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Abstract 

A set of simultaneous first-order ordinary differential equations with time is the standard for­
malism describing a dynamical system. Such standard formulacion of a dynamical system can 
be derived in a straightforward way from the normal form of the general variational principle 
describing the conservation of mass, momentum, and energy. On the other hand, the principal 
component analysis can be employed to derive the standard form of a dynamical system em­
pirically from the observed data set, if sufficiently large number of observational quantities are 
measured in sufficiently large number of times to construct multi-dimensional phase spaces both 
from the measured quantities and from their time derivatives. Examples are given for that are 
constructed the theoretical and the empirical derivations of the :;tandard dynamical system for­
mulation. Improved principal component analysis is emphasized for use in the global environment 
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1 Introduction 
The development of science is oriented mainly ciple by using the principal component analysis 

by the natural philosophy on one hand and by the (Unno, 1989; 1.991). Let us suppose that a suffi­
natural history on the other hand. Study of a com- ciently large number of well-defined principal com­
plex system, however, requires both approaches, ponents should completely represent a dynamical 
sinc_e a complex system is difficult to be studied system. Then, if the time derivatives of these prin­
only by theoretical basis but also without guid- cipal components are added to the extended prin­
ing theoretical ideas. Modeling is indispensable cipal component analysis, no new sensible princi­
for studying a complex system. In the theoreti- pal components should appear. As the result , the 
cal approach, a model is introduced into the con- time derivatives of the principal components are 
servation equations for constructing a dynamical represented by the linear combination of the prin­
system. For this purpose, the modal expansion of cipal components. This is perhaps the way that we 
variables introduced into the general variational have taken unconsciously in performing studies in 
formulation by Glansdorff and Prigogine (1964; natural history. The use of the multi-dimensional 
1965), will give a set of the amplitude equations phase space for embedding a dynamical system 
forming a dynamical system. The turbulent con- combined with the development of the computer 
vection will be studied in this way (Unno, 1968) as technology seems to provide a systematic way to 
an example of a theoretical complex system. On construct the natural history. The earth environ­
the othet hand, the modeling in a complex obser- ment will be treated as an example of the complex 
vational system should be made directly from the observational system (Unno, 1993). 
observational data, and this is achieved in prin-
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2 General Variational Principle 

Conservation of mass, momentum, and energy 
is the first principle of the macroscopic physics. 
Glansdorff and Prigogine (1965) introduced the 
general variational principle to formulate the con­
servation law, using the evolutionary criterion that 
the entropy of the fluctuation around the aver­
age motion should increase towards the macro­
scopically realized motion. The entropy 88 as­
sociated with the fluctuation of size 8 is given by 
( -Wmin(8)IT). The minimum work, Wmin(8), is 
calculated by integrating, from 0 to 8 with re­
spect to ~' the increase of the total energy caused 
by an increment ~ of a fluctuation of magnitude 
8, [~(8p), ~(8T) and ~(8u)), of a mass element 
and by the associated change in the surrounding 
medium under a reversible thermodynamic change 
in which the total volume and the total momen­
tum are conserved. The result is given by, (see 
Landau and Lifshitz, 1958), 

1 2 8P 2 2 
Wmin(8) = 2[cvT(8TIT) +( Bp )T(8pl p) +(8u) ], 

(1) 
where Cv denotes the specific heat at constant 
density, and P, p, T and u are pressure, density, 
temperature and velocity, respectively. Since the 
probability of finding a fluctuation of magnitude 8 
is proportional to exp[8S lk], the subsequent evo­
.lution of a macroscopic state takes place in the 
direction of increasing the entropy, 

(2) 

where the equality holds at the equilibrium. The 
ev:olutionary criterion for finding the equilibrium 
state is, therefore, 

(3) 

cv(8TIT)dt8T + (8pP)T(8pl p2)dt8P + 8u · dt(8u). 
(5) 

