)

*cancel_all_ref(atn, un, ref_atn)

The reduction rule for *cancel_all uses _GetCandidates/4, defined in [13], to retrieve all
instances of activity type atn within the visibility horizon of the CancelActivity instance.
It effects *cancel on these instances, which in turn will cause st (Ready) and st (Running)
instances to go to st(Cancelled).

ACTIVITY-CANCEL-ALL

29

W =S, u. P+ M>

1 = *cancel_all(atn,src_un)

Cands := _GetCandidates(atn, srcun, [1, [])
w' = xcancel(0: Cands) ;.. .;*cancel(s: Cands)
<8, /> — <8’ true>

W — <S8, P>

The reduction rule for *cancel_all_ref is the same as the rule for *cancel_all, except
that the visibility horizon is scoped on a plain reference type, ref_atn.

ACTIVITY-CANCEL-ALL-REF
W =<8, u. P+ M>

i = *cancel_all ref (atn,srcun,ref_atn)

Cands := _GetCandidates(atn, src_un, ref_atn, [])
' = *cancel(0: Cands);...;*cancel(v: Cands)

<8, u'> — <8, true>

W — <S8, P>

Also, as we note in [13], there is an additional reduction rule for the *execute *-action.
As activity instances can be cancelled before they are executed, we do not wish *execute
*_actions to be a source of deadlock, should an instance be cancelled, and then an attempt to
execute it be made (by its parent instance). As a result, we specify that *execute *-actions
are trivially consumed on instances that have been cancelled.

30

5 Verification of Liesbet Models

In this section we introduce our support for static verification of certain properties of workflow
models, and in particular the key property of model soundness. We describe how we verify
this property, as well as how we provide support for checking temporal logic specifications
against LCCS characterised Liesbet models.

5.1 Liesbet Model Soundness

In the verification of LCCS-characterised Liesbet models, we are fundamentally concerned
with the notion of model soundness, which is a property of the control perspective. Van der
Aalst and colleagues have defined this property [43, 49]. We now present a definition of
soundness based on theirs but adapted for our needs. A workflow model is sound (at the
control perspective) if (and only if) it satisfies the following conditions.

e Option to complete — It should always be possible to complete a workflow instance.

e Proper completion — It should not be possible that the workflow model signals
completion of an instance while there is still work in progress for that instance.

e No dead activities — For every activity instance that may be created in the enactment
of a workflow model, there must exist at least one enactment path where that instance
is run. This property ensures that every activity instance plays a meaningful role in
the workflow model.

The first property, option to complete, stipulates that the workflow model should not be
subject to locking along any of its enactment paths. Specifically, we consider two types of
locking, namely, deadlock and livelock.

Deadlock of a Liesbet model refers to a situation where, along some enactment path for
a workflow model <S,P > , we reach a state where we cannot advance P according to the
current S, but the current P is not (structurally congruent to) the LCCS true process (see
description for proper completion, just below). Every thread of execution (in the enactment
of a model) is blocked at a synchronisation point (enforced by a Sync or a Cond activity);
that is, each thread is blocked waiting for some change in the (Ready, Running, Completed,
Cancelled) state of particular activity instances. (There is one other potential kind of
deadlock. It is conceivable that in our semantic characterisation we have introduced sources
of deadlock, for instance in the process specifications for the generic activity types. However,
as explained in [13], this other kind of deadlock does not arise.)

Livelock in a LCCS Liesbet model would be where there are infinite executions of LCCS
reductions within the model without any progress being made towards (proper) completion
of the model. This is not considered to be a significant issue for LCCS-characterised Liesbet
models. Model livelock pertains to the situation where we define an infinite cycle within a
Liesbet model. A simple example of this is X = Seq(4,X). Although we allow such defini-
tions, we strongly recommend that cyclic behaviour is limited to that which can be expressed
using multiple-activity instances (so called structured cycles). For this example, we would
represent it instead using a MultiSeq activity type (see Appendix A). For structured cycles,
model livelock is not possible. So, under the assumption that arbitrary cycles are only used
with extreme care, we do not consider model livelock to be a significant issue in Liesbet.
As documented in [13], the possibility of livelock at the level of the LCCS characterisation
can be discounted according to the LCCS specifications for generic activity types and the
template used for LCCS.

We define proper completion for an LCCS Liesbet model <S,P > to be achieved when
the root workflow instance and all of its descendant instances have reached Finished (i.e.,
Cancelled or Completed) states. As we enclose an LCCS-characterised Liesbet model in
a transaction scope whose trigger is *finished(un), where un is the instance of the root
activity type of the model, it is sufficient to say that proper completion is achieved when
the workflow process P evolves to (be structurally congruent to) the empty process true, as
we discuss further in [13]. This will occur if, and only if, we have an absence of locking in a

31

——————— -» Marks join condition
PM@\ A has join condition of D completing
= C has join condition of B completing

\ A deadlock will occur...

-

Figure 5: Example 2 — Graphical Representation of Liesbet Model

LCCS Liesbet model. As a result, verification of LCCS Liesbet model soundness reduces to
verifying an absence of model deadlock and an absence of dead activity instances [13].

5.2 Constraining/Adjusting the LCCS-Characterisation for Verifi-
cation Purposes

Model soundness of an LCCS-characterised Liesbet model is decidable, with the following
caveat. (With the introduction of multiple-instance activity types to Liesbet there is another
caveat, as discussed in Appendix A).

The caveat is that we do not admit Liesbet models which have arbitrary cycles. An
arbitrary cycle can be thought of as being a repeating piece of workflow logic that cannot
be mapped to a multiple-instance activity — essentially because it can have multiple sources
(or entrances) and sinks (or exits). Liesbet models may specify arbitrary cycles by simply
naming activity types as children that are also ancestor types, but we stipulate that models
to be verified may not specify them. We consider this to be a reasonable approach.

The verification process for model soundness may be conceptualised as a number of
separate verification runs. We start with the root instance of the workflow model for the
first verification run, seeking to check every path through the workflow model for deadlock
and dead activity instances. Whenever an instance of an isolated scope would be created
in the verification run, that instance is skipped. The scope type for that instance will be
verified in a separate verification run, where it can be treated as its own workflow, with
itself as the root type. The results of the verification process are the sum of the separate
verification runs.

