The Arrival Direction of EAS **Observed by Kinki Array** with Energy Around 10¹⁵ eV

Michiyuki CHIKAWA¹, Takashi KITAMURA¹, Takeharu KONISHI², Katsufumi TSUJI², Yukihiro KATO², Soji OHARA³

¹ Research Institute for Science and Technology, Kinki University Kowakae, Higashi-Osaka 577, Japan ² Faculty of Science and Engeneering, Kinki University Kowakae, Higashi-Osaka 577, Japan ³ Faculty of Economics, Nara Industrial University Nara 636, Japan (Received 30th January, 1996)

Abstract

A search for the arrival direction of EAS has been studied for the data of Kinki array and the galactic coordinates with energy range between 10¹⁴ and 10¹⁷eV at sea level. No strong statistical significance of deviation from isotropy was found for the galactic plane enhancement. Concerning on the galactic enhancement tactor f a comparison with some other higher energy experiment is also presented. It seems that the distribution of arrival direction of EAS suggests very weak energy dependence of fe for EAS at low energy region. In this report, I will present some basic calculation results about the distribution of arrival distribution of EAS in the galactic coordinates.

Key words: EAS, arrival direction, the galactic plane enhancement, Durham formulation.

1 Introduction

There has been published many papers energy[1 etc.]. We analysed approximately on the direction of cosmic rays at high 54k events of the Kinki data period between

1989 and 1992[2]. For the data, an anisotropic distribution for the galactic plane was investigated. Also we compared forcibly from low energy EAS to most high energy ones.

2 The Galactic Plane Enhancement of EAS

An analysis on the galactic latitude has been studied. The galactic latitude enhancement factor, fe values were calculated from ratio of the number of observed events to expected events, n_{obs}/n_{exp} . The fe values for the directions of the galactic centre and anticentre were compared. It evaluated with fit of Durham formulation[3]:

$$I(b)/I_o = n_{obs}/n_{exp}$$

=(1-f_e) (const) f_e e^{-b2},

where I(b) is the observed cosmic rays intensity at the galactic latitude b, I_o is the overall average intensity, and 'const' is a correct average intensity for normalisation which is currently taken to be 1.4. And calculations were done for the data dividing into two direction concerning on the galactic longitude l, i.e., the galactic 'centre' and the galactic 'anti-centre', corresponding to 270 < l < 90 and 90 < l < 270 in unit of degrees, respectively. Calculation results for our data with cut of these directional criteria are shown in Table-1. Fig-1(a)-(c) are shown their plot with other experimental data.

4 Results

Next f_e are evaluated for the data of EAS at the Kinki array: $f_e(uncut)=0.064 \pm 0.012$, $f_e(centre)=0.100 \pm 0.020$, $f_e(anti$ $centre)=0.040 \pm -0.016$. It seems that the distribution of arrival direction of EAS suggests very weak energy dependence of fe for EAS at low energy region

Acknowledgement

We would like to thank Professor AA Watson at Leeds University in UK for his invaluable suggestion and the original idea of this work.

References

- [1]MS Gillmann and AA Watson: 23rd ICRC(Calgary), (1993)
 M Giller et al.: Proc. 23rd CRC(Calgary)2, 81(1993)
 DJ Cutler et al.: Astrophys. J 376, 322(1991)
 - K Nagashima et al.: Nuovo Cimento, 12C N.6, 695(1989)
- [2]M Chikawa et al.: 23rd ICRC(Calgary), HE, Vol4, 219(1993) M Chikawa et al.: 24th ICRC(Rome), OG3.1.6, 780(1995)
- [3]X Chi, AA Ivanov and AW Wolfendale: J. Phys. G., 18, 1259(1992)

Total 54k evs, Harmonic analysis.