Now, fluctuating quantities under the time deriva­
tives can be replaced by the differences between 
the corresponding quantities with fluctuations 
and their ensemble averages without fluctuations. 
Since the time derivatives of the latter averages are 
governed by the macroscopic conservation equa­
tions, the time derivative of a fluctuating quantity 
turns out to be given by the formula which van­
ishes by the conservation law. For instance, 

dt8P = dtP + p'\1 · u, (6) 

of which the right-hand side vanishes by the mass 
conservation. We finally obtain the general varia­
tion formula of hydrodynamics as follows, 

J P 8p dp du 1 
dm[P --{-+pV·u}+8u·{-+-VP-F} 

p p p2 dt dt p 

8T dT 1 P 
+-{cv--E+-V'·H+PT-V'·u}) = 0, (7) 

T dt p p 

where E, H, F, PT and Pp denote the nu­
clear energy generation, the thermal energy 
flux, the viscous force, [d(log P)ld(logT)]p and 
[d(log P) I d(log p )]T, respectively. The conserva­
tion of mass, momentum, and thermal energy is 
obvious in the above integral which should vanish 
for arbitrary variations of 8p, 8u and 8T. 

An alternative expression of equation ( 4) to 
equation (7) is possible by using P and S as dy­
namical variables instead of p and T, as follows, 

J 8P 1 dP Y'ad 
dm[-{-- + V' · u- -(p€- V' ·H)} 

P r1P dt p 

du V' P 8 S dS V'H 
+8u·{-+--F}+-{T--E+-}] = 0, 

dt p Cp dt p 
(8) 

where r1 - (dlogPidlogp)s, Y'ad -

( d log TId log P) s and S denotes the specific en­
tropy, and cp the specific heat at constant pres-

higher orders in 8 being neglected. Since the time 
scale of a fluctuation is normally much shorter 
than the time scale of the macroscopic evolution, 
Prigogine and Glansdorff (1964, 1965) considered 
that the equation ( 3) should hold also for general 
non-steady macroscopic evolution. Thus, the gen­
eral variational principle is described by sure. Another formula that is the simplest and 

( 4) more often used is the mixed representation, that 
IS, 

84> = J dm[dtWmin] = 0, 

where dm denotes the mass element and 

J 8P 1 dp du VH 
dm[-{-- + V · u} +8u· {-+- -F} 

p p dt dt p 
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8T dS V · H + -{T-- E+ --}] = 0. 
T dt p 

physical property of the system. For the turbu­
(9) lent convection phenomena such as the stochastic 

excitation of the solar 5-min oscillation and the 
The above three formulae are equivalent with each Lorenz chaos in meteorology, the (P, S, u) repre­
other. The last one which is the most convenient sentation may well be employed, since the entropy 
for many other purposes, however, is not appro- perturbation is the key factor of these phenomena. 
priate for deriving the amplitude equations in the We now turn to discuss the turbulent convection 
following way. The other (P, S, u) or (p, T, u) rep- phenomena by means of the modal expansion tech­
resentation can better be used for the construe- nics. 
tion of the dynamical system, depending on the 

3 Linear Modal Expansion 

Construction of a set of amplitude equations 
is the standard formalism of a dynamical system, 
(see Buchler, 1993a,b; Spiegel, 1993). We express 
each dynamical variable as the sum of the equilib­
rium part and its Lagrangian variation so that 

p = Po+ pl' s = So + sl' and u = uo + Ul' 

(10) 
and decompose the Lagrange variation into linear 
eigen-modes as follows, 

n n 

P1 = :L:p(i), s1 =I: sCi), 
i=l i=l 

n 

and u1 = :L:u(i). 
i=l 

(11) 
Variations can be either Eulerian or Lagrangian. 
We employ here Lagrangian for the sake of for­
mal simplicity, although Eulerian is preferred for 
nonlocal phenomena like the convection. Math­
ematically, the authogonality of the eigen-modes 
and the completeness of the eigen-mode expansion 
(ll)are not proven. In practice, however, the au­
thogonality and completeness are understood as 
the modeling of a complex system. 

