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Entropic measure of wave-packet spreading and ionization in laser-driven atoms
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We consider wave-packet spreading and ionization of a one-dimensional model hydrogen atom interacting
with a strong high-frequency laser field in the stabilization domain. We demonstrate the effect of the pulse
shape on the dynamics in phase space and visualize our results with both the Wigner gnhdutiation
phase-space quasiprobability representation. The Wehrl entropy is introduced and utilized as a convenient
one-parameter measure of wave-packet spreading, phase-space localization, and ior{i3a0&0-
294796)02007-0

PACS numbdss): 32.80.Rm, 42.65.Ky, 42.50.Dv

[. INTRODUCTION We therefore also consider a second phase-space distribution
function, the Husimi orQ representatiofl0], which is al-

S L T ways positive. The Husimi distribution can be used to calcu-
apart through ionization, but although this ionization initially late an information-theoretic measure of the number of par-

increases in rate with increasing intensity, provided freq“e”ficipating quasiclassical Gaussian wave packets. This

cies gnd inte_nsi}ies_ are carefully chosen, the atom ?tabilizeﬁweasure is the Wehrl entrofig1] and, apart from interfer-

Thatlls, the ionization rate degreases, rather than increasesyce terms, is determined by the number of Gaussian coher-

with increasing intensity. StabilizatiofL] can be observed gant states to “tile” its phase-space contour. The Wehrl en-

by USing h|gh laser frequenCies and hlgh intensities. Thl%ropy has been investigated and utilized by a group of

phenomenon has been demonstrated for smooth pulse fieldsthorg12]. It has recently been studied within a wider class

via both quantum-mechanici,3] and classicdl4] theoreti-  of entropies that are based on a comparison of the wave

cal approaches and has recently been observed experimefanction with an arbitrary basis of states in phase spasg

tally [5]. Despite the success of the classical models of thi§his Wehrl entropy is directly related to the uncertainty area

phenomenon, phase-space calculations have shown that std-the Q function in phase space and it is appropriate as a

bilization may have intrinsically quantum-mechanical fea-measure of wave packet spreading and ionization. We will

tures[6,7]. use the Wehrl entropy to study the effect of these phenomena
In a recent artic|¢7] we identified quantum Signatures in in the stabilization domain using both an adiabati8 sind a

the stabilization dynamics by considering the Wigner func-honadiabatic trapezoidal pulse.

tion in phase space. The Wigner functi@j is well suited to In the next section we will describe our numer!cal model,

this purpose since, although it superficially resembles a joinpased on the solution of the time-dependent Sdiniger

position_momentum phase_space distribution function, ilequation in one dimension. We will then investigate the sta-

may become negative, a clear indication of the quantum nailization dynamics for two different pulse shapese adia-

ture of the state under consideration. Wave packets are coRatic, the other with a fast turn-pmising the Wigner func-

sidered to be quasiclassical if they approach minimum untion, before turning our attention to th@ function and

certainty Gaussian wave packets, a sufficient condition if thdinally to the Wehrl entropy.

Wigner function is to be positive over all of phase sppte

In this paper we will consider two sources of negativity in II. NUMERICAL METHOD

the Wigner function. If we use an adiabatic turn-on, we will . )

generate a single dressed eigenstate that will be much larger N this paper we present results based on the numerical

than a quasiclassical state and therefore nonclassical in ngolution of the one-dimensional time-dependent Seimger

ture. If, on the other hand, we use a nonadiabatic turn-or€guation

then we will excite a coherent superposition of dressed s

eigenstates. The quantum interference between these dressed _ﬁaz,/;(q,t) _ _ﬁ_9_+v( VXEWD) | p(an). Q)

states is clearly nonclassical and therefore results in negative ot 2m d9° q #a.b.

areas in the Wigner function. If the atom is subsequently

ionized then the various parts of the wave function “fly Here E(t) = Egh(t)cos(wt) is an electric field of peak am-

apart” and this interference becomes small because the oveptitude E, modulated by an envelope functidm(t) and

lap of the wave packets contributing to this interference isv(q) is the potential due to the nucleus. We use the soft-core

reduced. For highly nonadiabatic pulses many dressed eigefor Rochesterpotential[2] scaled so that its lowest eigen-

states are excited significantly: then the various interferencstate matches the binding energy of atomic hydrogen,

contributions have a tendency to average out.