5.3 Approach using SPIN

Briefly, we have a implemented a tool that makes use of the SPIN model-checker [21] to
verify model soundness. It is also capable of checking the validity of LTL [9] formulas
against a LCCS Liesbet workflow model. SPIN was a natural choice — it is easy to set
up, and we wanted to be able to code the LCCS semantic characterisation of Liesbet in
the imperative programming language C, mainly for ease of implementation. We are in the
process of implementing our own model checking wrapper for Liesbet models so that we can
test formulas written in a variety of temporal logics, including CTL [9] and EAGLE [27]. We
are also considering the implementation of a simple engine for LCCS so that we can ‘execute’
LCCS models directly. More information concerning all of these efforts is presented in [13].

As a simple example, consider the workflow presented graphically in Figure 5 and in
XML in Figure 6. Here, we have a clear example of model deadlock. We see from Figure 5
that to be able to start executing activity A, we must have completed activity D. In order to
have started activity D, we must have previously executed activity C. Activity C requires that
activity B has completed, but in order to have started activity B we must have completed
activity A.

When we input the Liesbet XML code to our interface to SPIN, we get the results shown
in Figure 7, indicating that an invalid end-state error is detected, as required.

32

<?xml version="1.0"?>
<liesbet =xmlns="http://www.doc.ic.ac.uk/adf02/schema/liesbet">
<par name="P1">
<seq name="S1">
<act name="A">
<join name="Jl"><false/><completed_act ref="D"/></join>
</act>
<act name="B"/>
</seq>
<seq name="S2">
<act name="C">
<join name="J2"><false/><completed_act ref="B"/></join>
</act>
<act name="D"/>
</seq>
</par>
</liesbet>

Figure 6: Example 2 — Liesbet XML Code

pan: invalid end state (at depth 17)
pan: wrote test3.xml.prm.trail
(Spin Version 4.2.5 —-- 2 April 2005)
Warning: Search not completed

+ Compression

Full statespace search for:

never claim — (none specified)
assertion violations +

cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 100 byte, depth reached 18, errors: 1
5 states, stored
0 states, matched
5 transitions (= stored+matched)
14 atomic steps
hash conflicts: 0 (resolved)
...truncated

Figure 7: Example 2 — SPIN Output

33

6 Related Work, Discussion and Future Work

In this work we have considered the formal representation of workflow for the purposes of
performing (static) verification of certain properties, such as workflow soundness. We have
thereby sought to make a contribution to the work of the Process Modelling Group (PMG)
(http://www.petripi.org), which is concerned with understanding the behavioural nature
of processes, such as business processes (which are their primary concern), and seeking to
understand the utility of formal tools, such as Petri-nets [38] and m-calculus/CCS [31, 32, 40],
for modelling and verifying the behaviour of processes.

The YAWL Workflow Patterns are a significant contribution made by members of the
PMG community [46, 47, 45, 25]. They are the result of extensive studies of many workflow
languages and tools, and many representative workflow scenarios, in order to arrive at a
definitive set of representational requirements, or ‘patterns’, for workflow. Our contribution
to the PMG effort is primarily to provide a formal characterisation (i.e., at the computational
view, Section 1) of the YAWL workflow patterns, and as a consequence to fix the meaning
of workflow models that make use of such patterns.

Approaches to the modelling of YAWL workflow patterns include [46, 47, 45, 25, 42, 41, 5,
6, 37]. [46] presents a graphical (authoring view) meta-model for the definition of workflow
models, which is formally underwritten with a Petri-net inspired transition-system based
semantics (the computational view).

We have presented a meta-model, called Liesbet, at the information view. This view
is primarily concerned with describing concisely the sufficient and (as much as possible)
necessary representational requirements for the workflow modelling approach. Liesbet is
formally underwritten with an abstract machine language, LCCS, which is inspired by CCS.
Importantly, as we show in [13], LCCS has a mapping to standard CCS (with priority),
which enables us to make use of the wealth of mathematical results that exist for CCS. A
LCCS-characterised Liesbet model is a pair <S,P >, where S is a state chalkboard which
is updated and queried by means of distinguished *-actions within the workflow process P.
We consider that both Liesbet (at the information view) and LCCS (at the computational
view) give succinct and intuitive accounts of the YAWL workflow patterns.

In [5] and [37] (resp. [42]) are presented m-calculus-based (resp. CCS-based) characterisa-
tions of the YAWL patterns. (Actually, these works could all be classified as being CCS-like,
in that none of them make use of the channel-passing aspect of the m-calculus and thus could
be viewed as using variants of CCS rather than m-calculus.) The £LCCS semantic charac-
terisation is rather different from these approaches, however, and has some key advantages,
arising largely from its use of a state chalkboard.

The use of a separate state chalkboard which is updated as actions within a process
specification are consumed has been found to be a useful representational device in many
contexts. An example is the field of (cognitive) robotics, where a common representational
device for robot programs is a control program, like a CCS or 7w process, along with a state
chalkboard for recording the effects of executing actions of the control program, where these
effects are specified by effect axioms. A robot will be able to sense whether the environment
has the state it expects, and adjust its representation of the environment accordingly.

An example of a robot programming language is Golog [39]. LCCS is similar to Golog, in
that they both employ a state chalkboard (in our case, S), which is updated and queried as
a result of actions (in our case, *-actions) that are specified within the control program (in
our case, P). That is, P orchestrates changes to S. The main benefits of using a CCS-like
language to represent P are that CCS provides a natural way of expressing concurrency, as
well as process templating through replication. We have also found CCS-like communication
to be useful for effecting inter-process synchronisation at a local level (i.e., within generic
activity type specifications), as well as using it to provide a way of creating new activity
instances and exposing the associated process logic for these instances.

One advantage of the use of a state chalkboard is exemplified by the need of many of
the YAWL patterns to query (if only implicitly) the state of activity instances within the
workflow model. In our approach, it is trivial to record and answer queries regarding instance

34

state using the state chalkboard. There is no need, therefore, to route CCS/m channels to
appropriate parts of the process specification to effect such state querying, which often proves
cumbersome to specify.

An example is the use of cancellation activity instances (pattern #19). We simply update
the State fluents for all pertaining instances to st (Cancelled), and use transaction scopes
(...<tll...) to garbage-collect redundant LCCS process logic pertaining to activity instances
that have been cancelled. This is the extent of the modelling effort to effect cancellation,
which is considerably tidier than having to encode cancellation channels as operands of sums
at every step of an instance’s evolution, and to signal along the channels of the pertaining
instances to initiate the cancellation. Moreover, a model author can, through the use of
isolated scopes and reference query types, gain a fine level of control over what activity
instances are cancelled.