We are now interested not in the equilibrium 
configuration but in the dynamical system formed 
by the Lagrange variations. We therefore take 
only those parts of the general variational equa­
tion ( 8) that are related to the Lagrange varia-

4 Amplitude Equations 

tions. We have 

+8u(i) · {(dtu(i)- aujQY))- (NL)u(i)} 

+ bSCi) {T( dtsCi)- asiQy))- (N L )~)}] = o, (12) 
Cp 

where Q~i) = (P(i) S(i) uCi)) and ak · denotes the 
J ' ' ' J 

matrix element which involves the equilibrium val-
ues only, and ( N L )g) the nonlinear terms belong­
ing to the Q(i) equation. The explicit derivation 
of the matrix aki and the nonlinear terms is not 
given in the present study. 

By solving the eigen-value problem for the lin­
ear stability analysis, we can transform the above 
variational equation into the following standard 
form, 

j dm I)8X?){dt- nCi))x?) + (NL)}i)}] = o, 
j=l 

(13) 
where the i-th eigen-value of the matrix ((aki)) is 
the growth rate (generally complex) denoted by 
nCi) and 

' 
X (i) - uCi) 

2 - ' 

Any parameter included in the variable x?) parameter. In particular, for obtaining the ampli­
can be taken as a variational parameter, and the tude equation, the natural choice will be on the 
resulting equation from the general variation equa- growth rate n(i) included in the exp(nCi)t) factor 
tion (13) will give an equation to determine that in xji). Omitting the common factor t in the in-
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tegrand, we have finally, 

dt j dm(X?))
2 

= 2 j dm[nCi)(xji))
2 
+X?)(N L)Y)J, 

(15) 
( i = 1, 2, ... ; j = P, S, u). 

In the case of the Lorenz chaos, only three 
variables corresponding roughly to the horizon­
tal pressure gradient, vertical velocity, and the 
vertical entropy gradient are chosen to represent 
the system. The corresponding amplitude equa­
tions are, therefore, different from the above nor­
mal form. Linear transformation of variables de­
composes the system in three linearly independent 
eigen-modes of which one mode is neutral and the 
other two are stable and unstable. Nonlinearity 
first affects the neutral mode forming the global 
structure of the attractor that is primarily char­
acterized by the stable (at tractor forming) and 
unstable (strangeness giving) modes. No1,1linear 

transformation to visualize the structure of non­
linear terms seems tope effective for further study 
of the nonlinear behavior (Spiegel, 1993). 

The stochastic excitation of the solar 5-min os­
cillations is another problems to be studied as a 
complex dynamical system. There are thousands 
of oscillation modes possibly excited stochastically 
by the turbulent convection in or near the edge of 
the convection zone. These oscillations are of the 
nonradial p-modes, while the convection is basi­
cally of the unstable g-modes or the g+ modes in 
origin. The difficulty of the problem lies in the 
fact that not only the statistical properties of tur­
bulent motions but also the variations of the phase 
relations among individual turbulent elements are 
involved in the problem. The dynamical system 
approach with appropriate modeling of turbulent 
eddies should be taken (Buchler,1993b). 

5 Multi-Dimensional Representation 
Before entering into the dynamical system for­

malism for the empirical data, we have to define 
the multi-dimensional phase space as the work­
ing field of complex dynamics. Let us consider 
the global environment as an example of a com­
plex system to be studied empirically. Pressure, 
temperature, humidity, solar energy flux, rain fall, 
wind speed, etc. are supposed to be monitored 
daily at various places on the earth. The first 
thing to do is to homogenize data for the system­
atic differences due to the observed position and 
daily and seasonal variations. This can be done 
empirically, using the average value and the stan­
dard deviation of the observed quantity for nor­
malization. We assume here this has already been 
done. To study the global environment, annual 
averages of various data may be used. For one 
observed quantity, however, we can derive many 
annual averages such as for the quantity itself, 
its longitudinal and latitudinal gradients, and its 
Laplacian, and all of their daily and seasonal am­
plitudes of variations. If we have 6 quantities 
to observe and 12 annual averages for one ob­
served quantity, we can construct the phase space 
of 72 dimensions. Therefore, if the dynamical sys­
tem moves in the manifold of 35 dimensions or 
lower, the phase space thus constructed may well 
embed the manifold in sufficient detail, provided 
that the observations are made at some hundred 
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places in some 10 years of time span. ( (2D+1)­
dimensional space is required for embedding aD­
dimensional chaotic system, (Takens, 1981).) Let 
Qk (k=1,2, .. ,n) denote those (e.g. 72) normalized 
annual average quantities with the weight of ob­
servation, wk. The weight Wk may be taken to 
be (!+(uncertainty measure/probable error)2]-1. 