Atoms interacting with intense laser fields tend to fall

While the Wigner function is useful in investigating such —e2
guantum signatures, the negativities make it impossible to V()= . 2
interpret the Wigner function as a probability distribution. v2aptq
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We use a one-dimensional atomic model since the calcula (2) Sin? Pulse
tion of three-dimensional phase-space distributions is no
feasible with the current computational methods. The effec !
of using one-dimensional soft-core potentials rather than ¢ os
three-dimensional Coulomb potential has been discusse os
elsewherd 14,15. 04

In order to simplify the numerical calculation we trans- ,
form into the Kramers-HennebergdKH) frame, which
moves with the ponderomotively driven electron, by making
a unitary transform

Irn(aq,t)=U(q,t) ©)

— ie T ’ ’ 2047
=ex ﬁfo dt'[ —A(t")p+eA(t')/2]

(b) Trapezoidal Pulse

brn(a,t). (4)

ie
Xex qu(t)

This transform leads to a Schiioger equation for the KH
wave function of the form

P t) h® o
ﬁ%:[_ﬁﬁﬁ_v(qﬁ_a(t)) Ikn(Q,t),
5
where
— e 4 !
a(t)=— Efodt A(t') ©)

is the displacement of a classical electron in the laser field. FiG. 1. Two-dimensional2D) contour plot of the Wigner func-
We integrate this equation numerically using the Crank+ion calculated after 12 cycles of a 24-cycle pulse of frequency 1
Nicholson method2,3] in order to obtain the KH wave func- a.u. and peak intensity 10 a.u. wita) a sirf pulse shape antb) a
tion at subsequent times: the length gauge wave function carapezoidal pulse shape with a two-cycle linear turn-on.
then be obtained by applying the inverse unitary KH trans-
form to the KH wave function. lll. PULSE SHAPE

The knowledge of the wave function as a function of time
allows us to study the dynamics in phase space by calcula%—
ing the Wigner functior8]

In our previous pap€f7] we studied the phase-space dy-
amics of hydrogen undergoing stabilization in a nearly
adiabatic sif pulse. In this section we contrast this behavior
with the phase-space dynamics for a trapezoidal pulse with a

1 + o0 .
W(q,p,t)= — da’ —q't two-cycle linear turn-on. In other words we use the envelope
(@.p.t) Wﬁﬁw q'¢(a—q’,t) functions
Xy*(q+aq’,t)exd2iq’p/h]. (7 A sif[wt/(4c)]  if0<t<2t,a =47Clw
. _ o . . D=1 otherwise ,
One of the properties of this function is that it is Galilei 8)

invariant, i.e., displacing the wave function, either spatially

or in momentum, simply shifts the Wigner function. Since where 1, is the length of the pulse ardlis the total num-
the KH transform is just a combination of Galilean trans-ber of cycles, and

forms, we can obtain the Wigner function in the length gauge

by calculating the KH frame Wigner function and relabeling t/127 ifo<t<2r
the axeq16]. _ _ 1 if 27 <t<227,

By using phase-space representations rather than studying he(t): = ) 9
the wave function itself we can obtain information about the (24r —1)/27  if 227 <t<247
distribution both in space and also in momentum. Further- 0 otherwise ,

more, as discussed above, the Wigner function may be nega-
tive in some regions of phase space, a signature of quantumhere r_ is the laser period.
behavior. Figure 1 shows the Wigner functions calculated at the



54 ENTROPIC MEASURE OF WAVE-PACKET SPREADING AND ... 731

midpoint (also the peak intensityof the smooth sif [Fig. 2
1(a)] and trapezoidal Fig. (b)] pulses. In the trapezoidal
case there is a very strong asymmetry in the phase-spac
distribution. This is a consequence of using a cosine field, |
with a very fast turn-on. If we consider the trajectory of a
classical electron under the influence of such a field, starting os
from g=0, p=0 and at time =0, its motion in the field will

always be in the positivg-region; the electron will be ac-
celerated for a quarter of a period, come to rest after a quar s
ter period, and then return to the nucleus, reachjin® with

zero momentum after one full laser period has elapsed. This
is equivalent, in the KH frame, to the core oscillating be-
tweeng=0 and the minimum value af (—2«y). Since in
the KH reference frame the initial distributio@ peak at T
g=0) is strongly asymmetric about the center of the core

oscillation, the wave function and therefore the phase-space

distributions are asymmetric throughout the pulse evolution, . ~'G- 2: 2D contour plotsgf the Husim@ function calculated
In the sif case. the Wigner function contains two after 6 cycles of a 24-cycle sipulse of peak intensity 10 a.u. and

strongly negative lobes arranged on either side of the maiFlrequency lau.

