Estimation of Distances to the Red Giant Stars

Manabu Yuasa, Wasaburo Unno
RIST, Kinki University, Higashi-Osaka-shi, Osaka-577, Japan
Takayuki Ichino
Faculty of Science and Technology, Kinki University, Higashi-Osaka-shi, Osaka-577, Japan

(Received January 18, 1995)

Abstract

Based on the Principal Component Analysis and Oort's Galactic rotation model, the distances to the red giant stars are estimated. The 157 red giant stars are devided into two groups, then the distances are estimated as $\log d(\mathrm{Kpc})=0.471 z_{2}+0.24 .1$ for Group 1 and $\log d(\mathrm{Kpc})=$ $0.446 z_{2}+0.532$ for Group 2, where z_{2} is the principal component corresponding to the distance.

Key words: Stellar distance; red giant star; principal component analysis.

1 Introduction

The distances to the red giant stars are, so far, determined mostly on more or less hypothetical absolute magnitudes of each star. The absolute magnitude effect of spectral lines depends not only on the absolute magnitude but also on turbulence, chemical composition and others, even if the effective temperature could be determined very accurately. We have proposed a new method of distance determination on the basis of the double principal component analysis (Unno et al. 1989, 1990). In the present analysis we use 157 red giant stars which are observed by IRAS at the wave length $12 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 60 \mu \mathrm{~m}$ and $100 \mu \mathrm{~m}$ and are also observed by radio telescopes for identifying the circumstellar gas expanding velocity Ve
and the stellar radial velocity V from the emission lines of CO and HCN molecules. The distance d is represented as $\log d=C_{0}+C_{1} * z_{2}$, where z_{2} is the pricipal component corresponding to the distance. The scaling constant C_{1} is determined from the principal component analysis leading to the $z_{2^{-}}$ vector as shown below, reflecting the fact that the observed IR brightness is inversely proportional to the square of the distance. The zero point distance C_{0} was hitherto estimated from a crude theoretical model of a radiation driven expanding molecular shell, which is by no means accurate. The purpose of the present paper is to calibrate C_{0} by using the Galactic rotation model.

2 Principal Component Analysis

We adopt three colors

$$
\begin{aligned}
& Q_{1}(I)=\log \left(F_{12}(I) / F_{25}(I)\right) \\
& Q_{2}(I)=\log \left(F_{25}(I) / F_{60}(I)\right)
\end{aligned}
$$

and

$$
Q_{3}(I)=\log \left(F_{60}(I) / F_{100}(I)\right) \quad(I=1, \ldots, 157)
$$

as the variables for the preliminary principal component analysis, where $F_{12}(I), F_{25}(I), F_{60}(I)$ and $F_{100}(I)$ are the IRAS radiative fluxes of 157 stars at the wave length $12 \mu \mathrm{~m}, 25 \mu \mathrm{~m}, 60 \mu \mathrm{~m}$ and $100 \mu \mathrm{~m}$.

Then normalized variables $q_{1}(I), q_{2}(I)$ and $q_{3}(I)$ can be calculated such that the mean value is 0 and the standard deviation is 1 . After the principal component analysis with the normalized variables $q_{1}(I), q_{2}(I)$ and $q_{3}(I)$, we get eigen values and eigen vectors as follows:
$\left.\begin{array}{ccrr}\text { eigen value } \\ 1.528 & (0.667, & 0.715, & 0.208 \\ 1.029 & (-0.355, & 0.060, & 0.933\end{array}\right)$

From these values we get three principal components z_{1}, z_{2} and z_{3} as follows:
principal component

$$
\begin{array}{lrrr}
z_{1}= & 0.667 q_{1} & +0.715 q_{2} & +0.208 q_{3} \\
z_{2}= & -0.355 q_{1} & +0.060 q_{2} & +0.933 q_{3} \\
z_{3}= & -0.655 q_{1} & +0.696 q_{2} & -0.294 q_{3}
\end{array} .
$$