A further useful by-product of explicitly recording activity instance states in the state
chalkboard is that we may support powerful inter-thread synchronisation patterns, which
has been a requirement in our work, such as the synchronisation patterns highlighted in [24]
and [3], as well as trivially supporting the Milestone pattern (#18), as shown in Section 2.2.
Again, isolated scopes and reference query types provide a model author with a fine level of
control over which extant activity instances are pertinent to a synchronisation instance.

[42] defines a high-level syntax for CCS which abstracts from the cumbersome details of
using channels for inter-thread synchronisation and for instance cancellation. Moreover, such
a syntax could, in some guise, be used for the purposes of authoring workflow models (an
authoring view), or, in other guises, be used for the purpose of exchanging workflow model
specifications (a serialisation syntax). It could also be used to give a concise presentation of
the expressivity, or ontological commitments, of the workflow modelling approach taken (an
information view).

However, it is just as important when fixing the meaning of a workflow model (the
computational view) to ensure that the formal tool employed will enable an eloquent char-
acterisation. It is clear from [42], as recognised by the author, that succinctly describing the
YAWL workflow patterns purely in CCS is difficult, if not impossible. This is compounded
when we consider other needs, such as those for advanced inter-thread synchronisation, as
described. Through the use of a state chalkboard and transaction scopes, we have arrived
at a semantic characterisation which we believe to be intuitive, tidy, and, relatively to [42],
easy to understand. As stated in the introduction to this article, it is important that any
computational view has these characteristics.

It is important to note a distinction between data-driven and process-oriented computa-
tional models for workflows and compositions. YAWL’s semantic characterisation presented
in [46] is data-driven, but this does not mean that the YAWL workflow patterns are neces-
sarily best characterised using a data-driven approach.

A process-oriented workflow model, such as one based on CCS or w, will principally
operate in terms of the consumption (that is, execution) of process actions. An action is
scheduled for consumption whenever it reaches the head of the process specification, and as
actions are consumed they are removed from the head. In a data-driven approach, such as
Petri-nets generally, an activity is scheduled for execution whenever there exist token(s) in
the input conditions of an activity. If tokens are fed back to these input conditions, then the
activity might be executed many times. In the process-oriented approach, we would need to
explicitly replicate the process definition to achieve something similar.

Certain artefacts that are easily represented using a process-oriented approach may not
be so easily represented using a data-driven approach, and vice versa. So, there is a need
to understand the nature of the business processes that we would like to represent in order
to understand which is more appropriate, in which circumstances. This is a stated aim of
PMG. The YAWL workflow patterns originated from researchers who are members of this
group; now the group is actively looking to evolve their understanding of the behavioural
nature of business processes in order to further ground studies into the use of formal tools
for their representation.

Our LCCS characterisation of the YAWL workflow patterns is primarily process-oriented.

35

Moreover, Liesbet has been defined, e.g., through the use of isolated scopes and reference
query types, in such a way that it lends itself naturally to a process-oriented semantic char-
acterisation. It may also be seen to have data-driven aspects, through the use of a state
chalkboard.

It is worth noting that we have extended the Liesbet meta-model to be able to represent
the control perspective of WS-BPEL [34] for the purpose of verification of soundness of WS-
BPEL compositions. Approaches to the formal specification of WS-BPEL [34] compositions,
typically for the purpose of verifying certain properties of compositions, include [8, 7, 2,
50, 29, 23, 15, 26, 16, 14, 10, 35]. For more information regarding our characterisation of
WS-BPEL, the interested reader is invited to consult [12].

The question of when two workflows are equivalent is an important issue in the study of
workflow. As reported in [20], this is a non-trivial question. The crux is how to treat so-called
internal actions — those actions which progress the model but are not concerned with the
fulfilment of (basic) activity instances. One approach to formalising workflow equivalence
is that taken by [25]. There, workflows are considered to be equivalent if there exists a
weak bisimulation (as defined by Milner for CCS) between them (where activity completions
are considered to be the only observable actions), with the additional requirement that all
enactment paths within the workflows must lead to proper completion. Notwithstanding the
issues highlighted in [20], which we do not seek to resolve, for simplicity we have adopted
the approach taken in [25], as described in [13].

The work presented in this report is part of a larger effort looking at the planning of
fulfilment strategies for (primarily, enterprise) workflows. Essentially, we use an abstract
workflow model, specified in an extended version of Liesbet that supports WS-BPEL-like
fault and compensation handling, to drive the planning procedure for the realisation of a
business process, where the planned strategy must satisfy a collection of constraints. We
also need to verify properties of these abstract workflows, such as soundness [13], before they
can be used to guide the planning process. Although we allow an arbitrary representation
for the abstract workflow models, we have sought to propose an ontology for them, and for
this purpose the YAWL workflow patterns were a natural choice. An obvious alternative
would be WS-BPEL [34], and formal models for this language could easily be used in our
work instead, as could many other ontologies, such as PSL [19].

Regarding the verification of Liesbet model properties, we have implemented an approach
which uses the SPIN model checker, as described in Section 5. We are also in the process of
implementing our own model checking wrapper which will be customised for our needs. As
well as being able to verify workflow model soundness, the wrapper will allow us to verify
model properties specified in temporal logics such as LTL [9], CTL [9] and the soft constraint
language EAGLE [27].

In [13] we provide a more detailed treatment of the LCCS characterisation of Lies-
bet, further examples of Liesbet models, and a more comprehensive discussion of verifi-
cation of LCCS Liesbet models using the SPIN model checker and our custom-built model
checking wrapper. We also give an LCCS narrative for the example workflow specifica-
tion Par (Seq(A,B),Seq(B,C)) presented in Section 4.3.1, showing how the workflow model
evolves during enactment. This is also available at [11].

36

Acknowledgement

The first author is supported by an EPSRC bursary and a CASE award at HP Laboratories,
Bristol, UK.

References

1]
2]

Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services,
ISBN: 3540440089. Springer, 2004.

Jesus Arias Fisteus anmd Luis Sanchez Fernandez and Carlos Delgado Kloos. Formal
Verification of BPEL4WS Business Collaborations. In K. Bauknecht, M. Bichler, and
B. Proll, editors, EC-Web 2004, volume 3182 of Lecture Notes in Computer Science,
pages 76-85. Springer, 2004.