peak. In a previous papg¥] we demonstrated that this dis- , . . N
tribution is due to the formation of a superposition of Sym_populanons in the odd-parity states, which is the reason for

metric eigenstates of the time-averaged KH potential, a con® Symmetry observed in Fig(a. For the trapezoidal case

sequence of the smooth adiabatic turn-on. It is wellthe situation is very different. The population in the lowest

established that such superpositions give rise to WigneliH €igenstate is less than 10%, with higher populations in
functions with symmetrical negativitiéd7]. In the trapezoi- e next three states. In fact, there is significant population
dal case the distribution is very different, and rather than th&ight up to the sixth excited state. The asymmetry in the
two strongly negative areas, we only find a single r,egativém_gner_functlon for this case is r_eflected by the equal popu-
area. Since the trapezoidal pulse has such a fast turn-on W&Hions in the odd- and even-parity states. These populations
excite a far greater population into the higher KH eigen-éMain approximately constant throughout the pulse, as one
states. As a result of both the greater spatial structure of th&ould expect in the stabilization regime. Finally, we point
higher KH eigenstates and the interferences between tHaut that for the S|?|pulse the ionization is much smaller than

various eigenstates, we find a far more complicated structurf?" the trapezoidal case. We shall return to these differences
in the Wigner function. in the bound state population when we consider the Wehrl

In order to confirm the above interpretation of our Wigner €Ntropy.
functions, we have calculated the populations in the first

15

-1.5

seven KH eigenstates for both pulse shapes; the results are IV. Q FUNCTIONS
shown in Table 1. , ) :
From these results it is apparent that for the ginise, the In the preceding section we have seen that the Wigner

wave function is dominated by the adiabatic KH groundfunction is a very convenient diagnostic for the identification
state, exactly as one would expect for a smooth turn-onof quantum behavior within a system. For the following dis-
There is also a small population in the second excited statgussion we turn to a closely related phase-space quasiprob-
about 8%, with less than 0.3% of the population in the re-ability function that is always positive, called ti@@ or Hu-
maining bound states. Similar populations are foundsimi function [10]. The Q function has an appealing
throughout the pulse, although during the tail of the pulsenterpretation in quantum measurement in terms of “propen-
there is a significant transfer of population into the secondgities” [18]: Let us represent our stageby its Wigner func-
excited state: at the end of the pulse there is a population dfon W,,. One may only obtain information about the system
0.59 in the ground state compared with 0.24 in the secondlia comparison with a measurement devige so that the
excited state. We note that there are considerably lowemeasurement output may be described by a new phase-space

TABLE |. Calculated population in the first seven KH eigenstates for thé ainl trapezoidal pulses.

KH eigenstate sthpulse Trapezoidal pulse
ground 0.8293 0.0947

first excited 1.12x10°4 0.1983
second excited 0.0836 0.2191
third excited 4.977x10°° 0.2090
fourth excited 0.0028 0.0947

fifth excited 3.504K10°° 0.0041

sixth excited 1.232%10 4 0.0250

bound-state population 0.916 0.8449
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(a) sin? Pulse (b) sin2 Pulse

0.03

0.025

0.02

0.015

0.005

N o
)2

25 20 -15 10 -5 0 5 10 15 20 25 0051

(c) Trapezoidal Pulse

0.035
0.03
0.025
0.02
0.015

.01

-15 0.005

25 20 -15 -10 -5 0 5 10 15 20 25 0051

FIG. 3. (a) 2D contour plot,(b) 3D surface plot of the Husim® function calculated after 12 cycles of a 24-cycle’ginlse of peak
intensity 10 a.u. and frequency 1 a.u, degd2D contour plot of theQ function calculated after 12 cycles of a trapezoidal pulse using the
same parameters.

distribution via the convolutiofl18] In this plot we have chosen a logarithmic scale in order to
emphasize the outgoing part of the distribution, at the ex-

