[Original] Matsumoto Shigaku 23:10~13, 1997 key words: stannous chloride — stannic chloride — transmitter release — motor nerve terminal mouse

Comparison between Effects of Stannous Chloride and Stannic Chloride on the Transmitter Release from Mouse Motor Nerve Terminals

TOSHIMI HATTORI and HIROSHI MAEHASHI

Department of Dental Pharmacology, Matsumoto Dental College (Chief : Prof. H. Maehashi)

Summary

Stannous chloride (SnCl₂) is thought to facilitate the transmitter release from the motor nerve terminals. Stannous ions tend to become oxidized to stannic ions (Sn⁴⁺) in the presence of water and oxygen. Therefore, the results seen with SnCl₂ until now might reflect the properties of Sn⁴⁺. In the present study, to ascertain whether SnCl₂ facilitates the transmitter release from mouse motor nerve terminals, we compared the effects of stannic chloride (SnCl₄) on the miniature endplate potential (m. e. p. p.) frequency and the quantal content of the endplate potential (e. p. p.) with those of SnCl₂. We statistically analyzed the mean values of the differences of SnCl₂ (30 μ M) from its control and of SnCl₄ (30 μ M) from its control. There were significant differences between the two, both in the m. e. p. p. frequency and in the quantal content. The results obtained demonstrate that the actions of Sn⁴⁺ are not involved in the effects shown by SnCl₂. We conclude that SnCl₂ facilitates the transmitter release from mouse motor nerve terminals.

Introduction

Stannous fluoride, a prophylactic against dental caries, augments the twitch of the skeletal muscle¹⁾. In experiments examining the effects of stannous chloride $(SnCl_2)$, we have clarified that this effect involves not only the properties of fluoride ions but also those of stannous ions $(Sn^{2+})^{1}$. That is, it is suggested that $SnCl_2$ facilitates the transmitter release from the motor nerve terminals².

Because Sn^{2+} has a tendency to be oxidized to stannic ion (Sn^{4+}) in the presence of water and oxygen³), the results seen with $SnCl_2$ until now perhaps might involve the actions of Sn^{4+} , and it has not been established that all of the actions of $SnCl_2$ are ascribed to $SnCl_2$ itself. In the present study, with the objective of ascertaining whether $SnCl_2$ facilitates the transmitter release, we compared the effects of stannic chloride ($SnCl_4$) on the electrical activities of the muscle endplate with those of $SnCl_2$.

Materials and Methods

Phrenic nerve-diaphragm preparations from male ICR mice (body weight, 40-50 g) were used as the material. The material was horizontally mounted in the chamber and perfused with the saline composed of (in mM): NaCl, 154; KCl, 5; CaCl₂, 2; MgCl₂, 1; glucose, 11; and HEPES, 5⁴). The pH was adjusted to 7.3. The perfusate was aerated with a gas mixture (95% $O_2 + 5\%$ CO₂) throughout the experiment. The endplate potential (e. p. p.) and the miniature endplate potential (m. e. p. p.) were recorded by a conventional intracellular recording method with glass microelectrodes. d-Tubocurarine $(1.0 \,\mu M)$ was added to the perfusate to record the e. p. p.. The quantal content of the e. p. p. was calculated by the method of failures, i. e., $m = \log_e(N/n)$ in which m is the mean quantal content, N the number of stimulations, and n the number of failures of e. p. p.⁵⁾. The isotonicity of the high potassium (K)-medium containing KCl 5-fold the normal content was maintained by reduction of the NaCl concentration. An aqueous solution of 10 mM tartaric acid (TA) was used as a solvent for SnCl₂, yielding 4 mM SnCl₂ immediately before the experiment³. The final concentration of SnCl₂ and of TA in the perfusate was 30 μ M and 75 μ M, respectively. They significantly facilitate the transmitter release in the mouse⁶). When the effects of 30 μ M SnCl₄ were examined, $75 \,\mu\text{M}$ TA was added to the perfusate to make it easier to compare the effects of SnCl₄ with those of SnCl₂.

