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Abstract 

The method of dynamic modeling is explored and applied to the global change. The repetitive 
use of principal component analyses (PCA) in multidimensional phase space describing the dy­
namical state of the global enviromncnt is the main tactics of the method. For various quantities 
monitored at sites distributed over the entire globe, amplitudes of variation in shorter time scales 
as well as the relevant time averages are taken as additional variables in order for revealing the 
nonlinear· couplings among different time scales. Spatial and temporal derivatives of all those 
variables arc then taken also as additional variables for describing the evolution of the dynamical 
state of the system. 

The first PCA is intended to obtain the description of the system in terms of the principal 
components, and the second PCA is to describe the dynamical properties of the system. A 
method of maximum-entropy adjustment of the data is also explored. Thus, large amount of 
fragmentary data scattered in wide range of accuracy can be used in the PCA constructively, 
and the applicability of the method of dynamic modeling is greatly extended in the study of the 
global change as well as in other branches of the natural history. 
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1 Introduction 
Population, Energy, and Environment are gen­

erally agreed as constituting three major problems 
of the coming century. They are strongly coupled 
with each other, but especially the third one, the 
environment, carries the results of all the natural 
and human activities. Therefore, the world-wide 
cooperation based on the deep understandings of 
the problem is urgently called for. 

The most important direct quantity represent­
ing the global environment condition may be the 
annual average of the average global surface tem­
perature. But, all the quantities that affect it and 
that are affected by it constitute the nonlinear dy­
namical system. Since the global environment is 
basically conditioned by liquid water and oxidizing 
a.tmo~pherc t.hat have been continuously r<'formed 

by Life, special care must be taken for its com­
plex characteristics as a multi-dimensional non­
linear dynamical system varying in wide ranges 
of time scales. An important aspect of the envi­
ronmental problem is, therefore, the interaction of 
modes of different time scales. 

The biggest concern of the present day, the 
global warming, seems to be mostly concentrated 
on the time scale of the order of 10 to 100 years. 
But, the daily variation and t.he seasonal variation 
are basic in meteorology, and the turbulent diffu­
sivities that influence the global wa.rming should 
depend on these shorter time variations. Also, 
there are long term variations such as deep ocean 
circulation having the time scale of the order of 
1000 y~«.rs. In the la.ttcr cn~e, salt wa.tcr cooled 
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down to n.bout ·!°C in polar circumfercntin.l re­
gions creeps t.o the bottom of ocean capturing C02 
from the a.t.mosphcre and finally wells up in differ­
ent parts of ocean, thus conceming the cooling of 
the earth in two different mechanisms. Therefore, 
not only those quantities that describe the present 
state of the global warming but also those quanti­
t.ies that represent variations of shorter and longer 
time scales must be included in the analysis of the 
globld warming. 

Our next concern is how to represent the dy­
namical system. Let us consider a huge dynamical 
system governed by a large set of partial differen­
tial equation. In general, we don't know how many 
modes of motion arc excited and what arc excit­
ing mechanisms in the system. But, we can in 
principle measure various quantities, ·Q;(sj, tk), iu 
various sit.f's, s;, at. various time, tk. Thus, we can 
construct a multi-dimensional phase space com­
posed of the quantities Q;'s, and the state in en.ch 
s ite at each time is represented by a point in that 
space. T his description, however, is a static repre­
sentation, which should be extended to a dyuamic 
representation for clwotic dyw11nical systems. In 
ot.her words, the dimension of the phase space has 
to be enlarged to include the dimeusions repre­
senting temporal and spatial derivatives that can 

2 Construction of Data Base 
Let Q~.,,t) and w~·'·1> denote the value of a mon­

itored quantity, Q; and the associated weight of 
the observation ma.cle at site s aud at time t. From 
that, we can construct Ql·'i.lkl and w~~i.tk) by in-

terpolation, where s i and t k reprcseut oue of the 
mesh points of s it.c si and time tk. We will work 
exclusively on t.ltese values hereafter. 