Then, we can plot one point (or more exactly a 
probability density distribution corresponding to 
wk) in the embedding phase space for each observ­
ing site for each year. However, for convenience of 
the principal component analysis (PCA), we map 
the phase space to the normalized one by means 
of the transformation: 

where 

N N 

< Qk >= (1/ L wk) L wkQ~i), (17) 
i=l i=l 

and 

N N 
O"~ = (1/ L wk) L wk[Q~i)- < Qk >] 2

, (18) 
i=l i=l 

Q~i) being the Qk value at the i-th (site and year), 
(i=1,2, .. ,N). 



6 Improved Principal Component Analysis 

In the following section, we construct a set of 
dynamical system equations out of the PCA of 
empirical data. There are, however, two draw­
backs in that formalism. One is that the result­
ing dynamical system equations are linear in qk 
and, therefore, cannot take account of the nonlin­
ear effect. However, if the functional forms of the 
nonlinear terms are known either theoretically or 
empirically, or by trial and error, we include the 
func~ional form as a new member in Qk. Improve­
ment of PCA in this direction is not discussed 
in the present paper. The second drawback, on 
the other hand, lies in the fact that so many data 
are uncertain or incomplete but are important as 
a whole to determine the behavior of the com­
plex system, and either inclusion or omission of 
the poor data results in the poor determination of 
the principal components. Improved PCA (IPCA) 
has been proposed in Unno and Yuasa (1992) as 
sketched below. 

We have a primary data set ( qki), wii)), 
(i=1,2, ... ,N). Now, we add artificial data as 
(x1i), vii)) with 

(19) 

These virtual data should be determined simul­
taneously and consistently with the IPCA by the 
condition that the whole data set attains the max­
imum probability distribution under the following 
statistical constraints, 

N 

L vii) x~) = 0, 
i::r::l 

(20) 
The principal components are the axes of the 

ellipsoidal distribution of datum points, and are 
the eigen-vectors of the correlation matrix ( ( Tjk) ), 

N 

((rjk)) = L:(wY)qY) + v)i)xY))(wki)qki) + Vki)x1i)), 
i=l 

(21) 
such that 

n 

PI = L J-lij( Wjqj + VjXj ), (22) 
j=l 

where the direction cosines J-llj are given by the 
condition that the squared norm of the eigen-. 
vector, 2:~1 [p~ i)J2, be extremum for the variation 

of J-llj under the constraints that Ej=1 Ji-TJ - 1. 
Note that 

n 

pf = L[J-lfj( WjqJ + vix]) 
j=l 

+ 2 L J-lliJ-llk(wJqi + VjXJ)(wkqk + vkxk)]. (23) 
k>j 

The variation function determining the eigen­
vector ( (J-lli)) is given by 

n 

S =So- (AI/2)[L J-L'&- 1], (24) 
j=l 

where 

N n 

S0 = (1/2N) L:[p}i)] 2 = L:[(l/2)p;i+ L J.liJJ.llkTjk 
i=l j=l k<j 

(25) 
The unknown direction cosines J.lli are the varia­
tion parameters, and the eigenvalue AI is the La­
grange multiplier of the conditional variation. The 
resulting eigen-value equations are given by 

n 

L[(1-Al)c5jk+rjk(1-c5jk)]J.llk = 0, (j = 1, 2, ... , 1 

k=l 
(26) 

Solving for A1, we also obtain ( (J.llj)) by the stan­
dard linear algebra. 