Khalid Belhajjame, Christine Collet, and Genoveva Vargas-Solar. A Flexible Workflow
Model for Process-Oriented Applications. In M. Tamer Ozsu, Hans-Jorg Schek, Katsumi
Tanaka, Yanchun Zhang, and Yahiko Kambayashi, editors, Proceedings of the 2nd Inter-
national Conference on Web Information Systems Engineering (WISE’01), Organized
by WISE Society and Kyoto University, Kyoto, Japan, 3-6 December 2001, Volume 1
(Main program). IEEE Computer Society, 2001.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-
ravelling the Web Services Web: An introduction to SOAP, WSDL, and UDDI. IEEE
Internet Computing, 6(2):86-93, March 2002.

Yang Dong and Zhang Shensheng. Modeling Workflow Patterns with Pi-calculus. Tech-
nical report, Shanghai Jiao Tong University, 2004.

Yang Dong and Zhang Shensheng. Approach for Workflow Modeling Using m-calculus.
Journal of Zhejiang University SCIENCE, 4(6):643-650, Nov/Dec 2003.

Ziyang Duan, Arthur Bernstein, Philip Lewis, and Shiyong Lu. A Model for Abstract
Process Specification, Verification and Composition. In Proceedings of the Second Inter-
national Conference on Service Oriented Computing (ICSOC’04), New York City, NY,
USA., pages 232—-241, November 2004.

Ziyang Duan, Arthur Bernstein, Philip Lewis, and Shiyong Lu. Semantics Based Ver-
ification and Synthesis of BPEL4AWS Abstract Processes. In Proceedings of the IEEE
Conference on Web Services (ICWS’04), pages 734-737, 2004.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 995-1072. 1990.

Roozbeh Farahbod, Uwe Glasser, and Mona Vajihollahi. Absract Operational Semantics
of the Business Process Execution Language for Web Services, SFU-CMPT-TR-2005-04.
Technical report, School of Computing Science, Simon Fraser University, 2005.

Andrew D H Farrell Enactment Narrative of Liesbet Model:
Par(Seq(4,B),Seq(B,C)). Available at http : //www.docic.acuk/ ~
adf02/narrative.

Andrew D H Farrell. Liesbet Support for Verification of WS-BPEL Compositions.
Available at http : //www.doc.ic.ac.uk/ ~ adf02/bpel.

Andrew D H Farrell. Formalising Workflow: A CCS-inspired Characterisation of the
YAWL Workflow Patterns. Technical report, HP Labs Technical Report, 2006, To
Appear.

Andrea Ferrara. Web services: a process algebra approach. In Marco Aiello, Mikio
Aoyama, Francisco Curbera, and Mike P. Papazoglou, editors, ICSOC, pages 242-251.
ACM, 2004.

H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of web service
composition. In Proceedings of the 18th IEEE International Conference on Automated
Software Engineering Conference (ASE 2003), 2003.

37

[16]

[17]

[18]

Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services.
In Stuart I. Feldman, Mike Uretsky, Marc Najork, and Craig E. Wills, editors, WWW,
pages 621-630. ACM, 2004.

D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modelling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3(2):119-153, April 1995.

WS-CDL W3C Working Group. Web Services Choreography Description Lan-
guage Version 1.0 W3C Working Draft 17 December 2004. Available at:
http:/ /www.wS3.org/ TR /ws-cdl-10.

Michael Gruninger. The Process Specification Language (PSL): Theory and Applica-
tions. AI Magazine, 24(3):63-74, September 2003.

Jan Hidders, Marlon Dumas, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and Jan
Verelst. When Are Two Workflows the Same? In Mike Atkinson and Frank Denhe, ed-
itors, Proceedings Computing: The Australasian Theory Symposium, Newcastle, NSW,
Australia, pages 3—11, 2005.

Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual, ISBN:
0-321-22862-6. Addison-Wesley, 2004.

S. Jablonski and C. Bussler. Workflow Management - Modeling Concepts, Architecture
and Implementation, ISBN: 1850322228 . International Thomson Computer Press,
September 1996.

Raman Kazhamiakin and Marco Pistore. A parametric communication model for the
verification of bpeldws compositions. In Mario Bravetti, Leila Kloul, and Gianluigi
Zavattaro, editors, EPEW/WS-FM, volume 3670 of Lecture Notes in Computer Science,
pages 318-332. Springer, 2005.

A. Keller, J.L. Hellerstein, J.L. Wolf, and V. Krishnan. The CHAMPS System: Chanage
Management with Planning and Scheduling. IBM Research Report, RC22882(W0308-
089), August 25, 2003.

B. Kiepuszewski. FEzpressiveness and Suitability of Languages for Control Flow Mod-
elling in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Aus-
tralia, 2003.

Mariya Koshkina and Franck van Breugel. Verification of Business Processes for Web
Services, CS-2003-11. Technical report, Department of Computer Science, York Univer-
sity, Toronto, 2003.

U. Dal Lago, M. Pistore, and P. Traverso. Planning with a language for Extended Goals,
Technical Report 0205-01. Technical report, Istituto Trentino di Cultura, May 2002.

F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

R. Lucchi and M. Mazzara. A Foundational Mechanism for WS-BPEL Recovery Frame-
work. Journal of Logic and Algebraic Programming (JLAP) (to appear).

Mike Marin. Business Process Technology: From EAI and Workflow to BPM. In Layna
Fischer, editor, The Workflow Handbook 2002, ISBN:0-9703509-2-9. 2002.

Robin Milner. Communication and Concurrency, ISBN: 0-13-115007-3. Prentice Hall,
1989.

Robin Milner. Communicating and Mobile Systems: The w-Calculus, ISBN:0-521-
64320-1. Cambridge University Press, 1999.

Eric Newcomer and Greg Lomow. Understanding SOA with Web Services, ISBN: 0-
321-18086-0. Addison-Wesley, 2005.

OASIS. Web Services Business Process Execution Language Version 2.0 Working Draft
1st September 2005; at: http://www.oasis-open.org/apps/org/workgroup/wsbpel.

38

[35]

[52]

[53]

Chun Ouyang, Wil M.P. van der Aalst, Stephen Breutel, Marlon Dumas, Arthur H.M.
ter Hofstede, and Eric Verbeek. Formal Semantics and Analysis of Control Flow in WS-
BPEL, BPM Report BPM-05-15 (Revised Version). Technical report, BPMcenter.org,
June 2005.

Benjamin C. Pierce and David N. Turner. Pict: A programming language based on
the pi-calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

Frank Puhlmann and Mathias Weske. Using the m-calculus for Formalizing Workflow
Patterns. In W.M.P. van der Aalst et al, editor, BPM 2005, volume 3649 of Lecture
Notes in Computer Science. Springer, 2005.