Chemicals used in this study (SnCl₂, SnCl₄, TA, and *d*-tubocurarine chloride) were obtained from Nacalai Tesque (Japan). Each value presented in the results represents the mean value \pm standard error of the mean for the number of experiments (N) indicated. Statistical analyzes of the data were performed using the Student's 2-tailed paired *t*-test if not mentioned. Differences between mean values were considered significant when the probability of occurrence by chance (p) was less than 0.05.

Results

Initially, to clarify the effects of SnCl₂ and SnCl₄ on the spontaneous transmitter release, we examined their actions on the m. e. p. p. frequency in the high K-medium. Figure 1 illustrates the comparison between the effects of SnCl₂ and SnCl₄. SnCl₂ (30 μ M) significantly increased the m. e. p. p. frequency, while SnCl₄ (30 μ M) had no effect. Furthermore, the mean value of the difference between SnCl₂ and its control (119.4±31.1/sec, N=8) was significantly different from that between SnCl₄ and its control (-4.5±7.4/sec, N=10) at p<0.001 by the simple *t*-test. There was no difference between the mean values of the controls for SnCl₂ and for SnCl₄ by the simple *t*-test.

Figure 2 shows the effects of $SnCl_2$ and $SnCl_4$ on the quantal content of the e. p. p.. Similarly to the effect on the m. e. p. p. frequency, $SnCl_2$ increased the quantal content whereas $SnCl_4$ did not significantly change it. Moreover, the mean value of the difference between $SnCl_2$ and its control (0.48 ± 0.14 , N=10) was significantly different from that between $SnCl_4$ and its control (0.05 ± 0.07 , N=15) at p<0.001 by the simple *t*-test. There was no difference between the mean values of the controls for $SnCl_2$ and for $SnCl_4$ by the simple *t*-test.

Discussion

Whereas SnCl_2 (30 μ M) significantly increased both the m. e. p. p. frequency and the quantal content of the e. p. p., SnCl_4 (30 μ M) had no effect on either of them. To examine whether the results obtained in the experiments examining the effects of SnCl_2 involved the actions of Sn^{4+} , we

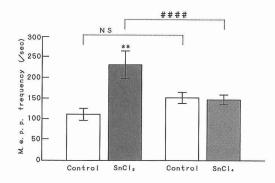


Fig. 1: Comparison of the effects of SnCl₂ and SnCl₄ on the m.e. p. p. frequency. Whereas SnCl₂ (30 μM) significantly increased the m. e. p. p. frequency, SnCl₄ (30 μM) did not change it. **: p < 0.01 compared to the control values. ####: p<0.001 compared to the difference of SnCl₂ from its control. There is no significant difference between the control values for SnCl₂ and for SnCl₄. NS: not significant.

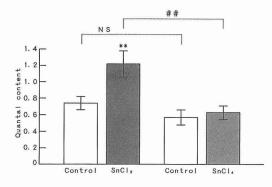


Fig. 2: Comparison of the effects of SnCl₂ and SnCl₄ on the quantal content of the e.p. p.. Whereas SnCl₂ (30 μ M) significantly increased the quantal content, SnCl₄ (30 μ M) did not change it. **: p<0.01 compared to the control values. ##: p<0.01 compared to the difference of SnCl₂ from its control. There is no significant difference between the control values for SnCl₂ and for SnCl₄. NS: not significant.

statistically analyzed the mean values of the differences of SnCl_2 from its control and of SnCl_4 from its control. There were significant differences between the two both in the m. e. p. p. frequency and in the quantal content. The results obtained show that the actions of Sn^{4+} are not involved in the effects shown by SnCl_2 . In conclusion, it is confirmed that SnCl_2 itself facilitates the transmitter release from the motor nerve terminals at the concentration of 30 μ M.