Now, it is easy to show that the mean-square 
dispersion of PI is equal to AI on account of the 
above eigen-value equations. The probability of 
finding a set of principal components (p1,p2, ... ,pn) 
in a volume element dp1 dp2 ... dpn obeys the ellip­
soidal distribution 

W(p)(dpt = 

n n 

[(27rt II Ait112 exp[- L(Pf /2Ai)]( dp t. (27) 
l=l 1=1 

( i) The variation function for determining xi is, 
therefore, given by 

N N n 2 w = L:W(i) = 2:::[-(1/2) L (p}i)) I Ai], (28) 
i=l i=l l=l 

PT being given by equation (23). Taking the vari­
ation c5xY), we obtain 
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( i) ~ 2 ( i) ~ ( i) ( i) ( i) ( i) )] 
-vi L.,..(1/ ,\z)[JJ1ixi + L.,.. /Jli/Jlk( wk qk +vk xk 

1=1 k#j 

= 0, (29) 

(j = 1, 2, ... , n). The solution of this set of simulta­
neous algebraic equations gives xY) in linear com-

bination of qii\k = 1, 2, .. , n). Then, our improved 
data set will be [wki)q~i) + vii)x~i)] (k=1,2, ... ,n; 
i=1,2, .. ,N) with the weight of [1 + wii)]/2. The 
IPCA will be performed with the improved data 
set. 

7 Construction of a Dynamical System by PCA 
In the above PCA, we have plotted N points in 

then-dimensional phase space, assuming that n ~ 
(2D+1), where D denotes the correlation dimen­
sion of the dynamical system under consideration. 
Now, we increase the dimension of the embedding 
space from n to 2n by adding the time derivative 
for each Q~i) to the primary data set. Then, re­
peating the same procedure as explained in the 
preceding sections, we obtain 2n principal compo­
nents. Among these principal components, how­
ever, those components that have the significantly 
large(~ 1) eigen-values should have already been 
obtained, since the embedding dimension n of the 
first PCA was sufficiently large. Identification of 
new significant principal components with the old 
ones should give the amplitude equations as fol­
lows, 

n n n 

( ) 
~ (2) - ~ ~ (2) 

dtq k' = L.,.. !Jzk' Pl - L.,.. L.,.. !Jlk' /Jliqi, (30) 
1=1 l=lj=l 

8 Conclusion 

where ( dtq)k' denotes the normalized time deriva­
tive of Qk, and JJ~;/ the direction cosine between 
the ( dtq)k' axis and the PI vector in the second 
PCA. In the original units, the above equation is 
rewritten as 

n n 

LLJJ~;//Jzj(uk'/ui)(Qi- < Qi >), (31) 
1=1 j=l 

where k'= n+k in the second PCA, and Uk' de­
notes the rms dispersion of dtQk. The set of these 
equations (k=1,2, .. ,n) constitutes the required em­
pirical construction of a complex dynamical sys­
tem. 

The set of the amplitude equations defining a ponent analysis applied to various observational 
dynamical system is formulated theoretically, us- data and their time derivatives. These two for­
ing the general variational principle and the lin- malisms should open the way to study complex 
ear mode expansion for the purpose of modeling dynamical systems in the natural philosophy and 
the system. The amplitude equations can be re- in the natural history. In this paper, emphasis 
garded as the copy of the stationality of the min- has been put especially on the IPCA which could 
imum work in the positive-definite normal form. remedy the difficulty of incompleteness of data in 
This seems to be the reason why the general vari- treating diversity of nonsystematic observations in 
ational principle can be useful in studying the dy- the global environment problem. Wider applica­
namical system. Also, it is shown in the present tion of the method, however, would be expected 
study that the dynamical system formalism can in various fields of natural and social sciences. 
be obtained empirically, using the principal com-
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