Wolfgang Reisig and Grzegorz Rozenberg. Lectures on Petri Nets I: Basic Models,
ISBN:3-540-65307-4. Springer, 1998.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems, ISBN: 0-262-18218-1. The MIT Press, 2001.

Davide Sangiorgi and David Walker. The w-calculus. A Theory of Mobile Processes,
ISBN:0-521-78177-9. Cambridge University Press, 2001.

Christian Stefansen. A SMAIl Workflow Language based on CCS, TR-06-05. In Pro-
ceedings of 17th Conference on Advanced Information Systems Engineering, CAiSE05,
to appear, 2005.

Christian Stefansen. A SMAIl Workflow Language based on CCS, TR-~06-05. Technical
report, Harvard University, Division of Engineering and Applied Sciences, Cambridge,
MA 02138, March 2005.

W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management, BPM Center Report BPM-
04-03. Technical report, BPMcenter.org, 2004.

W.M.P. van der Aalst. Don’t go with the flow: Web Services Composition Exposed.
In Trends and Controversies. Web Services: Been there, Done that? IEEFE Intelligent
Systems, pages 72-76, Jan—Feb 2003.

W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and
Implementation of the YAWL system. In Proceedings of The 16th International Confer-
ence on Advanced Information Systems Engineering (CAiSE 04), Riga, Latvia. Springer
Verlag, June 2004.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Information Systems, 30(4):245-275, 2005.

W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive
Power of (Petri-net-based) Workflow Languages. In K. Jensen, editor, Proceedings of
the Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN
2002), volume 560 of DAIMI, Aarhus, Denmark, pages 1-20, August 2002.

Vasco T. Vasconcelos. TyCO Gently. DI/FCUL TR 01-4, DIFCUL, July 2001.

H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing workflow
processes using Woflan. The Computer Journal, 44(4):246-279, 2001.

M. Viroli. Towards a Formal Foundation to Orchestration Languages. In M. Bravetti
and G. Zavattaro, editors, Proceedings of 1st International Workshop on Web Services
and Formal Methods (WS-FM 2004), volumel05 of ENTCS. Elsevier, 2004.

Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F.
Ferguson. Web Services Platform Architecture, ISBN: 0-13-148874-0. Prentice Hall,
2005.

Workflow Management Coalition. Workflow Management Coalition Terminology &
Glossary. Document Number: WEFMC-TC-1011. Document Status: Issue 3.0. February
1999.

WWW Consortium. Web Services Architecture = Requirements; at:
http://www.w3c.org/TR/wsa-regs. October 2002.

39

A Some other Liesbet Constructs, and their LCCS Char-
acterisations

A.1 DeferredChoice

The DeferredChoice Liesbet construct is a direct facilitation of the YAWL workflow pattern
Deferred Choice [46, 25], which, similarly to YAWL’s Exclusive Choice construct, is a point
in the workflow model where one of several branches is chosen. In contrast, the choice is
actually made by the environment, as opposed to being made explicitly (e.g. based on data
or a decision). That is, several alternatives are offered to the environment; and, once the
environment activates one of the branches, the alternative branches are withdrawn.

Easy Syntax

DeferredChoice(ContActl, ..., ContActn)

Informal Operational Semantics

The conceptual meaning of DeferredChoice is that an exclusive choice (2.6), or, more
generally, a multiple choice (2.7), is made by the environment between executing instances of
continuation activity types ContActy, ..., ContAct,. The DeferredChoice instance goes
to st (Completed) when all instances of the chosen continuation types have finished.

However, because we do not model the environment in our LCCS characterisation of Lies-
bet, and an LCCS-characterisation is a closed system [13], we need to make a simplification
to our characterisation of DeferredChoice. We simply make a non-deterministic multiple
choice between the continuation activity instances. This can be modelled at the information
view, or Liesbet meta-model level, as follows.

DeferredChoice(ContActl, ..., ContActn)

MultiChoice(FreeChoice,ContActl; ...;FreeChoice,ContActn)

Note that the guards (FreeChoice) are all identical. They make an unbiased, non-
deterministic choice between completing a pertaining guard instance successfully or can-
celling it.

A.2 Multimerge

The Multimerge Liesbet construct is a direct facilitation of the YAWL workflow pattern
Multimerge [46, 25], which is a point in a workflow model where two or more branches recon-
verge without synchronisation. If more than one branch gets activated, possibly concurrently,
the activity following the merge is started for every activation of every incoming branch.

Note that the Liesbet Multimerge construct subsumes the behaviour of the multimerge
described above. The original multimerge workflow pattern, from [46, 25], dictates that
the same continuation activity instance be executed for each path that merges. We can
accommodate this, but more flexibly we allow that different continuation activities can be
chosen.

Easy Syntax

Multimerge(Guardl, ..., Guardn; ContActl, ..., ContActm)

Informal Operational Semantics

For Multimerge, when running, any of the Guard; going to st(Completed) will cause an
instantiation and execution of one of the continuation activities — the first guard to be
completed initiates ContActq, the second to complete initiates ContActs, and so on. Note,

40

however, that the number of continuation activities m may be less than (or equal to) the
number of Guard; activities n. When we get to the m + 1th guard instance to complete, a
fresh instance of ContAct,, executed. In other words, Condy = cdCond,, for m < k < n.
Any Guard,; instances going to cancelled do not result in the execution of a continuation
activity. Note, to effect that all Guard; instances do result in the execution of a continuation
instance, we simply use conditions for each Guard; that are bound to complete successfully.
So, if we are interested in merging workflow paths — the archetypal use of a multi-merge —
we simply specify that the last activity instance on each of the paths must have finished.

We also support a variant construct, MultimergeMax, which merges a maximum number
of branches. Details of this variant are not presented here. The interested reader should
consult [13].

In LCCS

In the LCCS mapping, Multimerge is passed n guard activity instances, and n continu-
ation activity instances, where the mth continuation activity type has been replicated for
continuation types m + 1 up to, and including, n.

