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We consider wave-packet spreading and ionization of a one-dimensional model hydrogen atom interacting
with a strong high-frequency laser field in the stabilization domain. We demonstrate the effect of the pulse
shape on the dynamics in phase space and visualize our results with both the Wigner and theQ function
phase-space quasiprobability representation. The Wehrl entropy is introduced and utilized as a convenient
one-parameter measure of wave-packet spreading, phase-space localization, and ionization.@S1050-
2947~96!02007-0#

PACS number~s!: 32.80.Rm, 42.65.Ky, 42.50.Dv

I. INTRODUCTION

Atoms interacting with intense laser fields tend to fall
apart through ionization, but although this ionization initially
increases in rate with increasing intensity, provided frequen-
cies and intensities are carefully chosen, the atom stabilizes.
That is, the ionization rate decreases, rather than increases,
with increasing intensity. Stabilization@1# can be observed
by using high laser frequencies and high intensities. This
phenomenon has been demonstrated for smooth pulse fields
via both quantum-mechanical@2,3# and classical@4# theoreti-
cal approaches and has recently been observed experimen-
tally @5#. Despite the success of the classical models of this
phenomenon, phase-space calculations have shown that sta-
bilization may have intrinsically quantum-mechanical fea-
tures@6,7#.

In a recent article@7# we identified quantum signatures in
the stabilization dynamics by considering the Wigner func-
tion in phase space. The Wigner function@8# is well suited to
this purpose since, although it superficially resembles a joint
position-momentum phase-space distribution function, it
may become negative, a clear indication of the quantum na-
ture of the state under consideration. Wave packets are con-
sidered to be quasiclassical if they approach minimum un-
certainty Gaussian wave packets, a sufficient condition if the
Wigner function is to be positive over all of phase space@9#.
In this paper we will consider two sources of negativity in
the Wigner function. If we use an adiabatic turn-on, we will
generate a single dressed eigenstate that will be much larger
than a quasiclassical state and therefore nonclassical in na-
ture. If, on the other hand, we use a nonadiabatic turn-on,
then we will excite a coherent superposition of dressed
eigenstates. The quantum interference between these dressed
states is clearly nonclassical and therefore results in negative
areas in the Wigner function. If the atom is subsequently
ionized then the various parts of the wave function ‘‘fly
apart’’ and this interference becomes small because the over-
lap of the wave packets contributing to this interference is
reduced. For highly nonadiabatic pulses many dressed eigen-
states are excited significantly: then the various interference
contributions have a tendency to average out.

While the Wigner function is useful in investigating such
quantum signatures, the negativities make it impossible to
interpret the Wigner function as a probability distribution.

We therefore also consider a second phase-space distribution
function, the Husimi orQ representation@10#, which is al-
ways positive. The Husimi distribution can be used to calcu-
late an information-theoretic measure of the number of par-
ticipating quasiclassical Gaussian wave packets. This
measure is the Wehrl entropy@11# and, apart from interfer-
ence terms, is determined by the number of Gaussian coher-
ent states to ‘‘tile’’ its phase-space contour. The Wehrl en-
tropy has been investigated and utilized by a group of
authors@12#. It has recently been studied within a wider class
of entropies that are based on a comparison of the wave
function with an arbitrary basis of states in phase space@13#.
This Wehrl entropy is directly related to the uncertainty area
of theQ function in phase space and it is appropriate as a
measure of wave packet spreading and ionization. We will
use the Wehrl entropy to study the effect of these phenomena
in the stabilization domain using both an adiabatic sin2 and a
nonadiabatic trapezoidal pulse.

In the next section we will describe our numerical model,
based on the solution of the time-dependent Schro¨dinger
equation in one dimension. We will then investigate the sta-
bilization dynamics for two different pulse shapes~one adia-
batic, the other with a fast turn-on! using the Wigner func-
tion, before turning our attention to theQ function and
finally to the Wehrl entropy.

II. NUMERICAL METHOD

In this paper we present results based on the numerical
solution of the one-dimensional time-dependent Schro¨dinger
equation
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]c~q,t !
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1V~q!1xE~ t !Gc~q,t !. ~1!

