
Summary

　　Porphyromonas gingivalis contains a single constitutive superoxide dismutase (SOD)
that is active with either iron or manganese at the active site. The aim of this work was to 
evaluate the effect of the Leu ₇2 to Trp mutation on the structure of P. gingivalis SOD (Pg 
SOD) using electrophoretic characterization. Leu ₇2, which is located near the active site 
metal, is substituted with Trp in aligned amino acid sequences of iron–containing SOD. 
The results of electrophoretic characterization and the expressed activity of mutant SOD 
suggest that mutant SOD have the same gross structure as wild–type SOD. We herein 
conclude that the integrity of Leu ₇2 is a necessary requisite for the metal–tolerant activity 
of Pg SOD.

Introduction

　　Superoxide dismutases (SOD; EC 1.15.1.1.) are essential for aerobic life, playing an important 
protective role against oxidative stress. In some experiments, prokaryotes possess four classes of 
SODs characterized by their metal ion: nickel, iron, manganese, and Fe/Mn1). The Fe/Mn type SOD 
is called “cambialistic” SOD, from the Latin cambialis, thus suggesting change and the donation of 
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enzymes capable of making a cofactor substitution2). Metal replacement studies with Fe–SOD and 
Mn–SOD produced by several species indicate strict metal cofactor specificity for these enzymes3). 
In contrast, the Fe–SOD, Mn–SOD and cambialistic SOD exhibit a high level of structure homolo-
gy4,5). In each case, the metal ligation sphere is a five–coordinate structure with a trigonal bipyra-
midal geometry, as shown in Figure 15).
　　The anaerobe P. gingivalis synthesizes typical cambialistic SOD4,6), the amino acid sequence of 
which appears similar to that of Fe–SOD₇,8). The SOD of anaerobically grown P. gingivalis has iron 
as a cofactor, although SOD derived from aerobically grown P. gingivalis associates with manga-
nese4). The mechanism underlying this phenomenon is unclear; therefore, we propose a possible 
mechanism for the changes in the metal–specific activity based on a comparison of the structure of 
the wild–type and mutant SOD.
　　In the preliminary investigations, the constructed Tyr to Phe mutation at amino acid position 
₇₇ of P. gingivalis SOD (Pg SOD) was tested9). Tyr (Y) ₇₇ is conserved in aligned amino acid se-
quences of 50% Fe–SOD proteins (Fig. 2), although it is substituted to Phe (F) in most Mn–SOD 
proteins (62/63 cases: 98%). The mutant SODs exhibited a protein level of 1/100 the expression ob-
served in the wild–type SODs. There is no simple explanation for this result at the present time; 
however, it is possible that proteolysis was induced by the expression of the enzyme proteins. In 
this case, the protein structure of the mutant SOD may exhibit deformation. In contrast, Yamano 
and Maruyama reported that the substitution of Tyr ₇₇ with Phe in the metal–specific Fe–SOD 
from hyperthermophilic archaeon, Sulfolobus solfataricus dose not change the metal–specific activ-
ity of the enzyme10). The role of amino acid residues located near the active–site metal, such as Tyr 
₇₇, is in any event, unclear.
　　In a previous paper, we constructed Gly 155 Thr mutant SOD and determined various proper-
ties of the produced enzymes11). In particular, we found that this mutation changes the metal–spe-
cific activity remarkably from a cambialistic type to a type close to that of Fe–specific forms. This is 