The weight wf$i,td is taken to be as large 

as cxp[-.6.2] for the measurement of which the 
estimated probable error is D. in unit.s of the 
root-mean-square dispersion of Q;. In particular, 
w~·'i·'k ) can be taken to be unity for high accu­
racy measurements a.nd zero if no measurements 

ad Tb Q<~i.td d <~j.tk) (' 1 I are m, c. esc ; an tu; 1= ... , 

(j ,k)=L.N) are the primary source da.ta from 
which the mult.i-dimensiona.l data set can be con­
structed. Subscripts j a.nd k will be omitted from 
(.~i, tk) hereafter, un!P.ss confnsions may not ha.p-

be generated from Q;(sj, tk )· 

The distribution of points in the multi­
dimensional space of the dynamic reprcscntat.ion 
thus constructed may be best ana.lyzed by means 
of the principal component analysis (PCA). The 
dynamic state of the system, however cannot be 
fully accounted for by a single trial of PCA. The 
repetition of PCA, first for determining the static 
structure aud then for hunting the mechanism, 
seems to be indispensable. The construction of 
this repetitive PCA scheme will be discussed lat.er 
as the central task of the present paper. 

The PCA, however, is very much restricted or­
dinarily by the la.ck of complete data to be possi­
bly plotted in the umlti-dimcnsioual phase space. 
Especially, in the global warming study, the data 
are abundant but fragmentary, and random in ac­
curacy and often lacking for particular sites and 
occasions. The PCA for incomplete data has b een 
recently proposed by Unno and Yuasa (1992). The 
data arc snpplcrncntcd by the adjustment in the 
maximum entropy tcchnir1ne proper for PCA and 
even fragmentary data can be used constructively 
for defining the st.atc of the system. The method 
will be summarized briefly in a subsequent section 
of this paper. 

pen. 

We are now interested in the dyuamies of time 
scale of the order· of 10 years or more. There­
fOI:e, all the values of Q)3

'
1
> are understood as the 

running averages over oue year. However, since 
we arc also interested in the eoupliug between the 
mode of the time scale in ques tion and modes of 
daily and seasonal varin.tions, the aiJnual averages 
of the amplitudes of the daily and seMonal vari­
ations, denoted as DQ~~.t> and SQ~"·1>, should be 
included in the data base. Thus, the quantity Q; 
is extended to the vector, { Q;} = (Qi, DQ;, SQ;). 

Now, we tum to include !.he spatia.l (longitudi­

nal and latitudinal) derivatives, \/).. aud V ~· a.ud 
possibly the Laplacian, v2 , that are calculated 
from the original Q~··,t> data with the help of the 
interpolation formula in n.ppropriate spatial inter­
vals. The corresponding weights can be estimated 
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accordingly. The inclusion of these spat il-l.! dcriva- interest is coucemcd with the global warming, sus­
tives to the data base enables us to represent the taining mechanisms can have spatial structures 
dynamical system defined implicitly by a set of that are substantially smaller than the earth ra­
partial differential equations. Even if our primary dius. 

3 Time Derivatives and Time Lags 

Lastly, we consider the inclusion of temporal 
derivatives to the data base. In the analysis of 
the chaotic dynamical system , we usually em­
ploy the m-dimensional vector space composed of 
{X(t), X(t + r), ... , X(t + (m- l)r) belonging to 
time t (Takens, 1981). Here, r denotes a rep­
resentative time interval for the chaos. Equiva­
lently, we can take time derivatives from the 0-th 
to the (m-1)-th. But, in treating the global warm­
ing, it would be more practical to employ only 
the first time derivative or at most up to the sec­
ond time derivatives of many quantities, { Q;}, by 
taking a number of quantities (dimension of em­
bedding space) exceeding (2n+l) times the Haus­
clorf dimension, n, of the system (31 > 2n + 1, or 
6! > 2n + 1), (Takens, 1981). If necessary, the 
time derivatives of the spatial derivatives can be 
used as well. The correlations of these time deriva­
tives, Q)3

't) etc., with the principal components in 
the PCA describing the system should reveal the 
dynamic mechanisms driving the variation of the 

system, provided that the latter .principal compo­
nents could describe the system completely. 