Investigating the distribution of the first principal component z_{1}, we devide the 157 stars into two groups. The stars which have concentrated negative z_{1} values are classified as Group 1 and the stars which have positive z_{1} values with no concentration are classified as Group 2. The z_{1} value is considered to indicate the evolutionary stage or the size of the shell and, therefore, the classification brings the increase of the accuracy of the distance determination. After the classification, we apply the first principal component analysis to the variables $q_{1}(I), q_{2}(I)$ and $q_{3}(I)$ in the two groups respectively. The results are as follows:
(A-1) Group 1

eigen valu	eigen vector		
1.881	(-0.624,	0.624,	0.469
0.751	(0.333,	-0.331,	0.883
0.368	0.707,	0.707,	-0.001
principal component			
$z_{1}=$	-0.624q ${ }_{1}$	$+0.624 q_{2}$	$+0.469 q_{3}$
$z_{2}=$	$0.333 q_{1}$	$-0.331 q_{2}$	$+0.883 q_{3}$
$z_{3}=$	$0.707 q_{1}$	$+0.707 q_{2}$	$-0.001 q_{3}$

(A-2) Group 2

eigen value	eigen vector		
1.706	$(0.663$,	0.599,	$-0.449)$
0.859	$(0.119$,	0.508,	0.853

principal component

$$
\begin{aligned}
& z_{1}=0.663 q_{1}+0.599 q_{2}-0.449 q_{3} \\
& z_{2}=0.119 q_{1}+0.508 q_{2}+0.853 q_{3} \\
& z_{3}=0.739 q_{1}-0.619 q_{2}+0.265 q_{3}
\end{aligned}
$$

Next we introduce the fourth variable

$$
Q_{4}(I)=-\log \left(F_{12}(I)\right)+4 \log (V e(I)),
$$

where $\mathrm{Ve}(\mathrm{I})$ indicates the expanding velocity of circumstellar gas. The Ve data will be presented in a paper under preparation (Unno et al. 1995). In this case also, the normalized fourth variable $q_{4}(I)$ can be calculated such that the mean value is zero and the standard deviation is 1 . The standard deviations of $Q_{4}(I)$ are 0.878 for Group 1 and 0.795 for Group 2 , which are used later to calculate the scale of the distances C_{1} for the two groups respectively. Then the second principal component analysis is performed with the four variables $q_{1}(I)$, $q_{2}(I), q_{3}(I)$ and $q_{4}(I)$ for the two groups. The results are as follows:
(B-1) Group 1

eigen value	eigen vector			
1.885	$(-0.615$,	0.628,	0.472,	
1.078	$(0.309$,	0.088,	0.162,	

principal component

$z_{1}=$	$-0.615 q_{1}$	$+0.628 q_{2}$	$+0.472 q_{3}$	$+0.062 q_{4}$
$z_{2}=$	$0.309 q_{1}$	$+0.088 q_{2}$	$+0.162 q_{3}$	$+0.933 q_{4}$
$z_{3}=$	$0.240 q_{1}$	$-0.396 q_{2}$	$+0.865 q_{3}$	$-0.192 q_{4}$
$z_{4}=$	$0.684 q_{1}$	$+0.664 q_{2}$	$+0.048 q_{3}$	$-0.297 q_{4}$

(B-2) Group 2

eigen value	eigen vector			
1.716	$(0.662$,	0.599,	-0.436,	$0.114)$
1.034	$(0.011$,	0.133,	0.433,	$0.892)$
0.817	$(0.111$,	0.500,	0.741,	$-0.435)$
0.434	$(0.741$,	-0.611,	0.272,	$-0.050)$

principal component

$$
\begin{array}{llll}
z_{1}=0.662 q_{1} & +0.599 q_{2} & -0.436 q_{3} & +0.114 q_{4} \\
z_{2}=0.011 q_{1} & +0.133 q_{2} & +0.433 q_{3} & +0.892 q_{4} \\
z_{3}=0.111 q_{1} & +0.500 q_{2} & +0.741 q_{3} & -0.435 q_{4} \\
z_{4}=0.741 q_{1} & -0.611 q_{2} & +0.272 q_{3} & -0.050 q_{4}
\end{array}
$$

The variables $q_{1}(I), q_{2}(I)$ and $q_{3}(I)$ are colors of three kinds, so they do not intrincically depend on the distance. On the other hand the fourth variable $q_{4}(I)$ must depend on the distance very strongly. If we compare the foregoing results (A$1)$ and (A-2) with the results (B-1) and (B-2), the first, the second and the third principal components in (A-1) and (A-2) are similar to the first, the third and the fourth ones in (B-1) and (B-2) respectively. Moreover, in the results of the four variables analysis (B-1) and (B-2), we can find that the second eigen values are 1.078 and 1.034