HereE(t)5E0h(t)cos(vt) is an electric field of peak am-
plitude E0 modulated by an envelope functionh(t) and
V(q) is the potential due to the nucleus. We use the soft-core
~or Rochester! potential @2# scaled so that its lowest eigen-
state matches the binding energy of atomic hydrogen,

V~q!5
2e2

A2a021q2
. ~2!
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We use a one-dimensional atomic model since the calcula-
tion of three-dimensional phase-space distributions is not
feasible with the current computational methods. The effect
of using one-dimensional soft-core potentials rather than a
three-dimensional Coulomb potential has been discussed
elsewhere@14,15#.

In order to simplify the numerical calculation we trans-
form into the Kramers-Henneberger~KH! frame, which
moves with the ponderomotively driven electron, by making
a unitary transform

cKH~q,t !5Uc~q,t ! ~3!

5expF iem\E0
T

dt8@2A~ t8!p1eA2~ t8!/2#G
3expF ie\ qA~ t !GcKH~q,t !. ~4!

This transform leads to a Schro¨dinger equation for the KH
wave function of the form

\
]cKH~q,t !
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1V„q1a~ t !…GcKH~q,t !,

~5!

where

a~ t !52
e

mE0
t

dt8A~ t8! ~6!

is the displacement of a classical electron in the laser field.
We integrate this equation numerically using the Crank-
Nicholson method@2,3# in order to obtain the KH wave func-
tion at subsequent times: the length gauge wave function can
then be obtained by applying the inverse unitary KH trans-
form to the KH wave function.

The knowledge of the wave function as a function of time
allows us to study the dynamics in phase space by calculat-
ing the Wigner function@8#

W~q,p,t !5
1

p\E2`

1`

dq8c~q2q8,t !

3c* ~q1q8,t !exp@2iq8p/\#. ~7!

One of the properties of this function is that it is Galilei
invariant, i.e., displacing the wave function, either spatially
or in momentum, simply shifts the Wigner function. Since
the KH transform is just a combination of Galilean trans-
forms, we can obtain the Wigner function in the length gauge
by calculating the KH frame Wigner function and relabeling
the axes@16#.

By using phase-space representations rather than studying
the wave function itself we can obtain information about the
distribution both in space and also in momentum. Further-
more, as discussed above, the Wigner function may be nega-
tive in some regions of phase space, a signature of quantum
behavior.

III. PULSE SHAPE

In our previous paper@7# we studied the phase-space dy-
namics of hydrogen undergoing stabilization in a nearly
adiabatic sin2 pulse. In this section we contrast this behavior
with the phase-space dynamics for a trapezoidal pulse with a
two-cycle linear turn-on. In other words we use the envelope
functions

hs~ t !:5H sin2@vt/~4c!# if 0,t,2tmax:54pc/v

0 otherwise ,
~8!

wheretmax is the length of the pulse andc is the total num-
ber of cycles, and

ht~ t !:55
t/2tL if 0,t,2tL

1 if 2tL,t,22tL

~24tL2t !/2tL if 22tL,t,24tL

0 otherwise ,

~9!

wheretL is the laser period.
Figure 1 shows the Wigner functions calculated at the

FIG. 1. Two-dimensional~2D! contour plot of the Wigner func-
tion calculated after 12 cycles of a 24-cycle pulse of frequency 1
a.u. and peak intensity 10 a.u. with~a! a sin2 pulse shape and~b! a
trapezoidal pulse shape with a two-cycle linear turn-on.
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midpoint ~also the peak intensity! of the smooth sin2 @Fig.
1~a!# and trapezoidal Fig. 1~b!# pulses. In the trapezoidal
case there is a very strong asymmetry in the phase-space
distribution. This is a consequence of using a cosine field,
with a very fast turn-on. If we consider the trajectory of a
classical electron under the influence of such a field, starting
from q50, p50 and at timet50, its motion in the field will
always be in the positive-q region; the electron will be ac-
celerated for a quarter of a period, come to rest after a quar-
ter period, and then return to the nucleus, reachingq50 with
zero momentum after one full laser period has elapsed. This
is equivalent, in the KH frame, to the core oscillating be-
tweenq50 and the minimum value ofq (22a0). Since in
the KH reference frame the initial distribution~a peak at
q50) is strongly asymmetric about the center of the core
oscillation, the wave function and therefore the phase-space
distributions are asymmetric throughout the pulse evolution.