Fig. 1：Metal binding site of Pg SOD. The metal ion as an active site is bound by His 74, His 161 and Asp 157 
in the equatorial plane and by His 27 and a solvent molecule in the axial plane. Theα–carbon of Leu 72 is lo-
cated 10.7 Å away from the metal ion, while theδ–carbon in the side chain is located 13.3 to 13.5 Å away from 
the metal ion. In addition, the hydroxyl group of Trp 77 is located 6.3 Å away from the metal ion. This figure 
was drawn based on Waals 2013, Altif Laboratories Inc., Tokyo, Japan.
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the first successful report regarding the Fe– and Mn–SOD family with respect to changes in the 
metal–specific activity, not only direct changes, but also those induced by the site–directed muta-
genesis of an amino acid other than an active site or second sphere. In order to clarify the contribu-
tion of the amino acid residue to the effects of SOD, we have prepared a mutant from Leu to Trp at 
the ₇2 position. Leu ₇2, which is conserved as Trp in the most Fe–specific SOD, a target amino acid 
residue for mutation in this study, is located two residues apart from His ₇4, a ligand binding resi-
due (Fig. 2). Upon non–denaturing polyacrylamide gel electrophoresis (PAGE), the wild–type Pg 
SOD and Leu ₇2 Trp mutant showed only one band with a SOD activity and the same level of elec-
trophoritic mobility. In addition, the expressed activity of the mutant SOD was approximately 80% 
of that of wild–type SOD. These result suggest that Leu ₇2 is a necessary for the metal–tolerant ac-
tivity with respect to maintaining the functional properties of Pg SOD.

Materials and Methods

　　Cytochrome c was obtained from Sigma–Aldrich, MO, USA. The vector M13 mp18 and pUC18 
were obtained from TOYOBO, Tokyo. Xanthine oxidase (from cowʼs milk) was purchased from 
Roche Diagnostics, Mannheim, Germany. All other reagents were of the highest purity commercial-
ly available.

Site–directed mutagenesis of SOD 
　　The in vitro mutagenesis of SOD was performed according to previously described methods6), 
based on the method described by Kunkel12). A mutation of Leu (code: CTC) to Trp (code: TGG) was 
introduced at amino acid position ₇2. Mutant cDNA was screened and sequenced to ensure the ab-
sence of spurious mutations. Wild–type and mutant SOD were expressed in Escherichia coli QC₇₇4, 

Fig. 2：Comparison of the amino acid sequences, near the target amino acid Leu 72, of the SODs of the follow-
ing organisms: Po: Pseudomonas ovalis, Pl: Photobacterium leiognathi, Ec: Escherichia coli, Hp: Helicobacter 
pylori, Pg: P. gingivalis, Gm: Ganoderma microsporum, Pc: Pneumocystis carinii, Pn: Phytophthora nicoti-
anae.
Data obtained from the UniProKB/SwissProt database. Positions are numbered to correspond to the sequence 
of Pg SOD. The solid and dashed line boxes indicate the positions at which residues are identical and positions 
regarded to be metal ligands, respectively. The arrow indicates the 72 position. Abbreviations: Fe: Fe–SOD, 
Cam: cambialistic SOD, Mn: Mn–SOD.
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Fig. 3：Activity–stained non–denaturing PAGE of the crude extracts of the wild–type and mutant SODs. 
Lanes: 1, E. coli DH5α; 2, wild–type Pg SOD; 3, Leu 72 Trp mutant SOD. Approximately 100 µg of protein was 
applied to each gel for activity staining. Nitro blue tetrazolium was reduced by the superoxide anion, which is 
generated from riboflavin with illumination. The gels became uniformly dark purple except at positions con-
taining SOD (achromatic zones; triangle mark). BPB, marker dye, bromophenol blue.

with deletion of the  sod s gene13).

Analytical methods
　　Crude extracts were separated electrophoretically in gels containing ₇.5% acrylamide according 
to the Davis method 14). The visualized SOD activity was detected in the gel using the photochemical 
nitro blue tetrazolium stain, as descrived by Beauchamp15).
　　The SOD activity was measured by inhibiting the xanthine/xanthine oxidase–induced reduc-
tion of cytochrome c at a pH ₇.8, according to a previous report with a slight modification6,16). The 
protein concentration was estimated according to the method of Hartree1₇) using crystalline bovine 
serum albumin as the standard.
　　The Pg SOD protein amounts were measured using the enzyme–linked immunosorbent assay 
as described in a previous paper 9) using purified recombinant P. gingivalis SOD as the antigen.