There is, however, another aspect that may es­
cape from the above description. That is, the time 
lag problem. For instance, Bartusiak found a good 
correlation between the sunspot number and the 
stratospheric temperature in the north polar re­
gion when the west wind prevails in the equatorial 
stratoshcre, but a good anti-correlation in the east 
wind period (see e.g. Nemoto,l992). In that case, 
the time lag of a half solar cycle to the north po­
lar stratoshere temperature data for the period of 
east tropical stratospheric wind will bring a uni­
versally good correlation with the sunspot data. 
This example demonstrates the importance of a 
triple correlation which is usually disregarded in 
the PCA. Therefore, if such a triple correlation 
is known beforehand, the introduction of an ap­
propriate time lag will be effective in deriving a 
significant principal component which would be 
otherwise overlooked. 

4 Multi-Dimensional Representation 

Various observational quantities, Q;, ampli­
tudes of their daily and seasonal variations, DQ; 
and SQ;, and spatial derivatives, VA and \].p, and 
the Laplacian, \]2 , of all of those quantities are 
denoted hereafter simply as Qi . All of these quan­
tities Q~s,t) are understood as the annual average 
values given for ~very site s1 and for every time 
tk, and the corresponding weights of determina­
tion are denoted by w~3 '1>. Also, we have the 
time derivatives, Q;(s, t), and the corresponding 

weight.s of determination, w(Q;)(!,t). These data 

form the content of t.he second data base which is 
the source data base for the PCA. 

Defore cloil1g PCA, however, those Q; and Q; 
values should better be normalized to give q; and 

q; as follows, 

q; = [Q;- < Q; >]/a;, (i = 1,2, .... ,m) (1) 

where < Q; > denotes the average over the whole 
( si, tk) data and a; the nus dispersion, 

< Q; >= (L w~~,t))-1 L w~s,t)Q~s,t) ( 2) 
~,t s,t 

and 

2 _ ('(""' (.•,t))-1 '(""' (s ,I)[Q(s,t) < Q >]2 (J) . 0'; - L., W; L., W; j - i · 
3,1 !,t 

The phase space which is built by q;-coordinates 
forms t.he em becldiug sp(l.Ce in wh kh dynamic 
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characteristics are implicitly represented by ob­
servational quantities. The first PCA for obtain­
ing principal components representing the system 
should be worked out in this space. 

In the second PCA intended for finding mech­
anisms, the embedding space for the explicit dy­
namic representation should be composed of q; in 

5 Data Supplement 

The usual PCA treats the case that the set 
(q1, q2, ... , qm) are measured with accuracy given 
by the weight w~s,t) for every site and time (sj, tk)· 
This is not the case in the global warming in which 
w~$,t) is attribute.d to each qj$,l). We have fornm-
lated the maximum entropy method of the data 
supplement (Unuo and Yuasa,1991) to make nu­
merous imperfect data to be accessible to the PCA 
formalism. 

To each pair of data [w~8'1>, q~$'1>], we now pro­
pose to supplement a virtual pair !v~$,t) , xls,t)J such 
that 

(s,t) _ l (4,1) 
V; - - W; 1 {4) 

and the whole set of data including the vir­
tual added data attains the maximum probabil­
ity distribution under the following statistical con-

6 Generalized PCA 
The principal components are the axes of the 

ellipsoidal distribution of datum points in the 
embedding space. The principal PI of a point 
(q1,q2, .. . , qm), for the perfect data (w; = 1), is 
expressed by the equation 

m 

PI= LJ.liiq; , 
i==l 

(6) 

addition to the significant principal components 
PI already obtained in the first PCA. Since no 
new significant principal components should ap­
pear, the result of the second PCA will give the 
expression of q; in terms of a linear combination 
of Pt 's, if the system was described completely by 
the principal components PI· 

straints, 

and 

""' (a,t) .(s,t) _ O 
L....., V; X; - 1 

""' (a,t) [ (s,t)J2 _ ""' (s,t ) 
L....., ll; X; - L....., V; 1 

s,t 

(5) 

for all i. Thus, the set of measured q;- values sprits 
into 2m subsets for each (si, tk)-measurement in 
which the i- th variable attains either q~s,t) or 
x;(s,t). The weight for each subset is given by 
n~J[w;, v;](a,l) in which [w;, v;J represents either 
w; or v; according as qr"·1

