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ABSTRACT

A robust distributed architecture for real-time object-

based processing is presented for tasks such as object size, 

centre and count determination. This approach uses the 

input image to enclose a feedback loop to realize a data-

driven pulsating action. Outlined is the top level design 

for hardware implementation in a standard CMOS 

technology. 

1. INTRODUCTION

A modern advanced image processing system uses an 

external camera to stream the image data to the processor, 

executing a software algorithm. Such a modular scheme 

demands huge bandwidth requirements for the video 

transmission and therefore heavy power requirements. 

Several early filtering applications can benefit from 

combining the phototransduction and processing at the 

pixel level. A new breed of vision chips have recently 

emerged that strive to achieve precisely this. A generic 

reconfigurable architecture to provide such pixel-level 

processing is the cellular neural network processor [1]. 

Other systems have been inspired by the unparalleled 

computational efficiency of living organisms in solving 

complex image processing tasks. These biologically-

inspired (or retinomorphic [2]) systems have been realized 

to perform tasks such as image enhancement and feature 

extraction. Object-based processing is a fundamental task 

for many early vision applications. The segmentation of 

various objects in an image has been traditionally 

implemented in software using techniques such as the 

snake algorithm [3]. It has not been till recently, that 

dedicated hardware has been developed for such tasks as 

object-based attention selection [4] and contour length 

measurement [5]. This paper proposes a novel scheme [6] 

suitable for such object-based computation based on a 

distributed processing architecture. Although several of 

the features have been biologically inspired, the algorithm 

is fundamentally synthetic. By using this hybrid approach, 

a realistically hardware implementable system can be 

developed benefiting from increased computational 

efficiency provided by the bio-inspired analogue 

processing elements. The reduced power consumption 

enables realization of mobile diagnosis devices which 

would otherwise be technically unachievable. 

The target application for hardware implementation is 

microscopic cellular population analysis as a 

microelectronic alternative to haemocytometry. The 

developed system (ORASIS) is required to provide 

cellular count and size information on microscopic images 

such as those shown in figure 1. 

Fig 1. Sample input images of red-blood cell specimens for 

application in microscopic cellular population analysis 

2. ALGORITHM [6] 

A continuous-time edge-detection technique is used to 

form the contours and trigger the data-driven processing. 

On detection of an object boundary, the initial state for the 

signal flow is set. By propagating an inward fill, the 

contour can be reduced until this converges to the centre. 

The central point is detected by utilizing spatiotemporal 

integration; i.e. a summation of the cells set within the 

receptive field within a certain time window. On centroid 

detection, the object is reset and output transmitted, thus 

realizing an inward pulsating action. The frequency of 

pulsation determines the size, i.e. radius of this object. 

Figure 2 illustrates this interaction graphically through 

computer simulations. 

This scheme can be applied in two different modes of 

operation; either as a single shot “capture and process” 

mode or using the above described continuous pulsating 

mode. The trade-off between these two modes of 
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operation is accuracy (due to averaging) versus power 

consumption (due to increased duty cycle.)  
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Fig. 2 Computer simulation results of the bio-pulsating 

contour reduction algorithm, with snapshots taken at time 

intervals at the propagation delay of the processing. 

3. METHOD

Objects are defined as regions in the image with intensity 

below (or above) the average level of the input image. 

The edges are detected by computing the difference in 

neighbouring cell intensities and contours are formed if a 

continuous edge is found; i.e. at the nodes which have two 

edges leading to them. The contour reduction is facilitated 

by setting a cells state if any of its adjacent cells have 

been set in addition to the object criterion being satisfied. 

The rate of the contour reduction is preset by introducing 

a delay element in the propagation cycle. The unusual 

feature of this method is the absence of any pre-defined 

synchronisation signal, for example, a clock. The only 

synchronisation is obtained through the data-driven object 

reset scheme but on a local, rather than a global basis. The 

reset is generated on detection of an object centre. As 

previously mentioned, this detection involves counting 

that all local pixel-cells have been set within a certain time 

period. 

4. BIOLOGICALLY INSPIRED APPROACH 

Many of the implemented circuits and functions have in 

fact been biologically inspired. As in the mammalian 

retina, the front-end circuitry includes continuous time 

logarithmic photo detection, in addition to localised 

smoothing (averaging) and adaptive edge detection for the 

signal conditioning. Furthermore, the signal propagation 

based on localised interaction works in a similar way to 

the orientation-selective V1 cells in the primary visual 

cortex. The centroid determination is implemented using a 

pseudo centre-surround receptive field technique; very 

similar to the functional organisation of the retina. This 

has been implemented using delay and propagate, 

integrate and fire type neuronal circuits; producing a truly 

spike-domain output as in the case of ON/OFF ganglion 

cells.

5. HARDWARE IMPLEMENTATION 

The presented architecture is currently being realized into 

circuit blocks for implementation in a standard 0.18µm 

CMOS process provided by UMC. The circuit topology is 

a unique combination of both weak-inversion analogue 

providing micropower operation with asynchronous logic 

for robustness and stability.

The complete top level system architecture is shown in 

Figure 3. This contains an X*Y array of smart pixels; 

containing both the photodetecting devices and local 

processing circuitry. At the column and row headers are 

address encoders which relay the data received through a 

digital bus for off-chip communication. Such an encoding 

scheme is often referred to as address event representation 

(AER.) This approach is possible due to the very low 

output bandwidth requirement that avoids the polling of 

all pixels. 