Results and Discussion

　　In this study, the contribution of Leu residues in ₇2 position was evaluate based on changes to 
the Trp residues in the structure of Pg SOD on electrophoretic characterization. Crude cell extracts 
were separated via non–denaturing PAGE and stained for the SOD activity (Fig. 3). Electrophero-
gram of E.coli DH5 α strain, which contains both Mn–SOD and Fe–SOD, showed each SOD and 
their hybrid forms due to their assembly into a dimer structure. Each of the wild–type (lane 1) and 
mutant Pg SODs (lane 2) displayed a single major band with the same level of mobility for each 
sample. These results suggest that the Leu ₇2 Trp mutant has the same gross structure as wild–
type SODs. The Pg SOD, a cambialistic SOD, demonstrated the same level of mobility for the hy-
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brid form of Mn–SOD and Fe–SOD in E.coli (lane 3).  Similar results have been commonly observed 
in other studies4,18).
　　In order to elucidate the functions of Leu and Trp at position ₇2 in Mn–SODs and Fe–SODs, 
respectively, we used 9₇ Mn– and Fe–SOD sequences obtained from the UniProtKB/Swiss–Prot da-
tabase. Among 34 Fe–SODs, 18 (53%) had Trp (W) at position ₇2. The second most frequent amino 
acid was Ile (I), Lys and Tyr (Y; 3/34 cases each). NoFe–SOD was found to have any Leu residues in 
this position.
　　Among the 63 Mn–SODs, 35 (56%) had Ile (I) at this position. The second most frequent amino 
acid was Val (V; 10/63 cases), followed by Ala (A; 6/63 cases). Leu (L) was present in only four cases 
involving Mn–SOD. Therefore, it is likely that the integrity of Leu ₇2 is a necessary requisite for 
the metal–tolerant activity of Pg SOD.
　　The wild–type and mutant Pg SODs exhibited an SOD activity of 2.45 ± 0.₇2 (mean±the stan-
dard deviation; n=3) and 1.96 ± 0.22 units/mg protein, respectively. The expression enzyme–protein 
levels were evaluated using an enzyme–linked immunoabsorbent assay16). The mutant SOD exhib-
ited a lower expression than the wild–type–SOD, and the SOD–protein levels were almost 80% (1.58
± 0.31 µg/mg of total protein) of that of the wild–type SOD (1.92 ± 0.54 µg/mg of total protein). 
Therefore, we conclude that the Leu ₇2 Trp mutation mismatches part of the structure basis of 
cambialistic SODs, such as Pg SOD, namely, that Trp in the ₇2 position is well–suited for the struc-
ture basis of the iron–specific activity. In order to confirm this possibility, we are preparing double 
or more mutations, including Leu ₇2 Trp mutation, in our next study aimed at understanding the 
role of amino acid residues located near the active site of Pg SOD.
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抄録：�Porphyromonas gingivalisスーパーオキシドジスムターゼの構造における72位LeuをTrpに置換し
た影響
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＊の著者は，この論文における貢献度が同等である事を示す．

　歯周病原菌Porphyromonas gingivalisにとって，スーパーオキシドジスムターゼ（SOD）は酸化ス
トレスから菌体を保護するために不可欠の酵素である．原核生物にはマンガンを含む酵素（Mn–
SOD）と鉄を含む酵素（Fe–SOD）の 2種が存在し，活性中心の構造が近似しているにも拘わらず各々
の活性は金属に対して厳格な選択性を示すのが一般的であるが，P. gingivalis SODは何れの金属でも
活性を持ち，含有する金属によってそれに応じた化学的性質を示す特徴がある．私達は，このような活
性の金属依存性を寛容にしている構造的な特徴を明らかにすべく，活性中心近傍の個々のアミノ酸残基
の役割を検討してきた．今回，N末端から₇2番目のLeu（Leu₇2）に注目した．Fe–SODにおいて同位
置はTrpに置き変わっているため，LeuをTrpに変異させることによってFe–SODに近似した構造にな
れば，野生型酵素よりも高い活性になる事が期待された．そこで，Leu₇2をTrpに置換した変異酵素を
作製し，性質を検討した．
　Kunkelの方法により，Pg SODのLeu₇2（code: CTC）をTrp（code: TGG）にする部位特異的変異を
導入した．変異酵素は電気泳動的に野生型酵素と同一の挙動を示し，総体の構造が野生型酵素と同等で
あると考えられた．一方，変異酵素の活性には殆ど変化がなかった．これらの結果から，Leu₇2 Trp変
異はPg SODの金属寛容性を支持する役割を持つアミノ酸残基の候補の一つであろうと結論付けた．