> or x~s,t) is adopted for 
q; in the subset . . The variational determination 
of :r~a,t) will be given later. We now proceed t.o 
the first PCA generalized for imperfect data. For 
the second PCA, similar supplementation of data 
should be performed for the time derivatives as 
well. 

ized to be 
111 

PI = L Pli( w;q; + v;x; ). (7) 
i= l 

In the expression of ]Jf, however, terms having 
weight factors lil.;e w;v; (same subscripts) should 
be omitted. We obtain, 

m 

2 - ""' [ 2 ( · 2 .2) Pt - L ~t1; w;q; + v;x; 
i=l 

in which the direction cosines /Jti are given by 
the condition that the sum of the principal com-
ponents squared 2:,, 1 (IJ~···t)J2 be extremum for + 2 L /JliJt11(w;q; + v;x;)(w1qi + vix1)]. (8) 
the variation of f.l.li under the constraint that i >k 

E~1 p'ft = 1. In the present general case, 2m . Note that the weight of the q[ term is not w[ but 
subsets corresponding to two values (q;, x;) in ev- w; and that the q;x; tenus do not exist. This ex­
cry coordinate belong to every one of ( s, t )-sets. pression of ]Jf holds for each (j, k) set which is 
Tl1erefore, the above expression of PI is general- composed of 2m subsets. 

-4-



The eigenvector ( (Pli) )( i = 1, 2, ... , m) is deter- P CA equations, 
mined from the variation of the following variation 
function, 

m 

S == S0 - (.At/2)[LJ.L~- 1], (9) 
i=l 

and 
N 

So= (1/2N) E (p~~~·'>V = 
(s,t)=l 

m 

E f(1/2)Jti; + E J.llifltj?·;jJ, (lOJ 
i=l i<j 

where N is the total number of observing points 
(site s and time t) and r;3 denotes the correlation 
coefficient given by 

N 
• - ~ ( (s,t) (s,t) + c~.r) .(s,l)) 

7 ij - ~ W; q; V; .'Z:; 
(s,l)=l 

( 
(s,t) (s,t) + {;t,t) (s,t)) 

X Wj % Vj Xj , (11) 

an expression which is reducible to the correlations 
< q;q3 > if th~ distributions of x and q are statisti­
cally the same. Thus, the generalized PCA equa­
tions are reduced to the same form as the usual 

7 The Most Probable Data 
We are now at the position to determine x~•,t) 

to provide the most probable data with the con­
dition that W(p) be maximum. There are two 
constraints for x~"·t) such that 

and 

N 
~ ( (s,t) ( .. ,1) + ( s ,l), (s,t)) _ 0 
~ W; q; V; .r.; - , 

(s,t)=l 

N 2 2 
~ ( (s,t) (s ,l) + (s,t) (s,t) ) _ 1 
~ W; q; V; X; - . 

(s,l)=l 

(15) 

(16) 

However, these constraints can be fulfilled prior 
to the PCA by t.he zero point readjustment and 
by renormalizatiou (by chai1ging cr;) after the fol­
lowing variational detcrmiuation of x~s,t) has been 
done. 

The variation function for determining x~s,t ) is 
given by 

N N m 2 w = E w<···'> = E [-(1/2) E{l f-\ ,hAs,t) J. 
(.s,t)= 1 (.•,1)=1 t=l 

(17) 

m 

L [(1-.At)D;j+r;j(1-0;j)itti ] = 0, (i = 1, 2, ... , m.). 
j=l 

(12) 
The eigenvalues At (1=1,2, ... ,m) and the corre­
sponding eigenvectors (Jtli) are then obtained. 