3 Scale of the Distance C_{1}

The principal components corresponding to the distance are $z_{2}=0.309 q_{1}+0.088 q_{2}+0.162 q_{3}+$ $0.933 q_{4}$ for Group 1 and $z_{2}=0.011 q_{1}+0.133 q_{2}+$ $0.433 q_{3}+0.892 q_{4}$ for Group 2. Furthermore, the standard deviations of $Q_{4}(I)$ are 0.878 for Group 1 and 0.795 for Group 2. On the other hand, Unno et al. showed under some assumptions the distances were propotinal to the quantity $\left(F_{\mathrm{bol}}\right)^{-1 / 2}(V e)^{2}$, where F_{bol} indicates bolometric fluxes (Unno et al. 1989). Then the distance d must be expressed as follows:

$$
\log d(\mathrm{Kpc})=C_{0}+C_{1} z_{2}
$$

4 Zero Point Distance C_{0}

To determine the zero point distance C_{0}, we introduce Oort's Galactic rotation model. According to the model, the radial velocity V of the observed star at the Galactic longitude l is written as follows:

$$
V=2 A\left(R_{0}-R\right) \sin l
$$

where A is the Oort's constant, R_{0} is the distance of the Sun from the Galactic center and R is the distance of the observed star from the Galactic center. The values, $A=15 \mathrm{~km} / \mathrm{sec} / \mathrm{Kpc}$ and $R_{0}=8.59 \mathrm{Kpc}$ are adopted. On the other hand R can be expressed as follows:

$$
R=\left(R_{0}^{2}+d^{2}-2 R_{0} d \cos l\right)^{1 / 2}
$$

Then the distance d of the observed star from the Sun is given by the following formula:
respectively, and that the fourth components of the second eigen vectors are 0.933 and 0.892 respectively. These four values are all approximately 1. Consequently, we can conclude that the pricipal components z_{1}, z_{2} and z_{3} in the first principal component analysis(PCA) (A-1) and (A-2) are identified with the principal components z_{1}, z_{3}, and z_{4} in the second PCA (B-1) and (B-2), and the second principal components z_{2} in (B-1) and (B-2) does represent the distance without any ambiguities.
where C_{0} is a constant to be determined in the present paper and C_{1} is another constant which equals to (1/2)*(standard deviation of $\left.Q_{4}(I)\right) /$ (fourth component of the eigen vector corresponding to the distance). Therefore, from the foregoing analysis, the scale of the distance C_{1} is given as follows:

$$
\begin{aligned}
& C_{1}=(1 / 2) *(0.878 / 0.933)=0.471(\text { Group } 1) \\
& C_{1}=(1 / 2) *(0.795 / 0.892)=0.446(\text { Group } 2) .
\end{aligned}
$$

$$
\begin{gathered}
d=R_{0} \cos l \\
\pm\left(R_{0}^{2} \cos ^{2} l+V^{2} /\left(4 A^{2} \sin ^{2} l\right)-R_{0} V /(A \sin l)\right)^{1 / 2}
\end{gathered}
$$

At this stage we have to exclude some stars from the calculated d by the following reasons,

1. No observed radial velocity (number of stars $=5$)
2. Calculated d is imaginary (number of stars $=$ 10)
3. Two calculated d are both negative (number of stars $=14$)
4. Caluculated d has poor accuracy due to $|l| \sim 0$ or $|l-\pi| \sim 0($ number of stars $=14)$.

Moreover we impose the following two assumptions:

Figure. 1: The correlation between the principal components corresponding to the distance and the distances which are determined from the Galactic rotation model (Group 1).

Figure. 2: The correlation between the principal components corresponding to the distance and the distances which are determined from the Galactic rotation model (Group 2).