1	let	harmoni	- >
•	Iat.	narmonro	

ŧ	Mid-pnt deg	Obs. evs.	cos	Ni*COS	sin	Ni*sin	#	Mid-pnt deg	Obs. evs.	COS	Ni*cos	sin	Ni*sir
						133 340			1630		1506 756	0 1776	
1	5.0	1230	0.9962	1529.178	0.08/2	133.340	1	5.0	1550	0.9040	1351 000	0.1750	203.002
4	15.0	1200	0.9659	1506.844	0.2588	403.758	2	15.0	1500	0.6000	1321.000	0.3000	100.00
3	25.0	1506	0.9063	1364.900	0.4220	030.403	د	25.0	1500	0.0420	514 309	0.000	1133.00
4	35.0	1504	0.8192	1232.003	0.5/30	802.039	4	35.0	1504	0.3420	0 000	1 0000	1413.27
2	45.0	1297	0.7071	1129.250	0.7071	1129.249	5	45.0	1097	0.0000	531 157	0.0307	1 450 34
6	55.0	1553	0.5736	890.764	0.8192	1272.143	6	55.0	1553	-0.3420	-331,137	0.9397	1439.34
7	65.0	1469	0.4226	620.826	0.9063	1331.300	7	65.0	1469	-0.6428	-944.200	0.7000	1123.31
8	75.0	1403	0.2588	363.123	0.9659	1355.194	8	75.0	1403	-0.8660	-1215.034	0.5000	701.50
9	85.0	1531	0.0872	133.436	0.9962	1525.174	9	85.0	1531	-0.9848	-1507.741	0.1/36	265.65
0	95.0	1481	-0.0872	-129.078	0.9962	1475.364	10	95.0	1481	-0.9848	-1458.500	-0.1736	~25/.1/
1	105.0	1469	-0.2588	-380.205	0.9659	1418.945	11	105.0	1469	-0.8660	-12/2.191	-0.5000	-734.50
2	115.0	1471	-0.4226	-621.671	0.9063	1333.179	12	115.0	1471	~0.6428	-945.541	-0.7660	-1126.85
3	125.0	1543	-0.5736	-885.028	0.8192	1263.952	13	125.0	1543	-0.3420	-527.737	-0.9397	-1449.94
4	135.0	1517	-0.7071	-1072.681	0.7071	1072.681	- 14	135.0	1517	0.0000	0.000	-1.0000	-1517.00
5	145.0	1442	-0.8192	-1181.217	0.5736	827.097	15	145.0	1442	0.3420	493.193	-0.9397	-1355.03
6	155.0	1507	-0.9063	-1365.806	0.4226	636.886	16	155.0	1507	0.6428	968.681	-0.7660	-1154.42
7	165.0	1464	-0.9659	-1414.115	0.2588	378.911	17	165.0	1464	0.8660	1267.861	-0.5000	-732.00
8	175.0	1455	-0.9962	-1449.463	0.0872	126.812	18	175.0	1455	0.9848	1432.895	-0.1736	-252.65
9	185.0	1407	-0.9962	-1401.646	-0.0872	-122.628	19	185.0	1407	0.9848	1385.625	0.1736	244.32
0	195.0	1400	~0.9659	-1352.296	-0.2588	-362.346	20	195.0	1400	0.8660	1212.436	0.5000	700.00
1	205.0	1474	-0.9063	-1335.898	-0.4226	-622.939	21	205.0	1474	0.6428	947.469	0.7660	1129.15
2	215.0	1373	-0.8192	-1124.696	-0.5736	-787.520	22	215.0	1373	0.3420	469.594	0.9397	1290.19
3	225.0	1404	-0.7071	-992.778	-0.7071	-992.778	23	225.0	1404	0.0000	0.000	1.0000	1404.00
4	235.0	1454	-0.5736	-833.981	-0.8192	-1191.047	24	235.0	1454	-0.3420	-497.296	0.9397	1366.31
5	245.0	1421	-0.4226	-600.540	-0.9063	-1287.863	25	245.0	1421	-0.6428	-913.401	0.7660	1088.54
6	255.0	1466	-0.2588	-379.429	-0.9659	-1416.047	26	255.0	1466	-0.8660	-1269.593	0.5000	733.00
7	265.0	1503	-0.0872	-130.995	-0.9962	-1497.281	27	265.0	1503	-0.9848	-1480.166	0.1736	260.99
8	275.0	1521	0.0872	132.564	-0.9962	-1515.212	28	275.0	1521	-0.9848	-1497.893	-0.1736	-264.11
9	285.0	1527	0.2588	395.217	-0.9659	-1474.969	29	285.0	1527	-0.8660	-1322.421	-0.5000	-763.50
0	295.0	1542	0.4226	651.677	-0.9063	-1397.527	30	295.0	1542	-0.6428	-991.179	-0.7660	-1181.24
1	305.0	1572	0.5736	901.662	-0.8192	-1287.707	31	305.0	1572	-0.3420	-537.656	-0.9397	-1477.19
2	315.0	1504	0.7071	1063.488	-0.7071	-1063.489	32	315.0	1504	-0.0000	-0.000	-1.0000	-1504.00
3	325.0	1550	0.8192	1269.686	-0.5736	-889.044	33	325.0	1550	0.3420	530.131	-0.9397	-1456.52
4	335.0	1510	0.9063	1368.525	-0.4226	-638.154	34	335.0	1510	0.6428	970.609	-0.7660	-1130./2
5	345.0	1616	0.9659	1560.936	-0.2588	-418.252	35	345.0	1616	0.8660	1399.497	~0.5000	
6	355.0	1508	0.9962	1502.262	-0.0872	-131.431	36	355.0	1508	0.9848	1485.090	-0.1/36	-201.00
+a)		53754	********	959 818		86.951	Tota	1	53754		-8.491		-474.57
***	*********	****	1-st HARM	ONTC ANALY		*******	****	- *********	****	2-nd HARM	IONIC ANALY	'SIS ****	*******
bar	= 0.0359	S0=1-	R bar=0 9	641			R ba	r= 0.0177	S0=1-	R bar=0.9	823		
= 50	rt[2 ln(1-	rc)]=1	47.823(de	ar)			s0=s	qrt[2 ln[1	-rc)]=1	62.793(de	eg)		
ean	angle> =	5,1	76(deg)	2n(R bar)^2=)38	. 231	(mea	n angle> =	268.9	75(deg)	2n(R_bar) 2= 3	3.530
	k0 =	17.28			, - 100			k0 =	4.19)	•		
												*******	******