Now, it is easy to show that the rms dispersion 
of p~"·') is equal to At on account of equations (12), 

N 

A[= (1/N) L [p~"·')f. (13) 
(.!,1)=1 

The probability of finding a set of observations 
having principal components (p1,P2, ... ,pm) in a 
volume element dp1 dp2 ... dp, obeys the ellipsoidal 
distribution 

W(p)dp = 
m >n 

[(27rr n )..t]-112 exp[- L(P~ /2.A,)]dp, (14) 
t=l t=l 

ensuring the average of p~ to be At. 

where p}"'1)
2 

has been given in equation (8). 
Taking the variation bx~·•,t), we obtain 

8W _ <•,1) ~ 1 [ 2 .(•,1) 
(;,1) - - v; ~ ~ !JiiXi 
8x; 1= 1 t 

+ ~ ( (.•,1) (s,t) + (.,,t) .(.9,1))] _ Q (1B) 
~ JLuJ.t.Jj wi qi vi x3 - . 
#i 

This is a set of simulta.neous linear algebraic equa­
tions (i = 1, 2, ... , m), decouplcd with different 
(s, t) sets. The solution xl"·t) is easily obtained 
· 1' b. t• f (s,t)( · 1 2 ) m mear com ma 1011 o qi J == , , ... , m . 

For illustration, for the case of m = 2, we ob­
tain the eigenvalues, 

At = 1 + r, and .A2 = 1 - 1· (for r > 0), (19) 

omitting superscript (s,r) in the variables and sub­
script 12 in ,.12· The corresponding eigenvectors 
(principal components) are 

(/l2J) = (-1/-/2). 
Jl22 1//2 

(20) 
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Then, equations (18) are reduced to 

and 
- 1'VtXl + X2 = TWtQb 

and the solution is given by 

1'( TV2W1 ql + W2Q2) 
Xt = 

1- 1'2VtV2 

8 The Second PCA 

and 

(22) 

(21) For small r, Xt depends more on qz, and X2 on q1• 

Whenever q~~.t) is poorly observed (w~~.t) ~ 0), 
the x~"·'> value can be employed in place of qf"•') 
for representing the state ( s, t ). 

Let us suppose that the observation is made for PCA, there should appear no additional princi­
so many quantities and so many s.ites and times pal component.s having significant eigenvalues in 
a.s the dynamic behavior of the system can be de- the second PCA, and the correlations of the time 
scribed completely by the principal components. derivatives with tl1e principal components hitherto 
Then, the second PCA, which is the mechanism obtained should reveal the mechanisms driving the 
hunting procedure, can be made, using the time dynamics of the system. In other words, the dif­
dcrivatives of the observed quantities as the addi- ferential equations thus obtained could describe 
tional dimensions representing the system. Since the mechanisms of the global warming, if the key 
the dynamic characteristics have been already de- quantities are sufficiently observed. 
scribed by the principal components in the first 

9 Concluding Remark 

The earth environment forms a chaotic dy- ing the adjusted data is to maximize the probabil­
namical system in various time scales. Multi- ity given by equation (14) by adding an adjusted 
dimensional representation is appropriate to de- value of weight ( 1 - w) for the obs.erved value of 
scribe the system, and the way of constructing weight w. In this way, all the fragmentary data 
such representation is discussed in detail. Then, that have been useless can be taken into the PCA 
the PCA is introduced to analyze the system. To constructively without violating the accuracy of 
reveal the cause of the global warming, the second the analysis. Thus, the utility of the PCA is also 
PCA procedure is recommendable. The above see- very much extended. Nowadays, data can be ob­
nario wiJl work, if the data are complete. For the tained rather easily and personal computers to an­
global change, data are numerous but mostly frag- alyze the data are also available. There will be a 
mcntary. In that case, the adjusted data should be new science, if there is will. The present paper is 
adopted for supplementing the incomplete data. intended to provide the method. 
The method (Unno and Yuasa, 1992) of determiu-
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