Containing several current-mode circuits; each pixel 

requires a bias current reference. A current-mode 

distribution scheme is adopted implementing a tree-like 

hierarchy. The PTAT master reference supplies the bias 

currents to the four corners of the array. These corner 

currents are then duplicated for each row and 

subsequently for each column, resulting in each pixel 

receiving an individual bias. This vastly reduces errors 

arising from bias current variations; a major headache 

when using voltage-mode current distribution. The 

improved current matching is due to using low-proximity 

current-copying circuits thus minimizing any mismatch 

errors; discussed in further detail in section 6. 
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 Fig. 3 Top level system architecture of an X*Y array 

illustrating the bias distribution and output readout schemes. 
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In order to facilitate the contour computation, the 

processing must occur at the pixel corners, as illustrated in 

the pixel-cell architecture shown in Figure 4.  

The required functional (pixel-level) blocks; all 

continuous time topologies, are given below: 

a. Light detection: Active photodiode (continuous time) 

utilizing n+ implant p-substrate junction diodes.  

b. Edge detection: Discrete output using thresholding 

technique [7] utilizing differential current-mode 

hysteresis for computation of object contours. 

c. Local averaging: Narrow-field for input image 

smoothing and wide-field for object detection; using 

current-mode circuitry for thresholding. 

d. Local resetting: Dynamic switching regulated with 

local average current-mode thresholding [7] for 

object segmentation, to provide localised (object) 

resetting. 

e. Neuromorphic logic: performing delay-and-propagate 

computation for signal flow and centre-surround-like 

computation for centroid determination. 

f. Memory: Basic 1-bit memory implemented using 

digital (asynchronous) RS flip-flop for storage of 

present cellular state. 
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Fig. 4 Proposed cellular architecture for object-based 

processing illustrating organisation and connectivity of 

functional blocks within a quad-pixel arrangement. 
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6. DEVICE MISMATCH 

A fundamental design issue for ensuring circuits operating 

in weak inversion will work is device matching. The 

device mismatch arises from process parameter variations 

mainly in gate oxide thickness and doping concentrations, 

resulting in device threshold voltage and drain current 

variations. Since the gm/I ratio is at a maximum for 

devices operating in weak inversion, this signifies that 

subthreshold circuits are those most affected by device 

mismatch [8].  

In designing a system requiring image acquisition 

capabilities in standard CMOS technology, careful 

consideration must be taken into such sources of error. 

Non-uniformities in the pixel array; referred to as fixed 

pattern noise (FPN) are mainly due to offset and gain 

mismatches between the in-pixel amplifiers. This error, if 

uncompensated for, would normally render a processing 

algorithm unusable; however, the method presented has 

proved robust. Through computer simulations, the 

inherent immunity to both FPN and physical defects has 

been verified; discussed in section 7. For both this reason 

and the high lighting conditions present in the target 

application, the required dynamic range is limited and 

therefore the FPN will not pose a serious problem.  

However, mismatch errors are not limited to FPN. All 

circuit blocks requiring critically matched device pairs or 

groups are susceptible to such errors, for example 

differential pairs or current mirrors. Subsequently all such 

circuits require additional attention from schematic design 

through layout. Specialist simulation techniques such as 

Monte-Carlo analysis in additional to careful layout [9] 

can minimize these mismatch errors to both improve 

performance characteristics and production yields. 

7. SIMULATED RESULTS 

The proposed system has been simulated at all levels; 

from the top-level distributed algorithm, to the bottom-

level photodiode device physics. These have been 

facilitated using a selection of simulation tools including 

the Cadence Spectre Simulator and MATLAB in addition 

to custom developed code. For the scope of this paper, 

only the high-level algorithmic simulations shall be 

discussed.

By using the above mentioned mathematical tools, the 

distributed algorithm has been simulated with a wide 

variety of input images. Artificial fixed-pattern noise 

(FPN) and process defects have been introduced to 

demonstrate the inherent robustness and fault-tolerant 

properties of the contour-reduction algorithm. Through 

successive simulation using randomly generated noise and 
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defect errors, statistical data has been compiled to 

illustrate a trend for the robustness and stability, given in 

Figure 5. 
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Fig. 5 Statistical data illustrating robustness to defects (top) 

and FPN (bottom,) acquired through successive computer 

simulation of the bio-pulsating contour reduction algorithm.

 Object size computation 

 Object count computation 

8. TARGET SPECIFICATIONS 

The target design specifications for the ORASIS chip are 

listed in table 1. 

Technology UMC 0.18µm1P6M CMOS 

Supply voltage 1.8V core (3.3V I/O) 

Dynamic Range from 50mWm-2 to 5kWm-2

Responsivity 0.2AW-1m-2 @ =500nm

Maximum tolerable FPN +/- 15% 

Cell Area 90µm x 90µm

Active fill factor 11%

Pixel power 18nW (typical) 

Edge power 20nW (maximum) 

Averaging power 95nW (typical) 

Logic power 5nW (maximum) 

C
ellu

la
r

Total online power 138nW

Chip area 25mm2

Array resolution 40 x 40 cells 

Total array power 345µW (typical) 

Total periphery power 100µW (maximum) 

Total online power  345µW

Duty cycle (online) 10%

S
y
stem

 

Total effective power  44.5µW

Table 1 Target design specifications for ORASIS cell- and 

system level hardware implementation 

9. CONCLUSION

This paper outlines the top-level hardware implementation 

of the bio-pulsating contour reduction algorithm [6]. This 

is a parallel, distributed algorithm performing 

asynchronous object recognition breaking the bottleneck 

of traditional, sequential von Neuman based 

computational paradigm. The globally asynchronous 

scheme is regulated by employing data-generated local 

synchronisation, reducing power consumption and 

improving the signal-to-noise ratio. By incorporating the 

processing in the front end, the bandwidth requirements 

have been reduced by at least four orders of magnitude. 

Both the functionality and robustness have been verified 

through extensive computer simulation and by 

implementing an explicit architecture; the hardware 

realisation has been targeted for micropower operation, 

realising a retinal vision processor.  
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