-79-

tota	al 56804 EAS : cent	tre=20485	anticentre=	36319	· · · ·
* 876555555555555555555555555555555555555	$\begin{array}{c} \text{no} \text{cut} \text{56804} \text{evs} \text{s} \\ \text{obs} \text{error} \\ 0.00+/- \ 0.00 \\ 206.00+/-14.35 \\ 335.00+/-18.30 \\ 630.00+/-25.10 \\ 1713.00+/-41.39 \\ 3217.00+/-56.72 \\ 4630.00+/-68.04 \\ 5408.00+/-73.54 \\ 5379.00+/-73.34 \\ 5184.00+/-73.34 \\ 5184.00+/-73.34 \\ 5184.00+/-68.00 \\ 4388.00+/-66.24 \\ 4349.00+/-65.95 \\ 4536.00+/-65.95 \\ 4536.00+/-65.57 \\ 3947.00+/-65.57 \\ 3947.00+/-62.83 \\ 2872.00+/-53.59 \\ 1087.00+/-32.97 \\ \hline \end{array}$	<pre>*** exp(int) 244.25 573.96 1275.22 3007.15 6142.83 10658.90 15914.60 21310.97 26316.45 30900.98 35247.56 39539.38 44161.61 48545.81 52600.43 55648.59 5684.57 </pre>	exp 0.11+/- 244.14+/- 329.71+/- 701.27+/- 1731.93+/- 3135.68+/- 4516.07+/- 5255.70+/- 5396.38+/- 5005.47+/- 4584.54+/- 43846.58+/- 4291.82+/- 4622.23+/- 4384.20+/- 4054.62+/- 3048.16+/- 1155.98+/-	error 4.40 5.20 8.13 14.06 19.54 23.89 25.47 25.39 25.47 25.39 20.42 18.71 19.96 19.587 19.108 19.587	Obs/exp error 0.000+/-0.000 0.844+/-0.061 1.016+/-0.058 0.898+/-0.037 0.989+/-0.025 1.026+/-0.019 1.025+/-0.016 1.029+/-0.015 0.997+/-0.014 1.036+/-0.015 1.010+/-0.016 1.013+/-0.016 0.981+/-0.015 0.981+/-0.016 0.973+/-0.016 0.942+/-0.018 0.940+/-0.029
* 87654355555555555555555555555555555555555	obs error 0.00+/- 0.00 23.00+/- 4.80 128.00+/-11.31 143.00+/-11.96 314.00+/-17.72 602.00+/-24.54 1007.00+/-31.73 1439.00+/-37.93 1767.00+/-42.04 1906.00+/-43.66 2002.00+/-44.74 2036.00+/-45.12 1954.00+/-45.84 1761.00+/-45.84 1761.00+/-41.96 1560.00+/-39.50 1238.00+/-35.19 504.00+/-22.45 anti-centre : 3631	exp(int) 0.02 38.89 168.55 330.77 642.03 1245.91 2231.45 3635.39 5339.89 7229.11 9203.17 11178.65 13150.47 15341.46 17196.79 18852.71 20192.07 20736.96	exp 0.02+/- 38.88+/- 129.66+/- 162.22+/- 311.26+/- 603.88+/- 985.54+/- 1403.94+/- 1704.50+/- 1889.23+/- 1974.05+/- 1975.48+/- 1975.48+/- 1975.34+/- 1955.34+/- 1655.92+/- 1855.34+/- 1655.92+/- 1339.36+/- 544.90+/-	error 0.823 2.324 4.065 7.058 8.5555 8.555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.5555 8.55555 8.55555 8.55555 8.555555 8.55555555	obs/exp error 0.000+/-0.000 0.592+/-0.124 0.987+/-0.089 0.882+/-0.075 1.009+/-0.058 0.997+/-0.041 1.022+/-0.033 1.025+/-0.028 1.037+/-0.025 1.009+/-0.024 1.014+/-0.023 0.991+/-0.023 0.991+/-0.023 0.949+/-0.021 0.949+/-0.024 0.924+/-0.027 0.925+/-0.042
b 555555555555555555555555555555555555	obs error 0.00+/-0.00 183.00+/-13.53 207.00+/-14.39 487.00+/-22.07 1399.00+/-37.40 2615.00+/-51.14 3623.00+/-60.19 3969.00+/-63.00 3612.00+/-60.10 3278.00+/-57.25 2622.00+/-51.21 2352.00+/-48.50 2395.00+/-48.94 2435.00+/-49.35 2538.00+/-50.38 2387.00+/-48.86 1634.00+/-40.42 583.00+/-24.15	exp(int) 205.35 405.41 944.45 2365.11 4896.90 8427.41 12279.15 15971.00 19087.22 21697.68 24068.74 26388.71 28819.93 31348.77 33747.45 35456.23 36067.30	exp 0.09+/- 205.26+/- 539.05+/- 1420.66+/- 3530.51+/- 3851.74+/- 3691.85+/- 3116.22+/- 2610.45+/- 2371.07+/- 2319.96+/- 2431.22+/- 2528.84+/- 2528.868+/- 1708.78+/- 611.08+/-	error 0.06 3.62 12.30 17.13 20.79 21.59 20.79 11.684 13.084 13.084 13.084 13.95 9.65 4.43	obs/exp error 0.000+/-0.000 0.892+/-0.068 1.035+/-0.074 0.903+/-0.042 0.985+/-0.028 1.033+/-0.021 1.026+/-0.017 0.978+/-0.017 1.052+/-0.019 1.004+/-0.021 1.032+/-0.021 1.002+/-0.021 1.002+/-0.021 1.002+/-0.021 1.004+/-0.021 0.995+/-0.021 0.995+/-0.024 0.954+/-0.040