Brûlé *et al.*ⁿ have reported that SnCl₄ (0.11 mM) has inhibitory effects on the electrical and mechanical activities of the crab skeletal muscle. It decreases the resting potential, height of the action potential, and twitch tension. In this study, however, we did not observe such inhibitory actions of SnCl₄. The low concentration of SnCl₄ used here (30 μ M) may have precluded exertion of the properties. It is necessary to examine the effects of SnCl₄ of higher concentrations to determine whether SnCl₄ facilitates or inhibits the neuromuscular transmission.

References

- 1) Hattori, T. and Maehashi, H. (1986) Enhancement of the twitch of bullfrog sartorius muscle by fluorides. Jpn. J. Pharmacol. 40: 191-193.
- 2) Hattori, T. and Maehashi, H. (1988) Acceleration by stannous ion of the evoked release of transmitter from motor nerve endings in the frog. Brain Res. 473: 157-160.
- Lim, J. K. J. (1970) Precipitate-free, dilute aqueous solutions of stannous fluoride for topical application: I. simple and mixed medium. J. Dent. Res. 49: 760-767.
- 4) Molgó, J. and Mallart, A. (1988) The mode of action of guanidine on mouse motor nerve terminals. Neurosci. Lett. 89: 161-164.
- 5) Martin, A. R. (1966) Quantal nature of synaptic transmission. Physiol. Rev. 46: 51-66.
- 6) Hattori, T. and Maehashi, H. (1993) Facilitation of transmitter release from mouse motor nerve terminals by stannous chloride. Res. Commun. Chem. Pathol. Pharmacol. 82: 121-124.
- 7) Brûlé, G., Haudecoeur, G. and Guilbault, P. (1981) Toxicity of tin: action on the electrical and mechnical properties of the skeletal muscle fiber. Toxicol. Appl. Pharmacol. 58: 410-421.

抄録:マウス運動神経末端における伝達物質遊離に対する塩化第一スズおよび塩化第二スズの作用

服部敏己,前橋 浩(松本歯大·歯科薬理)

齲蝕予防薬のフッ化第一スズは骨格筋の収縮を増強するが、塩化第一スズ(SnCl₂)を用いた実験から、 その作用にはフッ素イオンだけでなく第一スズイオン(Sn²⁺)も関与しており、それは運動神経末端か らの伝達物質遊離を促進することが推察された。ところでSn²⁺は酸化され第二スズイオン(Sn⁴⁺)とな りやすい性質を有しており、これまで調べてきたSnCl₂の作用が全てSn²⁺のものとは言いにくく、Sn⁴⁺ が関与している可能性も否定できない。そこで今回SnCl₂の伝達物質遊離促進作用を確かめるために SnCl₂とSnCl₄の作用とを比較した。

材料には ICR 系雄性マウス (体重: 40—50 g) の横隔膜神経筋標本を用いた。材料を chamber 内に水 平に固定して灌流した。灌流液の組成(mM)は NaCl, 154; KCl, 5; CaCl₂, 2; MgCl₂, 1; glucose, 11および HEPES, 5 (pH=7.3) であった。灌流液には実験中常に混合ガス (95%O₂+5%CO₂)を通 気した。3M KCl を充填したガラス微小電極により終板電位 (e. p. p.) および微小終板電位 (m. e. p. p.) を細胞内誘導した。 e. p. p. 記録に際しては 1 μ M *d*-tubocurarine を灌流液に添加した。 e. p. p. の quantal content の測定には method of failures を用いた。SnCl₂および SnCl₄は各々同濃度の酒石酸水 溶液に溶解して適用した。

その結果 SnCl₂ (30 μ M) は m. e. p. p. の発生頻度および e. p. p. の quantal content を有意に増大させ たが、同濃度の SnCl₄では変化は見られなかった。更に SnCl₂の作用に Sn⁴⁺が関与していると仮定し、 SnCl₂と SnCl₄の実験値と各々の対照値との差同志を比較したところ, m. e. p. p. 発生頻度および quantal content ともに有意な差が見られた。以上のことからこれまでに得られた SnCl₂の結果には Sn⁴⁺の作用は含まれておらず、SnCl₂が伝達物質遊離促進作用を有することが確かめられた。