P(q, ZJ da'dp’W,(q'.p" )W,(q’ —a,p’ —p). pense of detail at the core. On this scale we can see peaks in
(@p) a'dp'W,(a’.p)W,la'—a.p"=p) the top right and bottom left areas of the plot, corresponding

(10 to ionization: i.e., in addition to the momentum due to the
If the measurement device can be represented by a cohdpscillation of the field, these wave packets also have a drift
ent state, i.e., the Gaussian wave packet velocity and will therefore leave the nucleus.
We have calculated th® function for both the sihand
o 1 o [P 2 trapezoidal pulses after 12 cyclé¢at the peak of the sin
Wy(a',p")=—exp —q'"—{ 3| |, (11 pulse. In Fig. 3 we have displayed th® function for the
sir? pulse both as a two-dimensional contour gieig. 3a)]
displaced in phase space, then the phase-space distributiand also as a three-dimensional surface ffag. 3b)]; we
relevant to the measuremeR{q,p) is the positive Husimi also display a contour plot of th@ function for the trapezoi-
or Q function. Although we have chosen a minimum uncer-dal pulse[Fig. 3(c)]. In the adiabatic case, there is a very
tainty state as our reference wave packet, the “smearing’tlear dichotomy in theQ function. This dichotomy is, of
due to the measurement is already sufficient to remove angourse, directly related to the splitting of the wave function
negativity from the distribution. in the high-frequency stabilization regime, an effect that has
In Fig. 2 we show a two-dimensional representation of thepreviously been described by many authors in the wave func-
Q function after six cycles of the sirpulse. In this case the tion representatiof2,3]. The presence of the dichotomy sug-
distribution is dominated by a strong peak at the centergests that the wave function generated under these circum-
There is no dichotomy and very little spreading of the wavestances is dominated by the lowest KH eigenstates, although
packet, a consequence of the fact that the maximum disve should emphasize that the degree of dichotomy depends
placement is still relatively small at this stage of the pulse. on the relative phase between the superposed KH eigen-
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states. In the trapezoidal case, we once again find a strong 48
asymmetry, with three main peaks in the distribution. This -
extra structure is due to the superposition of a number of KH
eigenstates. We note that the negativity clearly visible in the
Wigner representations of Fig. 1 has not survived the
smoothing generated in the creation of teunction from

the Wigner function.

We have also calculated tt@ function at the end of the
pulse. Here, as one would expect, there is a single sharp peak
centered on the origin. Again, if we magnify the probability
scale we see ionizing wave packets leaving the nucleus.

From these plots we deduce essentially two points. First,
at the peak of the sfrpulse we generate a superposition of a
small number of KH eigenstates, which, due to the relative
phase between the two states at this particular stage in the FiG. 4. Wehrl entropy as a function of time for a 1D model
pulse, results in a clear dichotomy. Second, at the start anglydrogen atom in a 24-cycle Sitaser pulse of peak field 10 a.u.
end of the pulse the intensity is lower than that required fofand frequency 1 a.u.
stabilization and therefore there is substantial ionization of
the atom. This is consistent with our observations based omum just after the peak in the laser intensity. The entropy
the Wigner function, in which we clearly see the outgoingthen decreases for approximately four cycles before increas-
ionization waves. ing during the tail of the pulse. In order to explain this be-

At this point we should emphasize that much of this in-havior we need to consider contributions to the entropy from
formation, in particular the nature of the ionizing wave two distinct sources: the “core{the bound paitof the wave
packet, can also be directly visualized in the wave-functiorfunction, and the ionizing wave packets. Let us first consider
representation. However, the phase-space picture also givése stabilized part of the wave function. As we have previ-
us simultaneous information about the momentum distribuously discussed, the bound part of the wave function is made
tion of the wave packet, so that we are able to visualizeip of a coherent superposition of a small number of KH
directly in which direction and how fast parts of the wave eigenstates. We will therefore start by considering the en-
packet are moving. tropy of a KH eigenstate as a function of the maximum dis-

placementy. In this high-frequency regime we assume that
V. ENTROPY the dressed states are the eigenfunctions of the time averaged
KH potential, given by

LA L I N B S B A B S

Wehrl Entropy
S
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The Q function can be used directly to provide a measur
of the number of participating states in the dynamics. We can
define the information-theoretic Wehrl entrof3] b 1(+1 V(g+agu)
el by Vo= - [ a0l g

J1-u?