In the sin2 case, the Wigner function contains two
strongly negative lobes arranged on either side of the main
peak. In a previous paper@7# we demonstrated that this dis-
tribution is due to the formation of a superposition of sym-
metric eigenstates of the time-averaged KH potential, a con-
sequence of the smooth adiabatic turn-on. It is well
established that such superpositions give rise to Wigner
functions with symmetrical negativities@17#. In the trapezoi-
dal case the distribution is very different, and rather than the
two strongly negative areas, we only find a single negative
area. Since the trapezoidal pulse has such a fast turn-on we
excite a far greater population into the higher KH eigen-
states. As a result of both the greater spatial structure of the
higher KH eigenstates and the interferences between the
various eigenstates, we find a far more complicated structure
in the Wigner function.

In order to confirm the above interpretation of our Wigner
functions, we have calculated the populations in the first
seven KH eigenstates for both pulse shapes; the results are
shown in Table I.

From these results it is apparent that for the sin2 pulse, the
wave function is dominated by the adiabatic KH ground
state, exactly as one would expect for a smooth turn-on.
There is also a small population in the second excited state,
about 8%, with less than 0.3% of the population in the re-
maining bound states. Similar populations are found
throughout the pulse, although during the tail of the pulse
there is a significant transfer of population into the second
excited state: at the end of the pulse there is a population of
0.59 in the ground state compared with 0.24 in the second
excited state. We note that there are considerably lower

populations in the odd-parity states, which is the reason for
the symmetry observed in Fig. 1~a!. For the trapezoidal case
the situation is very different. The population in the lowest
KH eigenstate is less than 10%, with higher populations in
the next three states. In fact, there is significant population
right up to the sixth excited state. The asymmetry in the
Wigner function for this case is reflected by the equal popu-
lations in the odd- and even-parity states. These populations
remain approximately constant throughout the pulse, as one
would expect in the stabilization regime. Finally, we point
out that for the sin2 pulse the ionization is much smaller than
for the trapezoidal case. We shall return to these differences
in the bound state population when we consider the Wehrl
entropy.

IV. Q FUNCTIONS

In the preceding section we have seen that the Wigner
function is a very convenient diagnostic for the identification
of quantum behavior within a system. For the following dis-
cussion we turn to a closely related phase-space quasiprob-
ability function that is always positive, called theQ or Hu-
simi function @10#. The Q function has an appealing
interpretation in quantum measurement in terms of ‘‘propen-
sities’’ @18#: Let us represent our statec by its Wigner func-
tionWc . One may only obtain information about the system
via comparison with a measurement devicef, so that the
measurement output may be described by a new phase-space

FIG. 2. 2D contour plot of the HusimiQ function calculated
after 6 cycles of a 24-cycle sin2 pulse of peak intensity 10 a.u. and
frequency 1 a.u.

TABLE I. Calculated population in the first seven KH eigenstates for the sin2 and trapezoidal pulses.

KH eigenstate sin2 pulse Trapezoidal pulse

ground 0.8293 0.0947
first excited 1.12231024 0.1983

second excited 0.0836 0.2191
third excited 4.977131025 0.2090
fourth excited 0.0028 0.0947
fifth excited 3.504131025 0.0041
sixth excited 1.232131024 0.0250

bound-state population 0.916 0.8449

54 731ENTROPIC MEASURE OF WAVE-PACKET SPREADING AND . . .



distribution via the convolution@18#

P~q,p!5E dq8dp8Wc~q8,p8!Wf~q82q,p82p!.

~10!

If the measurement device can be represented by a coher-
ent state, i.e., the Gaussian wave packet

Wf~q8,p8!5
1

p\
expF2q822S p8

\ D 2G , ~11!

displaced in phase space, then the phase-space distribution
relevant to the measurementP(q,p) is the positive Husimi
or Q function. Although we have chosen a minimum uncer-
tainty state as our reference wave packet, the ‘‘smearing’’
due to the measurement is already sufficient to remove any
negativity from the distribution.

In Fig. 2 we show a two-dimensional representation of the
Q function after six cycles of the sin2 pulse. In this case the
distribution is dominated by a strong peak at the center.
There is no dichotomy and very little spreading of the wave
packet, a consequence of the fact that the maximum dis-
placementa is still relatively small at this stage of the pulse.