MultiMerge(un, [ungl, ..., ungn, uncl, ..., uncn])

new epeel, cpeel

(
(
(SelectMultiMerge(epeel, ungl) | ... | SelectMultiMerge(epeel, ungn));!cpeel
|
MergeContAct (epeel, cpeel, uncl); ...; MergeContAct(epeel, cpeel, uncn)
)
<t |

*xcomplete (un)

MergeContAct (epeel, cpeel, unc)

epeel-; *execute(unc);
+

cpeel-; *cancel (unc)

SelectMultiMerge (epeel, ung)

xexecute (ung) ;

(
xcompleted(ung) ; epeel
+
xcancelled (ung)

)

Multimerge works with two internal channels which control the execution (epeel) and
cancellation (cpeel) of continuation activity instances. Firstly, we use instances of process
(one for each guard activity instance) SelectMultiMerge to initiate the execution of guard
activity instances. When one completes successfully, we signal on epeel to start executing
a continuation activity instance. Which one is executed is determined by the sequence of
MergeContAct process instances, each of which blocks on epeel and cpeel, waiting for an
interaction with one of these channels.

Once all the guard instances have finished, we signal using cpeel that any remaining
continuation activity instances may be cancelled. This is realised through a combination of
the replication, !cpeel, and the cpeel operand of the sum in MergeContAct. Then, once

41

all continuation instances have finished, the *complete(un) reduction will be able to be
consumed, and as we use the <t|| operator, the remnants of the MultiMerge process will
be garbage-collected.

A.3 Disc — Discriminator m from n

The Disc Liesbet construct is a direct facilitation of the YAWL workflow pattern Discrim-
inator [46, 25], which is a point in a workflow model that waits for one of the incoming
branches to complete before activating the subsequent activity. From that moment on it waits
for all remaining branches to complete and ‘ignores’ them.

We generalise the discriminator pattern by providing an “M from N” discriminator, where
M paths must complete before activating the subsequent activity.

Easy Syntax

Disc(M, Guardl, ..., Guardn; ContAct)

Informal Operational Semantics

When the discriminator is running, it waits until M of the named Guard; instances have gone to
st (Completed) and then executes an instance of ContAct. The discriminator instance goes
to completed when the continuation activity and guard instances have finished. If all guard
activity instances finish and not enough have completed successfully, then the discriminator
goes to st (Cancelled).

In LCCS

The £LCCS mapping for the Disc Liesbet activity type is as follows.

Disc(M) (un, [ungl, ..., ungn, unc])

*int (M, "count",un);
new dpeel
(DiscReduceCount(ungl) | ... | DiscReduceCount(ungn)); dpeel-
| *islessequal(0,"count",un)); *execute(unc); dpeel +
dpeel; (*islessequal(0,"count",un)); *execute(unc); +
xisgreater(0,"count",un)); *cancel(unc);

)

DiscReduceCount (ung)

xexecute (ung) ; (*completed (ung) ; *dec("count" ,un) + *cancelled(ung))

Disc takes in the M count, reflecting the number of guard activity instances that must
complete successfully before the continuation instance, unc, can be executed. In order to
provide its characterisation, we use a group of *-actions, defined fully in [13], that LCCS
provides to facilitate the storage of integer data, within S. Briefly,

e xint(V,I,un) — assigns in S, the value i (V) to integer fluent I, belonging to activity
instance un.

e *xdec(J,un) (resp. *inc(J,un)) — decrements (resp. increments) (by 1) the current
value of integer fluent I, belonging to activity instance un, in S.

e xiszero(J,un) (resp. *isnotzero(/,un)) — is consumed only if the value of integer
fluent I, belonging to activity instance un, in S is (resp. is not) i(0).

42

e xisgreater(V,I,un) (resp. *isgreaterequal(V,I,un), *isless(V,I,un), *islessequal(V,I,un),
*isequal (V,],un), *isnotequal (V,I,un)) — is consumed only if the value of integer
fluent I, belonging to activity instance un, in S, is such that I >i (V) (resp. I >=i(V),
I<i(V), I <=i(V),I==i(V), I!=i(V)).

Each DiscReduceCount executes its associated guard instance; and, “count” is decre-
mented by 1 if the guard completes successfully. Once “count” reaches zero, the continu-
ation instance is executed. If all of the guard instances complete and we have not yet set
the continuation instance running, we use the local channel dpeel to trigger the right-hand
operand of the sum which then exposes a further sum which will either execute or cancel the
continuation instance depending on whether the threshold count has been reached. Further
details explaining why the Discriminator pattern is formalised in this way are given in [13].

A.4 Liesbet: Exit

The Exit Liesbet construct is a direct facilitation of the YAWL workflow pattern Cancel
Case [46, 25], which is where a whole workflow instance is cancelled.

Easy Syntax

Exit

Informal Operational Semantics

An Exit activity instance immediately cancels the whole workflow model instance.

In LCCS
The LCCS mapping for the Exit Liesbet activity type is as follows.

Exit (un)

*xexit;

The (following) reduction rule for *exit specifies that we identify the root instance of
the workflow model, and effect *cancel on it.

ACTIVITY-EXIT
W =<8, u. P+ M>
pu = *exit
root := [S + Root]
u' = *cancel (root)
<8, (> — <8, true>

W — <S8, P>

A.5 Liesbet: Empty Action

Do nothing! Useful, for example, for an empty default branch in a DefaultChoice activity.

Easy Syntax
Empty

Informal Operational Semantics

An instance of Empty trivially completes.

43

In LCCS

For ActivityEmpty, we simply complete, so the LCCS mapping is the empty process, true.

Empty (un)

true

A.6 Liesbet: Multi*x — Multiple-Instance Activities

Multiple-instance activities enable the creation of multiple instances of the same ExecAct
activity. These activities fall into two broad categories. Those that limit the number of
instances that may be created according to a maximum number, and those that do not.

Easy Syntax

MultiLimit (T, Go, ExecAct)
MultiKnown(Go, ExecAct)

Multi(Go, ExecAct)
MultiNoSync(Go, ExecAct, ContAct)

MultiSeqLimit (T, Go, ExecAct)
MultiSeq(Go, ExecAct)

Informal Operational Semantics

When a multiple-instance activity is running, multiple instances of ExecAct may be cre-
ated according to instances of the synchronisation activity type, Go, successfully completing.
Notably an instance of Go may only be satisfied in a distinct way from any satisfaction of
its previous instances. To this end, a Go type will make use (not necessarily exclusively) of
*x_dist sub-queries in its GoQuery part — see 2.2. This ensures that the same satisfaction of
Go can not be used to create multiple instances of ExecAct.

Every time an instance of Go is satisfied, i.e., moves to st (Completed), an instance of
ExecAct is created and executed. When this happens, a further instance of Go is created
and set running, as long as the instance limit, if present, for the multiple-instance activity
has not been reached. If a Go instance fails (i.e., goes to st(Cancelled)), the multiple-
instance activity will not allow the creation of any more instances of ExecAct, and will move
to the st(Completed) state once all its offspring ExecAct instances have finished. If the
multiple-instance activity is cancelled, then all instances of ExecAct are cancelled.