The shape of this potential, and in particular the width,
where Q(q,p)=%[P(q,p)] is a dimensionless form of the depends critically on the value af [19]. For increasing

Q function. From now on the Boltzmann constdg and  values ofa the potential becomes more shallow and has a
# will be assumed to be equal to unity. The Wehrl entropy isgreater spatial extent. As a consequence its eigenstates have
not a measure of the purity of the wave function as is the vora greater spatial spread and therefore a greater entrepy
Neumann entropy nor should it be regarded as a thermodyhey are made up of more and more minimum-uncertainty
namic entropy. Rather, it can be interpreted as the number of

coherent states one requires to “cover up” the state of the 4 48

system in phase space, or more precisely to cover the uncer- et T  _Ground

tainty area. In fact, in the case when tQefunction can be i — — - Excited
represented by a Gaussian distribution of contour aeat

a height 1¢ of the maximum, then the Wehrl entropy is

Kg
Sw(t)=— gf dpdgQq,p,t)InQ(q,p,t), (12

&
'S

44

Y
g
given by[13] g 4 14
Sw=1+In[A]. (13 g ]
_ . _ _ o 3.6 3.6
If the atomic wave packet is a single Gaussian of mini- ]
mum uncertainty width, the®,, attains its minimum value 3.2 130
of 1+In(27). If the wave packet consists M separate, ' 17
nonoverlapping coherent-state  components,  then o ' '4' ‘ '8' : '12' ' 16' 20' 24
Sw=1+In[27N], whereas if they are overlapping and inter- Time (in cycles)

fering, thenS,y is reduced below this value.

In Fig. 4 we have plotted the Wehrl entropy as a function FIG. 5. Wehrl entropy of the two lowest even-parity eigenstates
of the number of cycles of the laser pulse. The entropy in-of the time-averaged KH potential as a function of time where
creases over the first part of the pulse and reaches a maxi=sir’(wt/247).
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Gaussian component pacKetk Fig. 5 we have plotted the
entropy of the lowest KH eigenstate and also of the next
even-parity statéfrom our previous analysis we know that
these are the dominant statdéer various values okx. We
have plotted this against the number of cycles of our pulse at
which the field corresponds to that value af For the
ground (lowest-energy state (solid curve there is a very
strong dependence on the valueaof This is exactly as one
would expect since we start at the beginning of the pulse
a=0 where the probability density has a single peak. As the
field, and thereforey, increases the wave function becomes 3 L
broader and starts to show a dichotomy; this broadening is 0 4 8 12 16 20 24
naturally accompanied by an increase in entropy. In the case Time (in cycles)
of the excited state there is a much slower dependence, since
even with no field the probability distribution is split into ~ FIG. 6. Wehrl entropy as a function of time for a 1D model
Separated nodeS, which we C@Dproximate|y regard as hydrogen atom in a 24-CyC|e trapezoidal laser pulse of peak field 10
discrete packets. We have already demonstrated that for ttfey-, frequency 1 a.u., and two-cycle linear turn-on.
adiabatic pulse shape the ground state dominates the wave- o o )
packet evolution and therefore it is not surprising that the?lS0 @ contribution due to ionization. During the turn-on
entropy in this case follows the pattern of the ground statef@here is qwte significant |on|zat|0_n, Whlch leads to a rapid
At this point we note that in reality we will have a coherent Incréase in the entropy over the first six cycles, followed by
superposition of KH eigenstates; we will return to the effect® Slow increase due to the spreading of the outgoing wave
of such superpositions later. packets. _ _
The second contribution to the Wehrl entropy is due to We have therefore explained the entropy for both thé sin
ionization of the atom. At the start of the pulse, the intensity@"d trapezoidal pulse shapes in terms of ionization during the
is too low for stabilization to occur. As we are in a high- turn-on followed by dispersion of the ionizing wave packets,
frequency stabilization domain where hydrogen can be ionp_luzS spreading of the bound part of the wave function. In the
ized by a single photon and the field amplitude is still high,Sin“ case there is an increase in entropy due to the broaden-
we see strong ionization on the rising edge of the pulselind of the wave function with increasing, while for the
before the stabilization regime is reached. The same argdf@pezoidal case there are fluctuations due to the different
ment is also true at the tail of the pulse. Our calculation oféigenstates beating together. Finally we point out that in the
the bound-state populations indicates that for the parametef@pezoidal case there is a higher ionization probability and
chosen here there is approximately 8% depletion during théerefore a higher entropy. In this section we will consider
first six cycles, 6% depletion over the final six cycles, putthe entropy of a coherent superposition of KH eigenstates in
less than 1% during the central twelve cycles, where thénore detail.
pulse maximum is reached. We therefore get a sharp increase
in entropy over the first few cycles due to ionization, i.e., an A. Entropy of superposition states