In this plot we have chosen a logarithmic scale in order to
emphasize the outgoing part of the distribution, at the ex-
pense of detail at the core. On this scale we can see peaks in
the top right and bottom left areas of the plot, corresponding
to ionization: i.e., in addition to the momentum due to the
oscillation of the field, these wave packets also have a drift
velocity and will therefore leave the nucleus.

We have calculated theQ function for both the sin2 and
trapezoidal pulses after 12 cycles~at the peak of the sin2

pulse!. In Fig. 3 we have displayed theQ function for the
sin2 pulse both as a two-dimensional contour plot@Fig. 3~a!#
and also as a three-dimensional surface plot@Fig. 3~b!#; we
also display a contour plot of theQ function for the trapezoi-
dal pulse@Fig. 3~c!#. In the adiabatic case, there is a very
clear dichotomy in theQ function. This dichotomy is, of
course, directly related to the splitting of the wave function
in the high-frequency stabilization regime, an effect that has
previously been described by many authors in the wave func-
tion representation@2,3#. The presence of the dichotomy sug-
gests that the wave function generated under these circum-
stances is dominated by the lowest KH eigenstates, although
we should emphasize that the degree of dichotomy depends
on the relative phase between the superposed KH eigen-

FIG. 3. ~a! 2D contour plot,~b! 3D surface plot of the HusimiQ function calculated after 12 cycles of a 24-cycle sin2 pulse of peak
intensity 10 a.u. and frequency 1 a.u, and~c! 2D contour plot of theQ function calculated after 12 cycles of a trapezoidal pulse using the
same parameters.
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states. In the trapezoidal case, we once again find a strong
asymmetry, with three main peaks in the distribution. This
extra structure is due to the superposition of a number of KH
eigenstates. We note that the negativity clearly visible in the
Wigner representations of Fig. 1 has not survived the
smoothing generated in the creation of theQ function from
the Wigner function.

We have also calculated theQ function at the end of the
pulse. Here, as one would expect, there is a single sharp peak
centered on the origin. Again, if we magnify the probability
scale we see ionizing wave packets leaving the nucleus.

From these plots we deduce essentially two points. First,
at the peak of the sin2 pulse we generate a superposition of a
small number of KH eigenstates, which, due to the relative
phase between the two states at this particular stage in the
pulse, results in a clear dichotomy. Second, at the start and
end of the pulse the intensity is lower than that required for
stabilization and therefore there is substantial ionization of
the atom. This is consistent with our observations based on
the Wigner function, in which we clearly see the outgoing
ionization waves.

At this point we should emphasize that much of this in-
formation, in particular the nature of the ionizing wave
packet, can also be directly visualized in the wave-function
representation. However, the phase-space picture also gives
us simultaneous information about the momentum distribu-
tion of the wave packet, so that we are able to visualize
directly in which direction and how fast parts of the wave
packet are moving.

V. ENTROPY

TheQ function can be used directly to provide a measure
of the number of participating states in the dynamics. We can
define the information-theoretic Wehrl entropy@13# by

SW~ t !52
kB
\ E dp dq Q~q,p,t !lnQ~q,p,t !, ~12!

whereQ(q,p)5\@P(q,p)# is a dimensionless form of the
Q function. From now on the Boltzmann constantkB and
\ will be assumed to be equal to unity. The Wehrl entropy is
not a measure of the purity of the wave function as is the von
Neumann entropy nor should it be regarded as a thermody-
namic entropy. Rather, it can be interpreted as the number of
coherent states one requires to ‘‘cover up’’ the state of the
system in phase space, or more precisely to cover the uncer-
tainty area. In fact, in the case when theQ function can be
represented by a Gaussian distribution of contour areaA, at
a height 1/e of the maximum, then the Wehrl entropy is
given by @13#

SW511 ln@A#. ~13!

If the atomic wave packet is a single Gaussian of mini-
mum uncertainty width, thenSW attains its minimum value
of 11 ln(2p). If the wave packet consists ofN separate,
nonoverlapping coherent-state components, then
SW511 ln@2pN#, whereas if they are overlapping and inter-
fering, thenSW is reduced below this value.