Table 1 (Group 1)

STAR	ALPHA	DISTANCE	STAR	ALPHA	DISTANCE
NAME	\& DELTA	(Kpc)	NAME	\&DELTA	(Kpc)
T Cas	00205+5530	0.182	SW Vir	13114-0232	0.423
GL168	$01085+3022$	3.295	R Hya	13261-2301	0.160
Z Psc	$01133+2530$	0.357	W Hya	13462-2807	0.125
S Cas	$01159+7220$	2.543	X Tr A	15094-6953	0.817
GL278	$01556+4511$	52.257	V CrA	$15477+3943$	0.505
W Ant	02168-0312	0.233	ST Her	$15492+4837$	2.393
R For	02270-2619	2.246	X Her	$16011+4722$	0.657
GL349	02316+6455	2.608	+40283	$16269+4159$	0.371
GL357	02351-2711	1.165	GL1922	17049-2440	3.123
TW Hor	03112-5730	0.419	TW Oph	17267-1926	1.105
+50096	$03229+4710$	1.541	MW Her	$17334+1537$	10.379
V Eri	04020-1551	1.556	T Dra	$17556+5813$	1.835
GL595	04307+6210	1.778	GL2135	18194-2708	2.932
ST Cam	04459+6804	1.539	IRC10365	18349+1023	1.715
TX Cam	04566+5606	0.937	+20370	18397+1738	1.490
R Lep	04573-1452	2.772	+00365	18398-0220	11.815
W Ori	05028+0106	1.299	+10374	18413+1354	4.946
32SSS	$05104+2055$	10.725	GL2259	18475+0926	6.343
****	05136+4712	4.782	-30398	18560-2954	1.252
GL724	$05151+6312$	3.715	GL5552	18595-3947	1.528
S Aur	$05238+3406$	3.480	V Aql	19017-0545	0.872
W Pic	05418-4628	1.144	-20540	19059-2219	7.129
Y Tau	05426+2004	1.612	-10502	19175-0807	5.132
TU Gem	06077+2601	2.325	UX Dra	$19233+7627$	0.950
GL935	06230-0930	4.652	+30374	$19321+2757$	6.815
GL954	$06291+0319$	6.103	R Cyg	19354+5005	2.001
UU Aur	$06331+3829$	1.347	GY Aql	19474-0744	1.323
GL971	$06342+0328$	0.897	+30395	19486+3247	0.108
CL Mon	06529+0626	6.840	RR Aql	19550-0201	0.497
R Vol	07065-7256	3.432	RT Cap	20141-2128	1.450
***	07217-1246	10.902	V Cyg	$20396+4757$	0.808
VY CMa	07209-2540	2.862	*****	$20435+3825$	11.376
Y Lyn	07245+4605	0.524	GL2686	$20570+2714$	6.266
39 HCI	07582-1933	6.655	*****	21032-0024	2.076
GL1235	08088-3243	1.411	T Ind	21168-4514	0.724
X Cnc	08525+1725	1.980	Y PAV	21197-6956	2.132
GL5254	09116-2439	1.168	+40485	$21320+3850$	1.964
IW Hya	09429-2148	2.024	S Cep	$21358+7823$	4.757
IRC10216	09452+1330	19.823	*****	$21373+4540$	4.388
X Vel	09533-4120	0.968	U Cep	$21419+5832$	1.728
CIT 6	$10131+3049$	0.682	EP Aqr	21439-0226	0.483

Table 1 (Group 1)-Continued-

U Hya	$10350-1307$	1.202	PQ Cep	$21440+7324$	5.269
VY Hya	$10416+6740$	1.855	PW Peg	$22017+2806$	1.085
V Hya	$10491-2059$	1.757	SV Peg	$22035+3502$	1.530
R Crt	$10580-1803$	0.829	CV Cep	$22097+5647$	0.904
$* * * *$	$11308-1020$	2.569	GL2901	$22241+6005$	18.972
GL4136	$11461-3542$	0.751	GL2999	$22556+5833$	12.011
SS Vir	$12226+0102$	1.109	GL3011	$23585+6402$	12.448
Y CVn	$12427+4542$	0.410	$* * * * *$	$23279+5336$	1.458
RU Vir	$12447+0425$	1.840	+40540	$23320+4316$	2.825
RY Dra	$12544+6615$	1.302	TX Psc	$23438+0312$	1.236
RT Vir	$13001+0527$	0.582			

Table 2 (Group 2)