Table-2 Calculation results of n_{obs}/n_{exp} and their errors for the Kinki data.

summary of fe values of experiments

<e< th=""><th>shw>(EeV)</th><th>fe</th><th>err</th><th>events</th></e<>	shw>(EeV)	fe	err	events				
*** uncut HP	*** 1.361 2.628 5.437 10.861 22.125 63.789	0.032 0.084 0.204 0.100 0.316 -0.644	0.032 0.060 0.104 0.176 0.240 0.324	7320 2443 706 249 99 66				
SUGER	11.04 22.08 54.93	0.364 0.100 0.332	0.292 0.272	183 114 84				
YAKUTSK	17.43	0.368	0.184	233				
Volcano Ranch	27.96	-0.24	0.48	44				
Akeno	0.018 0.058 0.135 0.234 0.407 0.741 1.315 2.410 4.236 7.621 17.22	0.006 0.024 0.000 -0.060 -0.018 0.006 -0.072 0.163 0.121 0.195	0.017 0.036 0.025 0.041 0.020 0.027 0.030 0.081 0.111 0.216 0.148					
Kinki	0.003	0.064	0.012	56804				
*** centre ***								
Kinki	0.003	0.100	0.020	20485				
*** anti-centre ***								
Kinki	0.003	0.040	0.016	36319				

Table-3 Asummary of f_e values of our data and some other experiments.

Distribution of Right Ascension

Right Ascension (deg.)

Number of Events/18deg.

Fig.-1 A distibution of our data in celestial coordinates.

Fig.-2 A sky view of observation events of the Kinki array. Celestial and the galactic coordinates are indicated in the figure.

Fig.-3 The galactic enhancement factor f_e for directions of (a)'uncut', (b)'centre', and (c)'anticentre'.