In Fig. 4 we have plotted the Wehrl entropy as a function
of the number of cycles of the laser pulse. The entropy in-
creases over the first part of the pulse and reaches a maxi-

mum just after the peak in the laser intensity. The entropy
then decreases for approximately four cycles before increas-
ing during the tail of the pulse. In order to explain this be-
havior we need to consider contributions to the entropy from
two distinct sources: the ‘‘core’’~the bound part! of the wave
function, and the ionizing wave packets. Let us first consider
the stabilized part of the wave function. As we have previ-
ously discussed, the bound part of the wave function is made
up of a coherent superposition of a small number of KH
eigenstates. We will therefore start by considering the en-
tropy of a KH eigenstate as a function of the maximum dis-
placementa0 . In this high-frequency regime we assume that
the dressed states are the eigenfunctions of the time averaged
KH potential, given by

V0~a0 ,q!5
1

pE21

11

du
V~q1a0u!

A12u2
. ~14!

The shape of this potential, and in particular the width,
depends critically on the value ofa @19#. For increasing
values ofa the potential becomes more shallow and has a
greater spatial extent. As a consequence its eigenstates have
a greater spatial spread and therefore a greater entropy~i.e.,
they are made up of more and more minimum-uncertainty

FIG. 4. Wehrl entropy as a function of time for a 1D model
hydrogen atom in a 24-cycle sin2 laser pulse of peak field 10 a.u.
and frequency 1 a.u.

FIG. 5. Wehrl entropy of the two lowest even-parity eigenstates
of the time-averaged KH potential as a function of time where
a5sin2(vt/24p).
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Gaussian component packets!. In Fig. 5 we have plotted the
entropy of the lowest KH eigenstate and also of the next
even-parity state~from our previous analysis we know that
these are the dominant states! for various values ofa. We
have plotted this against the number of cycles of our pulse at
which the field corresponds to that value ofa. For the
ground ~lowest-energy! state ~solid curve! there is a very
strong dependence on the value ofa. This is exactly as one
would expect since we start at the beginning of the pulse
a50 where the probability density has a single peak. As the
field, and thereforea, increases the wave function becomes
broader and starts to show a dichotomy; this broadening is
naturally accompanied by an increase in entropy. In the case
of the excited state there is a much slower dependence, since
even with no field the probability distribution is split into
separated nodes, which we can~approximately! regard as
discrete packets. We have already demonstrated that for the
adiabatic pulse shape the ground state dominates the wave-
packet evolution and therefore it is not surprising that the
entropy in this case follows the pattern of the ground state.
At this point we note that in reality we will have a coherent
superposition of KH eigenstates; we will return to the effect
of such superpositions later.

The second contribution to the Wehrl entropy is due to
ionization of the atom. At the start of the pulse, the intensity
is too low for stabilization to occur. As we are in a high-
frequency stabilization domain where hydrogen can be ion-
ized by a single photon and the field amplitude is still high,
we see strong ionization on the rising edge of the pulse,
before the stabilization regime is reached. The same argu-
ment is also true at the tail of the pulse. Our calculation of
the bound-state populations indicates that for the parameters
chosen here there is approximately 8% depletion during the
first six cycles, 6% depletion over the final six cycles, but
less than 1% during the central twelve cycles, where the
pulse maximum is reached. We therefore get a sharp increase
in entropy over the first few cycles due to ionization, i.e., an
emergent flux of the probability emanating from the core.
This is followed by a slower change in the Wehrl entropy
due to the spreading of the freely evolving ionizing wave
functions. Over the final cycles there is another sharp in-
crease due to further ionization.

As we have already seen, if we use a trapezoidal laser
pulse, the rapid turn-on leads to a much higher probability of
excitation, both to the higher-energy KH eigenstates and also
into the continuum~i.e., ionization!. This depletion of the
ground state during the turn-on is reflected in the entropy
~Fig. 6!. Once again it is convenient to consider contributions
due to the bound and ionizing parts of the wave packet sepa-
rately. In this case we turn the field on rapidly, so after the
first couple of cycles the value ofa is constant. There are,
however, still changes in the entropy due to the fact that we
have a superposition of states. Even though, at the peak of
the pulse, the probabilities of each of these states are ap-
proximately constant, each state will have a phase that oscil-
lates with its own characteristic frequency. As a result, the
various eigenstates beat together, causing the wave packet to
‘‘breathe.’’ Since this breathing causes changes to the spatial
extent of the wave packet, it leads to fluctuations in the en-
tropy ~we will demonstrate this effect for a superposition of
two eigenstates in Sec. V A!. As with the sin2 pulse there is

also a contribution due to ionization. During the turn-on
there is quite significant ionization, which leads to a rapid
increase in the entropy over the first six cycles, followed by
a slow increase due to the spreading of the outgoing wave
packets.