STAR NAME	ALPHA \& DELTA	DISTANCE (Kpc)	STAR NAME	ALPHA \&DELTA	DISTANCE (Kpc)
GL190	$01144+6658$	2.746	$* * * *$	$18424+0346$	8.537
R Scl	$01246-3248$	2.923	S Sct	$18476-0758$	8.767
$* * * *$	$02152+2822$	0.806	+10401	$19008+0726$	2.845
GL341	$02293+5748$	1.206	R Aql	$19039+0809$	0.665
U Cam	$03374+6229$	3.865	$* * * *$	$19068+0544$	21.361
GL5102	$03448+4432$	1.257	$* * * *$	$19075+0921$	8.640
IRC50096	$04530+4427$	3.396	GL2343	$19114+0002$	24.365
GL807	$05405+3240$	4.196	+10414	$19146+0959$	36.081
****	$06088+1909$	10.545	GL2362	$19161+2343$	2.997
GX Mon	$06500+0829$	1.368	-20554	$19162-1600$	3.285
W CMa	$07057-1150$	5.487	AQ Sgr	$19314-1629$	3.371
13SAO	$07134+1005$	2.148	$* * * * *$	$19346+1209$	4.220
$* * * *$	$08074-3615$	1.878	GL2494	$19594+4047$	1.790
GL5250	$08171-2134$	2.007	$* * * *$	$20028+3910$	1.917
U Ant	$10329-3918$	5.014	GL2513	$20072+3116$	5.578
$* * * *$	$16105-4205$	0.801	$* * * *$	$20532+5554$	1.941
NGC6302	$17103-3702$	9.269	$* * * *$	$21147+5110$	3.189
GL68155	$17150-3224$	9.592	$* * * * *$	$21223+5114$	4.301
****	$17217-3916$	7.655	$* * * *$	$21377+5042$	0.106
$* * * *$	$17371-3021$	2.725	V460Cyg	$21399+3516$	1.750
GL5379	$17411-3154$	1.193	RV Cyg	$21412+3747$	2.874
GL5416	$17534-3030$	7.673	$* * * * *$	$21449+4950$	4.976
$* * * *$	$17581-1744$	9.468	$* * * *$	$21489+5301$	3.579
GL2154	$18239-0655$	5.503	$* * * *$	$21554+6204$	1.886
$* * * *$	$18248-0839$	3.697	$* * * *$	$22272+5435$	1.619
$* * * *$	$18269-1257$	26.155	$* * * * *$	$22303+5950$	9.270
GL5502	$18308-0503$	2.046	GL3068	$23166+1655$	0.503

1. In the case of two positive values of d, we adopt the large solution for the positive z_{2} stars and adopt the small solution for the negative z_{2} stars.
2. In the case of one positive and one negative value of d, if the absolute values of negative d are small, their stars are excluded. The reason is they have possibly small positive d due to the peculiar motion.
Under the above excludings and the assumptions, we construct the map whose horizontal axis is z_{2} and the vertical axis is $\log d(\mathrm{Kpc})$. In Figure 1, 61 stars are plotted belonging to Group 1 and in

Figure 2, 33 stars are plotted belonging to Group 2.

Since each star has the peculiar motion, the plotted points distribute with rather large deviations. But, if the plotted number of stars is sufficiently large, the peculiar motions are expected to be cancelled each other. Then we approximate these plotted points by a straight line with the inclination C_{1} (Group 1: 0.471, Group 2: 0.446) by the least square method. Consequently the zero point distance C_{0} is determined as follows:

$$
\begin{aligned}
& C_{0}=0.241(\text { Group1) } \\
& C_{0}=0.532 \text { (Group2) }
\end{aligned}
$$

the formula $\log d(\mathrm{Kpc})=C_{0}+C_{1} z_{2}$. The results are shown in Table 1 and Table 2.

6 Discussion

In Table 1 and Table 2, several stars have extremely large distances. Their observed data may have poor accuracies. We had better exclude them or at least re-analyse the whole system with small weights on them. With the increase of the number

5 Estimation of Distances

Since the zero point distance C_{0} and the scale of the distance C_{1} have been determined, we can compute the distances to the 157 red giant stars by

References

[1] Unno,W., Yuasa,M., Hayashi,H., and Yamanaka,T., 1990, Science and Technology, Kinki University, 2, 77
[2] Unno,W., Koyama,K., Tsuji,T., and Izumiura,H., 1989, Publ. Astron. Soc. Japan, 33, 234
[3] Unno,W., Yuasa,M., Tsuji,T., Izumiura,H., 1995, in preparation