emergent flux of the probability emar)ating from the core. |4 qur previous analysis of the entropy we have assumed
This is followed by a slower change in the Wehrl entropyhat for the sif laser pulse shape case at least, the behavior
due to the spreading of the freely evolving ionizing waves the stabilized wave packet can be explained in terms of
functions. Over the final cycles there is another sharp in{he wehrl entropy of the ground state. However, in both this
crease due to further ionization. _ paper and our previous paper we have demonstrated that a
As we have already seen, if we use a trapezoidal las&foherent superposition of KH eigenstates is formed. In this
pulse, the rapid turn-on leads to a much higher probability 0kgction we will briefly consider the effect of such a superpo-
excitation, both to the higher-energy KH eigenstates and alsgjtion on the Wehrl entropy. In particular we will show that
into the contmuu_m(l.e., |on|zat|or). This deplepon of the ihe entropy of the superposition depends on the relative
ground state during the turn-on is reflected in the entropyypase of the states. In order to demonstrate this effect we
(Fig. 6. Once again it is convenient to consider contributionshaye calculated the entropy of a superposition of the ground

due to the bound and ionizing parts of the wave packet sepajng second excited KH states with weightsand b and a
rately. In this case we turn the field on rapidly, so after the,g|5tive phase)

first couple of cycles the value af is constant. There are,

however, still changes in the entropy due to the fact that we |y =a|gxn) + be | 2,p). (15
have a superposition of states. Even though, at the peak of

the pulse, the probabilities of each of these states are apn Fig. 7 we have plotted the entropy of such a superposition,
proximately constant, each state will have a phase that oscifor =10 with relative weights identical to those calculated
lates with its own characteristic frequency. As a result, theat the peak of our sihpulse, i.e.,a?=0.84 andb®=0.08,
various eigenstates beat together, causing the wave packetwith values of ¢ in the range 0—-2. There is a definite
“breathe.” Since this breathing causes changes to the spatidlependence on phase, with a minimum entropy when
extent of the wave packet, it leads to fluctuations in the en#= 4. This can be explained by considering the wave func-
tropy (we will demonstrate this effect for a superposition of tion formed by the superposition. The effect of varying the
two eigenstates in Sec. V)AAs with the sirf pulse there is phase is to cause the wave function to breathe, increasing or

Wehrl Entropy
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case as a dashed line in Fig. 7. A sudden turn-on will gen-

48 e
F T erate such KH superpositions that can destructively or con-
3 structively interfere, changing dramatically the size of phase
2 44 - - ] space occupied by the wave packet.
g <N 7N
E / \ / ~ A
w4 \ / 7 VI. CONCLUSION
i
2 a6 [ A -~ g 1 In this paper we have used several distinct phase-space
2 U ] approaches to contrast stabilization using sind trapezoi-
i 1 dal pulse shapes. We have shown that for an adiabatic pulse
3.2 - 4 shape we dominantly populate the lowest KH eigenstate,
T P I P STV PR B with a small population in the next even parity excited state,
0 025 05 075 1 1.25 15 1.75 2 whereas for a trapezoidal pulse shape with a rapid turn on we
(Relative Phase) /x to group numerator populate several KH eigenstates with approximately equal

FIG. 7. Wehrl entroov of a supernosition of the two lowest probability. Furthermore we have demonstrated that the
o Py Perp number of populated states has a very clear effect on both the

even-parity KH eigenstates as a function of their relative phasewigner and Husimi phase-space distributions. Finally we

gsing a weighting similar fo thgt found in_ the adiabatic cessid have used the Wehrl entropy as a measure of tHe wavepacket

line) and also an equal weightirigashed ling spreading, and explained the results obtained in terms of ion-
ization of the atom and the formation of KH eigenstates.

decreasing the dichotom{gand also the spatial extgrif the

probability distribution and therefore changing the entropy. ACKNOWLEDGMENTS
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