Note that the semantic attribution of behaviour to a non-limited multiple-instance ac-
tivity (namely, Multi, MultiSeq, and MultiNoSync) is rather complex when we allow the
ExecAct activity type to be a non-isolated scope. In the case where ExecAct is non-isolated,
querying instances (i.e., Sync and Cond instances, and also, in effect, CancelActivity in-
stances) will have a visibility horizon that extends outside the Multix instance, and, more-
over, co-related activity instances outside the Multi will have access to activity instances
within instances of ExecAct. As an unlimited number of instances of ExecAct may be
created, a particular Liesbet model may be undecidable. Thus, to ensure decidability, we
stipulate that ExecAct types, for non-limited multiple-instance activity types, are always de-
clared as being isolated scopes. If the model author would prefer to use non-isolated ExecAct
scopes then they should use limited multiple-instance activity types, i.e., MultiLimit* and
MultiSeqLimit*. To the same end, we also stipulate that unlimited multiple-instance activ-
ity types themselves run in an isolated scope. As a consequence, Go (in non-limited types)
may only contain queries on the data perspective, and not the control perspective, of the
workflow model. If the model author would like to write queries on the control perspective
then, again, a limited type should be used.

We now describe the informal semantics for each of the Liesbet types introduced above.

44

MultiLimit (T, Go, ExecAct)

The MultilLimit Liesbet construct is a direct facilitation of the YAWL workflow pattern
Multiple Instances With A Priori Design Time Knowledge [46, 25], which is where an activity
is enabled multiple times. The number of instances of the given activity is known at design
time. Once all instances are completed some other activity needs to be started.

For MultiLimit, the threshold T determines that only T instances of ExecAct may be
created.

MultiKnown(Go, ExecAct)
Multi(Go, ExecAct)

The MultiKnown (resp. Multi) Liesbet construct is a direct facilitation of the YAWL
workflow pattern Multiple Instances With (resp. Without) A Priori Run Time Knowledge
[46, 25], which is where an activity is enabled multiple times. The number of instances of the
given activity is not known during design time, but is known at some stage during runtime,
before the instances of that activity have to be created (resp. nor is it known at any stage
during runtime, before the instances of that activity have to be created). Once all instances
are completed some other activity needs to be started.

MultiKnown is similar to MultiLimit except that its threshold is only known to it at
run-time, whereas Multi operates according to an absence of a maximum threshold, and will
only stop instantiating ExecAct when an instance of Go goes to st (Cancelled).

MultiNoSync(Go, ExecAct, ContAct)

The MultiNoSync Liesbet construct is a direct facilitation of the YAWL workflow pattern
Multiple Instances Without Synchronisation [46, 25], which is where multiple instances of an
activity can be created, i.e., there is a facility to spawn off new threads of control. FEach
of these threads of control is independent of other threads. Moreover, there is mo need to
synchronise these threads.

Its informal operational semantics are similar to that of Multi, except that when the Go
condition finally goes to st (Cancelled) to indicate that no more instances of ExecAct should
be created, the continuation activity ContAct is instantiated and executed, irrespective of
whether the ExecAct instances have finished. That is, there is no synchronisation of the
instances of ExecAct, unlike (implicitly) other multiple-instance activity types, prior to the
continuation activity being instantiated and run.

MultiSeqLimit (T, Go, ExecAct)

As MultiLimit, but instances of ExecAct are created sequentially, in that one instance
must go to finished before another is created.

MultiSeq(Go, ExecAct)

As Multi, but instances of ExecAct are created sequentially.

Note that we also support three further variants, whose characterisations in LCCS are
not presented in this article. These are briefly described here.

MultiLimitCompl(T, Go, ExecAct)
MultiLimitComplCancelRem(T, Go, ExecAct)

MultiSeqLimitCompl (T, Go, ExecAct)

The limit, T, specified for MultiLimitCompl determines that no more ExecAct instances
may be created once T instances of ExecAct have completed successfully. The multiple-
instance activity does not itself complete, however, until all extant instances of ExecAct
have finished. MultiLimitComplCancelRem is the same as MultiLimitCompl except that
when the instance threshold is reached, all outstanding instances of ExecAct are cancelled.
This enables the multiple-instance activity to complete straightaway. MultiSeqLimit is the
same as MultilLimitCompl, except that instances of ExecAct are created sequentially.

45

In LCCS
MultiLimit

In the following LCCS characterisation, T is the threshold on completion, go is the customised
activity type name of Go, and execact is the type name of ExecAct.

MultiLimit (T, go, execact) (un)

*int (T, "thresh",un);
*bool(false,"stop",un);
new gpeel
(
(gpeel- | GoML(go, execact, gpeel, un))
<t|| (*iszero("thresh",un) + *istrue("stop",un))

GoML(go, execact, gpeel, un) =
!gpeel; new ungs
go—-<ungs,un>; *execute(ungs);

(
*completed(ungs); ExecActlML(execact, gpeel, un)
+
*cancelled (ungs) ; *bool (true,"stop",un) ;

)

ExecActML(execact, gpeel, un) =
new une execact-<une,un>; *execute(une); *dec("thresh",un); gpeel-

We start by initiating a completion count (“thresh”) to the instance limit for the multiple
instance activity. We also initiate, to b(false), a boolean value (“stop”), which will be set to
b(true) if any go instance fails to complete successfully. The consequence of this should be
that no more instances of execact are created. The following boolean-data related *-actions
exist.

e *bool(V,B,un) — assigns in S, the value b(V) to boolean fluent B, belonging to activity
instance un.

e xistrue(B,un) (resp. *isfalse(B,un)) — is consumed only if the value of boolean
fluent B, belonging to activity instance un, in S, is b(true) (resp. b(true)).

Having set up the two fluents in S, we run the GoML process, responsible for creating
instances of the go type and subsequently executing instances of execact, in the body of a
transaction scope. The trigger for the transaction scope is the “thresh” count going to zero,
or the “stop” flag going to b(true) on account of an instance of go going to st (Cancelled).
As soon as either happens we garbage-collect the remnants of MultiLimit process.

GoML initiates the creation of a go instance, and subsequently executes it, every time
an interaction is performed on gpeel. Once the go instance has completed, the embedded
process ExecActML initiates the creation of an instance of execact and proceeds to execute
it. Then, it decrements the “thresh” count (by 1), and signals on gpeel that another instance
of go should be created. If a go instance is cancelled, then the “stop” flag is set to b(true)
meaning that no more instances of execact may be created, and the whole instance logic is
garbage-collected.