We have therefore explained the entropy for both the sin2

and trapezoidal pulse shapes in terms of ionization during the
turn-on followed by dispersion of the ionizing wave packets,
plus spreading of the bound part of the wave function. In the
sin2 case there is an increase in entropy due to the broaden-
ing of the wave function with increasinga, while for the
trapezoidal case there are fluctuations due to the different
eigenstates beating together. Finally we point out that in the
trapezoidal case there is a higher ionization probability and
therefore a higher entropy. In this section we will consider
the entropy of a coherent superposition of KH eigenstates in
more detail.

A. Entropy of superposition states

In our previous analysis of the entropy we have assumed
that, for the sin2 laser pulse shape case at least, the behavior
of the stabilized wave packet can be explained in terms of
the Wehrl entropy of the ground state. However, in both this
paper and our previous paper we have demonstrated that a
coherent superposition of KH eigenstates is formed. In this
section we will briefly consider the effect of such a superpo-
sition on the Wehrl entropy. In particular we will show that
the entropy of the superposition depends on the relative
phase of the states. In order to demonstrate this effect we
have calculated the entropy of a superposition of the ground
and second excited KH states with weightsa and b and a
relative phaseu,

uc&5augkh&1beiuu2kh&. ~15!

In Fig. 7 we have plotted the entropy of such a superposition,
for a510 with relative weights identical to those calculated
at the peak of our sin2 pulse, i.e.,a250.84 andb250.08,
with values ofu in the range 0–2p. There is a definite
dependence on phase, with a minimum entropy when
u5p. This can be explained by considering the wave func-
tion formed by the superposition. The effect of varying the
phase is to cause the wave function to breathe, increasing or

FIG. 6. Wehrl entropy as a function of time for a 1D model
hydrogen atom in a 24-cycle trapezoidal laser pulse of peak field 10
a.u., frequency 1 a.u., and two-cycle linear turn-on.
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decreasing the dichotomy~and also the spatial extent! of the
probability distribution and therefore changing the entropy.
A similar effect has been observed for a superposition of two
harmonic oscillator states@13#. As one might expect, this
effect is greater when both states are present with approxi-
mately equal weighting. We have plotted the entropy for this

case as a dashed line in Fig. 7. A sudden turn-on will gen-
erate such KH superpositions that can destructively or con-
structively interfere, changing dramatically the size of phase
space occupied by the wave packet.

VI. CONCLUSION

In this paper we have used several distinct phase-space
approaches to contrast stabilization using sin2 and trapezoi-
dal pulse shapes. We have shown that for an adiabatic pulse
shape we dominantly populate the lowest KH eigenstate,
with a small population in the next even parity excited state,
whereas for a trapezoidal pulse shape with a rapid turn on we
populate several KH eigenstates with approximately equal
probability. Furthermore we have demonstrated that the
number of populated states has a very clear effect on both the
Wigner and Husimi phase-space distributions. Finally we
have used the Wehrl entropy as a measure of the wavepacket
spreading, and explained the results obtained in terms of ion-
ization of the atom and the formation of KH eigenstates.
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@13# V. Bužek, C. H. Keitel, and P. L. Knight, Phys. Rev. A51,
2575 ~1995!; 51, 2594~1995!.
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@17# V. Bužek and P. L. Knight, inProgress in Optics, edited by E.
Wolf ~North-Holland, Amsterdam, 1996!, Vol. 34, p. 1.

@18# Y. Aharonov, D. Z. Albert, and C. K. Au, Phys. Rev. Lett.47,
1029 ~1982!; R. F. O’Connell and A. K. Rajogopal,ibid. 48,
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FIG. 7. Wehrl entropy of a superposition of the two lowest
even-parity KH eigenstates as a function of their relative phase,
using a weighting similar to that found in the adiabatic case~solid
line! and also an equal weighting~dashed line!.
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