MultiKnown

MultiKnown is the same as Multilimit except that instead of the threshold being passed in
as a design-time coded parameter of the process specification, we assume that the threshold

46

value will have been set in S at run-time, prior to the execution of the MultiKnown activity
instance. Its specification, therefore, will be identical to MultiLimit except for the setting
of the “thresh” fluent in S (i.e., *int (T, "thresh",un)), which will be absent.

Multi

Multi is also the same as MultiLimit except that it does not have any limiting threshold
on the number of execact instances.

Multi(go, execact) (un)

*bool(false,"stop",un);
new gpeel
(
(gpeel- | GoML(go, execact, gpeel, un))
<t|| (*istrue("stop",un))

GoML(go, execact, gpeel, un) =
!gpeel; new ungs
go—-<ungs,un>; *execute(ungs);

(
*completed(ungs); ExecActlML(execact, gpeel, un)
+
*cancelled (ungs) ; *bool (true,"stop",un);

)

ExecActML (execact, gpeel, un) =
new une execact-<une,un>; *execute(une); gpeel-

MultiNoSync

MultiNoSync is essentially the same as Multi, except that when the “stop” flag goes to true,
we execute the continuation activity instance, unc. The specification for MultiNoSync is
identical to that of Multi, save for the first and last lines.

MultiNoSync(T, go, execact) (un, [unc])

*bool(false,"stop",un);
new gpeel
(
(gpeel- | GoML(go, execact, gpeel, un))
<t|| *istrue("stop",un); *execute(unc)

MultiSeqLimit and MultiSeq

For these activity types, executions of execact instances are sequential. That apart, they
are identical to their non-sequential counterparts, MultiLimit and Multi. In all cases, this
means that the gpeel- in ExecAct* is placed after it has been ascertained that the current
execact instance has finished.

MultiSeqLimit

ExecActML(execact, gpeel un) =
new une execact-<une,un>;
xexecute (une) ; *dec("thresh",un); *finished(une); gpeel-

47

MultiSeq

ExecActMNL (execact, gpeel, un) =
new une execact-<une,un>;
xexecute (une) ; *finished(une); gpeel-

48

B Liesbet (Easy Syntax) Grammar

The following is a presentation of the grammar of the Easy Syntax for Liesbet in BNF
(Backus-Naur Form). Note that the presented grammar is not as restrictive as the Lies-
bet serialisation syntax presented in [13]. Activity Type Name ranges over a finite set of
customised type names, disjoint from the finite set of generic activity type names, Activity.

Liesbet_Model ::= Activity_Type; Activity_Type_Defs

Activity_Type_Defs ::= Activity_Type_Def | Activity_Type_Def; Activity_Type_Defs

Activity_Type_Def ::= Activity_Type_Name = Activity_Type

Activity_Type ::= Activity(ActConds)

Activity ::= Act | StructAct

ActConds ::= join(GuardAct) | trans(GuardAct) | join(GuardAct),trans(GuardAct)

StructAct ::= CancelActs | Choices | Merges | Empty | Exit | MultiActs | ParSeq | SyncActs

CancelActs ::= CancelActivity(CancelAct) | CancelActivity(CancelAct in RefAct)

Choices ::= DefaultChoice(GuardContActs, DefAct) | Choice(GuardContActs) |

DeferredChoice(ContActs) | MultiChoice(GuardContActs)

Merges ::= Disc(GuardActs, ContAct) | Multimerge(GuardActs, ContActs)

MultiActs ::= MultiLimitActs | MultiNoLimitActs

MultiLimitActs ::= MultiLimit(T, Go, ExecAct) | MultiSeqLimit(T, Go, ExecAct)

MultiNoLimitActs ::= MultiKnown(Go, ExecAct) | Multi(Go, ExecAct) |
MultiNoSync(Go, ExecAct, ContAct) | MultiSeq(Go, ExecAct)

ParSeq ::= Par(ExecActs) | Seq(ExecActs) | SeqCancel(ExecActs) | UnorderedSeq(ExecActs)

SyncActs ::= Sync(GoQuery) | Sync(StopQuery, GoQuery) | Cond(GoQuery) | FreeChoice

GuardContActs ::= GuardAct, ContAct | GuardAct, ContAct; GuardContActs

GuardActs ::= GuardAct | GuardAct, GuardActs

ContActs ::= ContAct | ContAct, ContActs

ExecActs ::= ExecAct | ExecAct, ExecActs

GuardAct ::= Activity_Type_Name | Activity_Type

ContAct ::= Activity_Type_Name | Activity_Type

DefAct ::= Activity_Type_Name | Activity_Type

ExecAct ::= Activity_Type_Name | Activity_Type

Go ::= Activity_Type_Name | Activity_Type

CancelAct ::= Activity_Type_Name

QueryAct ::= Activity_Type_Name

RefAct ::= Activity_Type_Name

T::=11] 2]

GoQuery ::= Query

StopQuery ::= Query

Query ::= Queryl|Query | Query+Query | !Query | EvalExpr(String) | True | False | QueryOnAct

QueryOnAct ::= QueryOnCompletedAct | QueryOnCancelledAct | QueryOnRunningAct |

QueryOnReadyAct | QueryOnFinishedAct

QueryOnCompletedAct ::= Completed_Act(Query_Act) | Completed_Act(Query_Act in Ref_Act) |
Completed_All(Query_Act) | Completed_All(Query_Act in Ref_Act)

QueryOnCancelledAct ::= Cancelled_Act(Query_Act) | Cancelled_Act(Query_Act in Ref_Act) |
Cancelled_Al1(Query_Act) | Cancelled_All(Query_Act in Ref_Act)

QueryOnRunningAct ::= Running_Act(Query_Act) | Running_Act(Query_Act in Ref_Act) |
Running_A11(Query_Act) | Running_Al1(Query_Act in Ref_Act)

QueryOnReadyAct ::= Ready_Act(Query_Act) | Ready_Act(Query_Act in Ref_Act) |
Ready_Al1(Query_Act) | Ready_All(Query_Act in Ref_Act)

QueryOnFinishedAct ::= Finished_Act(Query_Act) | Finished_Act(Query_Act in Ref_Act) |
Finished_Al1(Query_Act) | Finished_All1(Query_Act in Ref_Act)

49

